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The goal of this study is to evaluate the performance of software for automated particle-boxing, and in
particular the performance of a new tool (TextonSVM) that recognizes the characteristic texture of par-
ticles of interest. As part of a high-throughput protocol, we use human editing that is based solely on
class-average images to create final data sets that are enriched in what the investigator considers to
be true-positive particles. The Fourier shell correlation (FSC) function is then used to characterize the
homogeneity of different single-particle data sets that are derived from the same micrographs by two
or more alternative methods. We find that the homogeneity is generally quite similar for class-edited
data sets obtained by the texture-based method and by SIGNATURE, a cross-correlation-based method.
The precision–recall characteristics of the texture-based method are, on the other hand, significantly bet-
ter than those of the cross-correlation based method; that is to say, the texture-based approach produces
a smaller fraction of false positives in the initial set of candidate particles. The computational efficiency of
the two approaches is generally within a factor of two of one another. In situations when it is helpful to
use a larger number of templates (exemplars), however, TextonSVM scales in a much more efficient way
than do boxing programs that are based on localized cross-correlation.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In terms of the human effort required, manual selection (‘‘box-
ing’’) of particles in electron micrographs is one of the most time-
consuming steps in the process of single-particle structure analysis.
Since images of 100,000 or more particles may be required for high-
resolution reconstructions, it becomes increasingly important to
use software tools to facilitate the boxing step (Glaeser, 2004; Nich-
olson and Glaeser, 2001). The questions that then arise include a
concern whether the performance of one such method is better
than another (Zhu et al., 2004), and whether the quality of an auto-
matically boxed data set is as high as that of one generated by man-
ual boxing. The precision (fraction of true positives in a data set) as
a function of the recovery of true positives (termed ‘‘recall’’) could
in principle be compared for different boxing programs, but in prac-
tice it is difficult to know whether a set of manually boxed particle
images represents a comprehensive ground-truth labeling, i.e.
whether such a data set itself has nearly 100% precision and recall.

In the current work, we present ‘‘TextonSVM’’, a new algo-
rithm for automatically finding particles that is based on modern
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machine-learning techniques. This algorithm uses a support
vector machine that is trained to recognize image-texture fea-
tures. This algorithm thus provides an alternative to the widely
used correlation-based techniques (Roseman, 2004), such as those
used in SIGNATURE (Chen and Grigorieff, 2007). We further use
unsupervised classification as a rapid and effective way to
visually identify, and then eliminate, entire classes of unwanted
false positives (Roseman, 2004; Shaikh et al., 2008) an operation
that we refer to as ‘‘class-editing’’. We also use this class-editing
approach, applied to the union of two or more independently
boxed data sets, to estimate the comprehensive ground-truth
labeling, which in turn enables us to use the ‘‘precision–recall’’
methodology as a second way to quantitatively compare different
boxing methods. When using the Fourier shell correlation (FSC)
function to characterize refined structures that are obtained from
different data sets, we employ the more rigorous procedure of
computing fully independent, 3-D density maps for arbitrarily
chosen halves of a given data set (Grigorieff, 2000), rather than
adopting the (still) common (but inappropriate) practice of
dividing the data set before, or even after, the final iteration of
alignment and Euler-angle assignments. As we explain in
Section 4, we believe that the primary value of the FSC function
is that it is sensitive, in a resolution-dependent way, to the rela-
tive heterogeneity of sets of particles that are boxed by different
methods from the same set of digitized micrographs.
f support vector machine-based and correlation-based approaches to auto-
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Results are presented for negatively stained specimens of four
different macromolecular particles and for cryo-EM specimens of
two of these particles. Negatively stained specimens were initially
used to evaluate (1) the extent to which the performance of Text-
onSVM would meet or even exceed the performance of a well-re-
garded, correlation-based boxing method, and (2) the extent to
which the relative performance of the two approaches might vary
from one type of particle to another. Cryo-EM specimens (of two of
these particles) were then used to evaluate the relative perfor-
mance of the two approaches under conditions where improve-
ments in automated boxing are more urgently needed but more
difficult to achieve.

Three different data sets were generated for each of the nega-
tively stained samples, one in which particles were boxed manu-
ally, one in which particles were boxed with TextonSVM, and one
in which particles were boxed with SIGNATURE. In the case of
cryo-EM samples, however, we used only data sets that were
boxed automatically. When class-edited data sets were used, the
FSC curves for particles boxed with different methods were almost
indistinguishable for four of the six data sets, but for two data sets
(negatively stained 70S ribosomes and unstained, cryo-EM RNAP
II), the FSC curves for particles boxed with TextonSVM were sys-
tematically higher than the respective FSC curves for particles
boxed with SIGNATURE. When the FSC function was used to com-
pare reconstructions obtained from manually boxed particles to
reconstructions obtained from automatically boxed particles, the
quality of the automatically boxed data sets was again found to
be essentially indistinguishable for three of the particles, but the
improved quality of the negatively stained ribosome data set ob-
tained with TextonSVM became even more apparent than before.
In addition, we have evaluated the quality of data sets as they ex-
isted prior to class editing. As measured by our estimate of the pre-
cision–recall performance, we find that human performance is
best, followed by that of TextonSVM, followed by SIGNATURE.

The results of our study demonstrate that the highly efficient
combination of automated boxing and manual class-editing pro-
duces data sets that are as homogeneous as those obtained by
manual boxing. This result increases our confidence that large data
sets can be generated at a small fraction of the human effort that is
required for manual editing of automatically boxed sets of candi-
date particles. In addition, we find that a texture-based boxing
method that is based on modern computer-vision tools consis-
tently performs at a level that is equal to or better than that of a
cross-correlation based method.
2. Materials and methods

2.1. Sample preparation, electron microscopy, and data analysis

Four large protein complexes, representing a range of particle
shapes and degrees of internal symmetry, were used as test spec-
imens in this study. These particles, purified in the course of a com-
prehensive study of Desulfovibrio vulgaris Hildenborough (Han
et al., 2009), are, respectively, lumazine synthase, an �1 MDa ico-
sahedral particle containing 60 copies of the 16.6 kDa riboflavin
synthase b subunit; bacterioferritin, an �480 kDa octahedral
particle containing 24 copies of the 19.9 kDa protein subunit;
RNA polymerase II, which was purified in this case as a dimeric,
short-rod-shaped �900 kDa complex thought to contain two
copies each of core enzyme and NusA; and the 70S ribosome, an
�3 MDa, asymmetric particle with an irregular, globular shape.
While all four specimens were used to make negatively stained
samples, only two of them (lumazine synthase and the dimeric
RNAP II–NusA complex) were used to make unstained, cryo-EM
samples. Further information is given in Supplementary Material
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about the more standard aspects of electron microscopy and data
analysis that were used, including manual boxing or particles;
three-dimensional reconstruction and refinement; and use of the
Fourier shell correlation (FSC) function to compare reconstructions.

2.2. Boxing particles with SIGNATURE

Manually boxed exemplars were masked with a circular mask
that was just large enough to include an intact particle, in order
to serve as the templates required as input to SIGNATURE. The
rotational search was performed in 15� intervals over the full
360� range. The distance parameter was adjusted to be about 1.2
times the particle diameter in order to prevent overlapping parti-
cles from being picked. Using a few micrographs as a test, the
peak-height threshold was adjusted to include about the same
number of ‘‘true positive’’ particles per micrograph (after editing)
as were picked by the texture-based program described below.
The exemplars used as templates in SIGNATURE were the same
as those, described below, that were used to train the texture-
based program.

Automated boxing of particles in cryo-EM samples was per-
formed with the same preprocessed, highly defocused (about
8 lm defocus) images, described below, that were used to box par-
ticles with the texture-based program. Phase flipping was applied
for all the cryo-EM images, but no correction was applied to ac-
count for the amplitude of the CTF. The positions of the zeros in
the CTF for each micrograph could be determined from the power
spectrum of the image in our case, as samples were prepared on
thin continuous carbon film.

The intermediate-defocus and low-defocus images were aligned
against the highly defocused images by cross-correlation in order
to transfer the particle coordinates to the former. These particle
coordinates were then used to window out particles from the ori-
ginal micrographs by the program WI in SPIDER. Boxed particles
were aligned by using the reference-free SPIDER command AP SR.

2.3. Boxing particles with a texture-based algorithm

2.3.1. Background
Texture is a primary perceptual cue used by humans when

manually selecting particles in electron micrographs. Motivated
by this observation, we developed a new algorithm for automatic
particle detection called TextonSVM. Our approach models the
appearance of images of molecular structures based on their tex-
ture, and, in addition, it applies a discriminative classifier called
support vector machine (SVM) to differentiate particles from the
background and from broken or otherwise unwanted particles.
Since we have not described this approach previously, we do so
here in some detail.

The concept of ‘‘textons’’ was introduced by Julesz (1981) to de-
note elementary units suitable for the analysis of textures in visual
perception. In computer vision, an operational version of textons
was proposed by Leung and Malik (2001), who convoluted an im-
age with a bank of Gaussian filters to generate a vector of filter re-
sponses at each image location. These vectors were in turn
clustered, and the vector at the center of each cluster was used
as a texton. The entire set of textons then constituted a codebook
that allowed one to represent the texture of new images. Textons
can also be constructed by alternative ways, for example (as we
do here) based on image patches rather than filter responses (Var-
ma and Zisserman, 2003). Textons have been applied to multiple
problems in computer vision and constitute what is currently the
dominant approach for texture analysis.

Support vector machines solve a quadratic programming prob-
lem with linear constraints rather than by solving a non-convex,
unconstrained minimization problem, as in standard neural
f support vector machine-based and correlation-based approaches to auto-
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network training. The method was originally introduced by Cortes
and Vapnik (1995) and Vapnik (1995), where the problem was for-
mulated as constructing the hyperplane that separates optimally
two classes of data points. The notion of optimality focuses on
the margin of (i.e. region close to) the decision boundary, and it
is expressed in terms of the distances between data points and
the boundary (hyperplane). The problem is thus written as a con-
vex optimization, which allows to efficiently construct a globally
optimal solution. The term SVM refers nowadays to a whole family
of methods inspired by the original formulation, and these are gen-
erally considered to be some of the most successful machine-learn-
ing techniques for computer-vision applications. In this paper, we
use Fast Intersection Kernel SVMs (Maji et al., 2008), which com-
bine the computational efficiency of linear SVMs with the accuracy
of non-linear classifiers.

Fundamental to our analysis of EM images, which generally
have a very low signal-to-noise ratio, is the idea of describing a gi-
ven image location by considering a local window centered at the
pixel and taking into account the information within the neighbor-
hood of that pixel, in addition to the pixel intensity itself. By vary-
ing the size of the window and the type of information considered,
our framework allows to robustly address different tasks such as
flat-field correction, denoising and automatic detection. In the fol-
lowing, we express the size of the square windows in terms of p,
the diameter of the particle expressed in pixels.

2.3.2. Texture analysis
Our system learns the appearance of particles starting from a

set of exemplars selected by the user. For this purpose, the exem-
plars are first extracted from the dataset and stored as individual
images whose side is approximately 3p. The number of exemplars
was typically in the range 100–200, but in the case of cryo-EM
images of RNA polymerase we used 1000 exemplars, since we
found that this improved the performance of TextonSVM signifi-
cantly. The number of exemplars used is thus likely to be some-
thing that one must experiment with for each new data set.

We first consider a patch of side about p/4 around each pixel of
these images and represent it as a vector in Rn by concatenating
the intensities of all the pixels in its interior. The vectors are then
clustered using the k-means algorithm, with k = 1000 in the cur-
rent experiments, and each cluster is represented by its center,
which serves as a texton in our algorithm.

The set of textons forms a codebook that allows expressing each
new image in terms of the texture of the exemplars. For this pur-
pose, we consider a patch around each location in a new image
and find its nearest texton in the codebook. We can then assign
to the location both the label of this texton, l 2 ½1; . . . ; k�; and the
value of its central pixel. After scanning all the locations in the
new image, one obtains in the former case an image of labels,
called a texton map, which we use for the detection stage. In the
latter case, the result is a reconstruction of the original image.

Fig. 1 presents an overview of TextonSVM. In brief, we formu-
late particle picking as an exemplar-based learning problem,
where we learn a model for the appearance of particles based on
a given set of examples. When presented with a previously unseen
image, our system uses the learned classifier to predict the proba-
bility of having a particle at each image location. The paragraphs
below detail the different components of TextonSVM.

2.3.3. Pre-processing
As a consequence of the acquisition process, EM images often

present unwanted intensity variations across the image and be-
tween different images. In order to standardize the appearance of
particles in the dataset, our first stage of processing is to apply a
local-normalization operation. For this purpose, given an input im-
age I, we construct a normalized image N given by:
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Nðx; yÞ ¼ Iðx; yÞ � lD

rD
; ð1Þ

where (l;r) represent the mean and standard deviation, respec-
tively, of I on a window D of side 3p centered at location (x, y).

After normalization, we extract the exemplars from the dataset
and form the texton codebook mentioned above. We then produce
filtered versions of the normalized images by assigning to each pix-
el the value of the central pixel in the corresponding texton. As can
be observed from the especially challenging example shown in
Fig. 3, the effects of this pre-processing operation are a flattening
of the background, substantial reduction of background noise, en-
hanced visualization of particles, and greater uniformity of their
appearance across the dataset. These properties are crucial for
accurate automatic detection, even for more highly defocused
images, for which visual detection of candidate particles is not as
challenging as it is in this example.

2.3.4. Detection
We formulate the problem of particle picking as a visual pat-

tern-recognition task where, given a set of labeled data, we would
like to predict a label for new instances. In our case, the two classes
are isolated particles and background, the labeled data are the
exemplars provided by the user, and the new instances are found
in previously unseen micrographs. For this purpose, we need to de-
scribe the visual pattern and then use this representation for its
classification.

2.3.4.1. Representation. A rotation-invariant representation is
important to account for there being unknown, in-plane rotations
of the particles. However, note that the textons constructed above
do not satisfy this property. Therefore, for the detection stage, we
describe each texton by its intensity histogram. Then, using the
v2 statistic as a measure of dissimilarity between histograms, we
perform hierarchical clustering in order to obtain a lower number
(about 100 in the experiments) of rotation-invariant textons,
which we denote as r-textons.

The data representation is illustrated in Fig. 2. In order to
describe the appearance of a particle, we consider a neighbor-
hood ‘‘N’’ of side p centered in an individual exemplar image
and form a first feature vector v1 by concatenating the histo-
gram of r-textons and the intensity histogram of the denoised
image on N. For the appearance of the background, we consider
a crown ‘‘C’’ of side 2p surrounding N, and form a second fea-
ture vector v2 by measuring the same histograms in C. Our final
representation for the first class of data, isolated particles, is the
concatenation of these two feature vectors, noted v1–v2. Intui-
tively, the first part describes the appearance of the particle
and the second one the appearance of the background sur-
rounding it. This is the visual pattern we would like to
identify.

In order to train a discriminative classifier, we need also exem-
plars for the second class which, in our case, rather than ‘back-
ground’, is ‘anything that is not an isolated particle’. We
construct them from the exemplars of the first class, as is shown
in Fig. 2. Given the representation of such a positive exemplar,
v1–v2, we construct three different negative exemplars: v2–v2, v1–
v1 and v2–v1 which represent: background regions, agglomerations
of particles and regions between particles respectively.

2.3.4.2. Classification. As a result of the previous stage, we have rep-
resented the exemplar particles as vectors in a high dimensional
space Rm and, for each of them, we have constructed three different
vectors representing non-particles. Since these vectors are (concat-
enations of) histograms, we compare them using the intersection
similarity:
f support vector machine-based and correlation-based approaches to auto-
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Fig.1. Overview of TextonSVM. At training time (top), exemplar particles are used to construct a texture codebook and to learn a model of particles with a non-linear SVM
classifier. At testing (bottom), an image is first pre-processed by performing texture analysis, which produces a denoised image and a texton map. The classifier analyzes this
appearance representation and estimates the probability of having a particle center at each image location (detection map). Finally, candidate particles are selected by
extracting strong peaks of the detection map.

Fig.2. Data representation from particles provided by the user. For each exemplar, we consider a neighborhood covering the particle (N) and a crown surrounding the
neighborhood (C). We represent each particle by considering its texture on the neighborhood (represented in blue) and the texture of the background in the surrounding
crown (red). Our final representation for the positive class of data (isolated particles) is the concatenation of these two feature vectors. In order to train a discriminative
classifier, we construct automatically examples for the negative class of data (non-particles) from the exemplars of the first class. These represent: background regions (e.g.
‘‘Negative 1’’ in which both N and C have a texture characteristic of the background); agglomerations of particles (e.g. ‘‘Negative 2’’ in which both N and C have a texture
characteristic of the particles); and particles that are closer to one another than desired (e.g. ‘‘Negative 3’’ in which N has a texture characteristic of the background while C
has a texture characteristic of the particles).

Fig.3. Improvement in particle visibility that results from local normalization of image data followed by texture-based denoising. The example shown here is for a cryo-EM
image of lumazine synthase (MW �1 MDa) that was recorded with an unexpectedly low defocus value of �0.7 lm. This particular example is used to illustrate how effective
the texture-based denoising algorithm is, even for cryo-EM images that are recorded at relatively low defocus values. (A) The digitized raw micrograph. (B) The corresponding
image after local normalization. (C) The corresponding image after denoising.
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Kðu;vÞ ¼
Xm

i¼1

minðuðiÞ;vðiÞÞ ð2Þ

Then, we choose as classifier a support vector machine, which
constructs the hyperplane in this space that best separates (in
the sense of maximal margin) the two classes of data. The hyper-
plane splits the space in two halves, each of them representing
one of the two classes.

Once the model is constructed, a new data point is classified by
determining to which of the two half-spaces it belongs, and the
distance from a data point to the decision boundary provides a
measure of confidence in its belonging to one of the classes.

Given a previously unseen image, we evaluate the classifier in
each location and assign to it the confidence provided by the
SVM. The result is an image called a confidence map, which is an
estimation of the probability of having a particle at each image
Please cite this article in press as: Arbeláez, P., et al. Experimental evaluation o
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location. As can be observed in Fig. 4, the peaks of the confidence
map correspond to the particles. The final step of detection then
consists in selecting the peaks that are above a user-defined
threshold of confidence.

Optionally, the model can be improved by running the SVM on
an image, labeling manually the false positives with high confi-
dence, adding them to the set of negative exemplars and training
a new SVM.

2.3.5. Optimization
Our system has a number of internal parameters that can be ad-

justed depending on the type of molecular structure considered,
the most important ones being the exact size of the windows N
and C defined above. When ground-truth is available, we propose
to learn the values of parameters automatically with the following
method:
f support vector machine-based and correlation-based approaches to auto-
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Fig.4. Key steps in the process by which TextonSVM boxes images of single
particles. Top-left, denoised image; top-right, texton map; bottom left, confidence
map; bottom-right, boxes overlaid on the original image, identifying particles
detected at a confidence of 85%. The user can choose which confidence level to use
for a given data set, so as to automatically box most of the particles that would be
boxed manually, while at the same time boxing few candidate particles that would
not be boxed manually, as is shown to be the case in this example. The example
shown here is a cryo-EM image of lumazine synthase (MW �1 MDa).

P. Arbeláez et al. / Journal of Structural Biology xxx (2011) xxx–xxx 5
Consider one fully annotated micrograph, for instance, one from
which the positive exemplars are extracted, and a fixed set of
parameters. Then, we can run TextonSVM, evaluate the result with
a precision/recall curve and use the area under the curve as a sum-
mary statistic of the performance with this set of parameters. Then,
given a set of possible values for each parameter, we repeat the
procedure for each combination and choose the ones with better
performance.

Note that this grid search on the parameter space involves
training and evaluating an SVM for each set of parameters and
can be computationally expensive (in the current experiments,
we consider about five choices for the sides of N and C). However,
it optimizes the performance of the classifier and its cost is amor-
tized over the number of images in the dataset, as it has to be done
only once per type of particle. The resulting model can be evalu-
ated on any number of new micrographs without adding computa-
tional burden.

2.3.6. User interface
We have developed a C++ stand-alone version of TextonSVM

with a graphical user interface. The software runs on Linux
platforms, and it is freely available to the research community
at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bio-
images/textonsvm.

2.4. Class editing: the use of class averages to identify and remove
‘‘false positives’’ in automatically boxed data sets

Aligned particles were classified into about 300 classes by the
program MSA in IMAGIC (van Heel et al., 1996). Class-average
images that the user did not want to include in the final data set
were identified by visual inspection. As an example, Fig. S1 shows
a sorted data set of EM images of negatively stained RNAP II
particles.
Please cite this article in press as: Arbeláez, P., et al. Experimental evaluation o
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In the initial stage of removing unwanted particles one must
proceed cautiously, especially if one has not yet established what
the good particles should look like. It is thus useful to use at least
two stages of classification and editing in which one first removes
the most obvious ‘‘false positives’’ and then subjects the remaining
data to a second round of unsupervised classification. This is be-
cause each cycle of editing can improve the subsequent classifica-
tion due to the removal of outlier particles, thereby facilitating the
identification of false positive particles in the next round.
2.5. Evaluation of the precision and recall of boxed data sets

When one or more fully annotated data sets are available, one
can measure the performance of an automatic detection algorithm
using precision/recall curves, a standard evaluation methodology
in the information retrieval community (van Rijsbergen, 1979). Gi-
ven a set of ground-truth particles and a set of automatic detec-
tions, their union can be divided in three parts: true positives
(TP), false positives (FP) and false negatives (FN). Precision mea-
sures the amount of true positives among the detections and recall
measures the fraction of ground-truth detected:

P ¼ TP
TPþ FP

;R ¼ TP
TPþ FN

ð3Þ

Precision and recall are two complementary measures of agree-
ment of automatically detected particles with respect to ground-
truth data. When the detector produces a single set of particles
as output, one obtains a point in the precision/recall plane. When,
as in the case of TextonSVM, the detector provides a measure of
confidence, then choosing several thresholds produces a preci-
sion/recall curve, which describes its performance across all the
detection regimes.

However, identifying the set of true particles in real experimen-
tal data poses a difficulty, since even manual (human) selection can
be quite error-prone when the images are noisy. Thus, even a man-
ually annotated data set may have both false positives and false
negatives. In order to minimize errors of that type, we estimated
the ground-truth set of particles by applying class editing to the
union of sets of candidate particles obtained with TextonSVM, SIG-
NATURE, and – when available – manually boxed particles. This
procedure has the advantage that it is blind as to whether a given
candidate particle had been initially boxed by one or another of the
methods. In addition, the improved signal-to-noise ratio that is
present in class-average images reduces the ambiguity that one
faces when deciding whether to include a particular image in the
ground-truth data set.
3. Results

3.1. Automated boxing followed by class editing of negatively stained
particles produces results similar to manual boxing, regardless of the
type of particle

Visual comparison of the isosurface representations that are
shown in Fig. S3 provides a convincing – although qualitative
and subjective – demonstration that one obtains similar 3-D recon-
structions of negatively stained protein complexes when using (1)
manually boxed particles; (2) class-edited particles boxed with
TextonSVM; and (3) class-edited particles boxed with SIGNATURE
(Chen and Grigorieff, 2007). As was stated in Section 2, four differ-
ent types of protein complexes were used in order to evaluate the
performance of automated boxing software for particles with dif-
ferent shapes and different degrees of internal symmetry.

As is emphasized in Section 4, the one-dimensional Fourier shell
correlation (FSC) curve provides a quantitative tool that is sensitive
f support vector machine-based and correlation-based approaches to auto-
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Fig.5. Use of the FSC curve to evaluate the resolution-dependent homogeneity of various data sets. Three different curves are shown in each panel in this figure,
corresponding to manually-boxed data (black), data boxed automatically with SIGNATURE (green), and data boxed automatically with TextonSVM (red). In each case, the FSC
function was used to compare the independently reconstructed and refined volumes that are shown in adjacent columns in Fig. S2. (A) 70S ribosome (MW �3 MDa); (B)
lumazine synthase (MW �1 MDa); (C) dimer of RNA polymerase II complexed with NusA (MW �900 kDa); (D) bacterioferritin (MW �480 kDa).
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to the resolution-dependent degree of homogeneity of different
data sets that are derived from the same electron micrographs.
We also emphasize that the shape of the entire FSC curve, and
not just the resolution at which the curve falls to a given value
(e.g. FSC = 0.5) provides information that is useful when comparing
different data sets. Fig. 5 shows that manually boxed particles,
class-edited particles boxed by TextonSVM, and class-edited parti-
cles boxed by SIGNATURE make up data sets that, in three of the
four examples, have nearly identical properties, i.e. a similar
degree of resolution-dependent homogeneity as judged by the
similarity of the respective FSC curves. The one exception is the
case of the 70S ribosome, for which there is evidence of greater
Fig.6. Use of FSC curves to compare the resolution-dependent similarity of volumes reco
automated boxing and the other manual boxing of particles. The alphabetical labeling
SIGNATURE, while the red curves are for data sets obtained with TextonSVM. The black c
Fig. 5, which now are included in this figure as a point of reference with respect to the
respective specimens.
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heterogeneity in the set of class-edited particles boxed with SIG-
NATURE than is found in the set of manually boxed particles and
in the set of class-edited particles boxed with TextonSVM.

A related, but different question is how homogeneous the data
are when particles from one data set are compared to particles
from another data set, for example manually boxed particles vs.
class-edited particles boxed with TextonSVM or with SIGNATURE.
FSC curves were therefore calculated for the refined structures ob-
tained with class-edited particles boxed either with TextonSVM or
SIGNATURE, versus the refined structures obtained with manually
boxed particles. The resulting FSC curves are shown in Fig. 6 In the
case of the 70S ribosome, it is now even more apparent than it was
nstructed and refined from data sets obtained by two different methods, one using
of panels is the same as in Fig. 5. The green curves are for data sets obtained with
urves are the same ‘‘manual vs. manual’’ FSC curves that were shown previously in
maximum homogeneity that can be expected within independent data sets for the
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Fig.7. Comparison of results obtained with automatically boxed cryo-EM data sets. (A) Lumazine synthase (MW �1 MDa). (B) Dimer of RNAP II complexed with NusA (MW
�900 kDa). The independently refined reconstructions that were obtained from separate halves of the full data sets are shown in the first four columns. The fifth column
shows the FSC curves that were obtained by comparing the two volumes produced by particles boxed with TextonSVM, i.e. column 1 vs. column 2 (red); the two volumes
produced by particles boxed with SIGNATURE, i.e. column 3 vs. column 4 (green); and one volume produced from the TextonSVM data set compared against one volume
produced from the SIGNATURE data set (black).
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in Fig. 5 that there is greater resolution-dependent heterogeneity
between particles boxed manually and those boxed with SIGNA-
TURE than is the case for particles boxed with TextonSVM. In the
case of the other three molecular complexes, however, the parti-
cles boxed with either of the two automated packages were
equally homogeneous relative to the manually boxed particles, as
judged by the cross-data-set FSC curves. For reference, each panel
also includes the FSC curves, which were already shown in Fig. 5,
for manual vs. manual data subsets. These latter curves are in-
cluded in each panel of Fig. 6 to serve as a standard that represents
the best homogeneity that is currently achievable for micrographs
of a particular type of particle.

3.2. Automated boxing of images of unstained particles together with
class-editing produces similar FSC curves for TextonSVM and for
SIGNATURE

A quantitative evaluation of the homogeneity of the edited
cryo-EM data sets was performed, using the FSC function. Fig. 7
shows the refined reconstructions and the FSC curves for (A) lum-
azine synthase and for (B) the RNAP II–NusA complex, respectively.
As before, data sets were divided into separate halves, and separate
refinements were produced for each. FSC curves were then com-
puted for the two volumes produced from particles boxed by Text-
onSVM (red curve) and for the two volumes produced from
particles boxed with SIGNATURE (green curve). In addition, an
FSC curve was computed for one volume produced from particles
boxed by TextonSVM versus one volume produced from particles
boxed by SIGNATURE. The three FSC curves are essentially indistin-
guishable for lumazine synthase, while the three FSC curves for the
RNAP II–NusA complex show that the class-edited data set boxed
with TextonSVM is slightly more homogeneous than the one boxed
with SIGNATURE.

3.3. The precision–recall performance of TextonSVM is in all cases
significantly better than that of SIGNATURE

The main difficulty in estimating the precision–recall character-
istics of a given method of particle-boxing lies in obtaining an
accurate approximation to the complete set of true positives. As
implied above, manual boxing is prone to missing true positives
Please cite this article in press as: Arbeláez, P., et al. Experimental evaluation o
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through fatigue and inattention, and it is also prone to mistakenly
accepting false positives due to the ambiguity of decisions that
must be made when the noise level is high. In this regard, an
advantage of employing class editing rather than performing parti-
cle-by-particle manual editing is that the noise level is reduced in
class-average images, thereby reducing some of the ambiguity
when decisions have to be made. We therefore regard data sets
of class-edited particles that result from the union of different data
sets to be a superior reference set that would allow at least a rela-
tive comparison of the precision–recall performance of different
methods of boxing particles.

The full precision–recall curves obtained for images of different
types of particles that were boxed with TextonSVM are shown in
Fig. 8. Also shown in these graphs are single points representing
the precision and recall for the data sets boxed with SIGNATURE,
in which the user-defined parameters, including the threshold for
accepting candidate particles, were the ones arrived at when gen-
erating the data presented above. In addition, the precision and re-
call achieved by manual boxing is also shown as another, single
point on these graphs. Finally, a single point is also shown on the
precision/recall curve for TextonSVM, which refers to the data sets
that were first class-edited and then used to obtain the results
shown in Figs. 5–7 and S2–S3.

The precision–recall curves produced for negatively stained par-
ticles by TextonSVM vary somewhat from one type of particle to an-
other, but in general the curves are quite good. Except for the 70S
ribosome, the precision ranges from 80% to well above 90% out to
a recall of at least 80%, but the precision drops precipitously at a re-
call above 90–95%. The precision–recall curve for the 70S ribosome
is generally somewhat below that of the other negatively stained
particles, and it starts to drop steeply beyond a recall of about 75%.
At the level of recall achieved during manual boxing, the precision
of TextonSVM is very close to that of manual boxing for lumazine
synthase and for bacterioferritin, but it is below that of manual box-
ing for our RNAP II complex and, of course, for the 70S ribosome.

The precision of boxing the same particles with SIGNATURE
again varies with the type of particle, in the same way as it did
for TextonSVM. At the same time the precision of SIGNATURE is
consistently about 10% below that of TextonSVM, except in the
case of the 70S ribosome particles, where the precision of SIGNA-
TURE is about 25% below TextonSVM.
f support vector machine-based and correlation-based approaches to auto-
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Fig.8. Evaluation of the precision–recall characteristics of TextonSVM, SIGNATURE (for the parameters we used in this study), and our own manual boxing (when applicable).
(A) through (D) Images of negatively stained 70S ribosomes, lumazine synthase, dimers of RNA polymerase II complexed with NusA, and bacterioferritin, respectively; (E)
cryo-EM images of lumazine synthase and (F) cryo-EM images of dimers of RNAP II complexed with NusA. In all cases, the reference data sets consisted of particles selected by
class-editing the union of data sets obtained by TextonSVM, SIGNATURE, and (for negatively stained specimens) manual boxing. In all cases, the texture-recognition program,
TextonSVM, provides data sets with better precision, at a given level of recall, than does the cross-correlation-based program, SIGNATURE. The red curve is the full precision–
recall curve for particles boxed with TextonSVM, while the red dots correspond to the data produced as initial candidate particles, prior to class editing, by setting the
confidence parameter to particular user-defined values for each data set. The blue dots correspond to the data produced by SIGNATURE, prior to class editing. The black dots
correspond to the ground-truth data sets (with precision and recall both equal to 1.0 by definition) produced by applying class editing to the union of all available sets of
candidate particles, while the green dots correspond to manually selected data sets.
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In the case of cryo-EM samples, the precision of particle boxing
by TextonSVM is significantly lower than it is for negatively
stained particles, as might have been expected. At the same time,
the precision achieved with TextonSVM is once again higher than
that of SIGNATURE. Even in the case of TextonSVM, however, the
precision achieved at almost any level of recall appears to be so
low that editing is clearly desirable.

The raw micrographs used in this work, as well as boxed data
sets and our best approximation to gold-standard data sets are
available at http://www.eecs.berkeley.edu/Research/Projects/CS/
vision/bioimages/textonsvm.

3.4. Comparison of the computational efficiencies of TextonSVM and
SIGNATURE

When TextonSVM and SIGNATURE are run on the same ma-
chine, and the original micrographs are processed at the same res-
olution, TextonSVM takes about two times longer per image to box
particles than does SIGNATURE. In our tests, however, we have
found that TextonSVM can be run with images that are subsampled
by a factor of 2 relative to those used for SIGNATURE. In this case,
TextonSVM runs about a factor of 2 faster than does SIGNATURE.
Other considerations that can affect the computational efficiency
include the fact that the computing time per particle scales linearly
with the number of exemplars for SIGNATURE but remains con-
stant for TextonSVM, since SIGNATURE matches each exemplar
to a given image patch while TextonSVM makes a decision about
where the patch is situated relative to the learned hyperplane.
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Our conclusion is that it is well-worth optimizing the parameters
of either software package before boxing particles from large num-
bers of micrographs. When that is done, the run-time for boxing
particles will not be a big consideration in choosing which software
package to use for boxing.

4. Discussion

4.1. Our objective is to box, as closely as possible, the same particles
that an investigator would box manually

Our perspective about automated boxing software is that it
should reliably produce the same particles that investigators
would box on their own. As a result, we generally do not expect
automated boxing itself to avoid the bias that an investigator
may or may not introduce when deciding what particles to include
in the data set. On the contrary, our goal is to duplicate, as closely
as possible, what the investigator would do, while greatly reducing
the human effort required to complete that highly repetitive task.
If, for example, the user chooses particles in a single orientation,
intentionally or not, we expect the software to do the same. Simi-
larly, if the user chooses structurally heterogeneous particles, we
once again expect the software to do the same. Our perspective
thus is that it is the responsibility of the user to initially choose
exemplars that include particles in all desired orientations and
conformations (or compositions), and then to subsequently edit
the set of automatically boxed, candidate particles in order to re-
move any that the user would not have selected to begin with.
f support vector machine-based and correlation-based approaches to auto-
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4.2. Identification of candidate particles based on the texture of their
images is an effective approach for automated boxing

The results obtained in our experimental tests with both nega-
tively stained specimens and cryo-EM specimens demonstrate that
texture-based identification of particles is an effective approach for
automated boxing. In particular, we have found that the precision/
recall characteristics of TextonSVM are consistently superior to
those of SIGNATURE, which currently is one of the commonly used
tools for automated particle boxing. In addition, our results indi-
cated that the superior performance of TextonSVM may be espe-
cially helpful with difficult particles, such as the 70S ribosome.

The use of statistical measures of texture for automated particle
boxing was investigated previously by Lata et al. (1995), who first
identified candidate particles as peaks in a cross-correlation func-
tion that were higher than a user-defined threshold. They then as-
signed each such candidate particle to one of three categories:
(true) particles, noise, and ‘‘junk’’, respectively. Our approach dif-
fers from that of Lata et al. considerably, both in our use of a
high-dimensional measure, which – further – explicitly incorpo-
rates a pattern of ‘‘particle texture’’ surrounded by ‘‘noise texture’’,
and in the use of a new generation of classifier (support vector ma-
chine) that is known to be superior to linear discriminant analysis
both theoretically and in practice. In addition, we treat the prob-
lems of identifying candidate particles and classifying each candi-
date as ‘‘particle’’ or ‘‘non-particle’’ jointly, rather than as two
sequential steps.

4.3. Use of unsupervised classification is an efficient way to edit
automatically boxed data sets

A continuing shortcoming of all automated boxing programs is
the fact that their precision/recall characteristics are not as good
as that which is achieved by manual boxing. As a result, one must
choose between setting the parameters for automated boxing to
give a relatively high precision, at the expense of a rather low recall,
or to set the parameters to values that give a relatively high recall,
at the expense of a rather low precision. In the second case one
must then edit the automatically boxed set of candidate particles
in order to reduce the number of false positives to an acceptably
low level. Manual editing is a poor choice, of course, in the sense
that it largely defeats the purpose of automating the boxing process
to begin with. In other words, the time required for editing remains
a substantial fraction of the time to simply box particles manually.

Class editing, on the other hand, has a number of advantages in
terms of the amount of human effort required. The number of
images of particles that must be evaluated is reduced from the total
number of particles in the data set (e.g. hundreds of thousands of
particles) to the total number of classes that one asks the software
to produce, typically something like 300. Even if one proceeds cau-
tiously with the class-editing step, using two or more cycles of edit-
ing, the savings in time (human effort) is very substantial. We
estimate, for example, that the human effort required to box
10,000 particles is already reduced from �20 h to �1 h by using
an automated boxing program followed by class editing. Since much
of the human time required for automated boxing and for class edit-
ing is independent of the size of the data set, the time-savings in-
creases proportionally with the number of particles to be boxed,
e.g. we estimate that a �200-fold reduction of human effort would
result if the data set is to contain 100,000 particles. While these esti-
mates are certain to depend upon the ability that one has to recog-
nize true-positives in the images (or the class averages), which in
turn will depend upon the experience of the user, we believe that
these estimates are at least in the right order of magnitude.

While class editing has the further advantage that choices on
which particle (classes) to keep and which to delete are made for
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less noisy images, it provides no help as regards the problem that
user bias is introduced when making such choices. Indeed, the best
that can be achieved is to produce the same data set that an expe-
rienced human would generate manually, but to do so with greatly
reduced human effort.

The amount of computing time required for both the boxing
step and the classification step is substantial, of course. The wall-
clock time required for these computations depend greatly upon
which particular computer hardware one has available, and one
can be sure that these times will continue to decrease as the speed
and parallelism of computational facilities increases. In general, of
course, it is preferable to have a computer do most of the work, no
matter how long it takes.
4.4. The use of two or more, independently boxed data sets may be
especially useful when the particles are suspected of being ‘‘difficult to
box’’

The Fourier shell correlation (FSC) function (Harauz and van
Heel, 1986; Saxton and Baumeister, 1982; van Heel et al., 1982)
provides a resolution-dependent measure of how well two density
maps, obtained from separate subsets of data, agree with each
other. If the images within independent data sets represent projec-
tions of structurally identical particles, and if the data sets are large
enough to provide well-sampled, uniformly distributed views of the
structure, then identical procedures of reconstruction should pro-
duce identical density maps (at least as an idealized approxima-
tion). If, on the other hand, the data sets are heterogeneous in the
sense that no single structure could exactly account for all of the
images, then different 3-D reconstructions will be produced from
independent data sets. In the first case, the FSC curve would ap-
proach 1.0 at all spatial frequencies (again, as an idealized approx-
imation), but in the second case the FSC would be less than 1.0 by an
amount depending upon how heterogeneous the data sets are with-
in each resolution shell. When the number of particles included in
the data sets is not limiting, one can thus infer that the shape of
the FSC curve, and not just the point at which FSC = 0.5 (or any other
point that is used as a criterion for ‘‘resolution’’) provides a resolu-
tion-dependent measure of the homogeneity (similarity) of the data
sets. In this context we use the words homogeneity or heterogene-
ity, respectively, to describe the degree to which the 2-D images in a
data set can or cannot be accounted for by a single 3-D object.

The results obtained in this study show that it can be worth-
while to compare the FSC curves for reconstructions produced by
data sets generated by two independent methods of automatic
boxing (e.g. TextonSVM and SIGNATURE). This may be particularly
useful when one suspects that boxing a homogenous data set is
especially difficult. In this case the use of the FSC curve for inde-
pendently refined structures can show whether data sets obtained
by quite different algorithms are equally limited by particle heter-
ogeneity. In addition, as we have shown here, the FSC between
structures refined from the independently boxed data sets can
show whether the two methods are, indeed, boxing structurally
similar particles. In the case of our sample of negatively stained
70S ribosomes, for example, we found that there was not only
greater structural heterogeneity within the data set boxed by one
software package (SIGNATURE) than within the data set boxed
by a second software package (TextonSVM), but, in addition, there
was greater heterogeneity between the two data sets than there
was within either of them.
5. Summary and conclusions

We find that the use of a support vector machine to classify
high-dimensional representations of image texture provides a
f support vector machine-based and correlation-based approaches to auto-
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superior method for identifying particles in both negatively stained
specimens and unstained, cryo-EM specimens. In all six cases tested
here, the precision–recall characteristics achieved with TextonSVM,
a new software tool described in this paper, were found to be supe-
rior to those of a locally normalized, cross-correlation tool. Our tests
included four examples of negatively stained particles whose
molecular weights ranged from �500 kDa to �3 MDa, and two
examples of unstained (cryo-EM) specimens whose molecular
weights were �800 kDa and �1 MDa, respectively.

We also find that the improvement in precision, for a given re-
call, varies from one type of specimen to another (as well as with
the chosen percent recall). In some cases the improvement was
by as little as a factor of�1.1, while in other cases it was by as great
a factor as �2. In spite of the improved performance of automated
particle boxing that is achieved with TextonSVM, however, the pre-
cision often remains less than �80% for a recall of �70–80%. A
higher precision at a recall of 80% still requires the use of a hybrid
approach in which candidate particles are boxed with a lower
threshold (i.e. confidence), followed by manual editing to remove
unwanted particles. We confirm that the recently introduced
method of class editing improves the precision of large data sets
with minimal cost in terms of human effort.

Finally, we find that the quality of 3-D reconstructions that is
achieved with class-edited data sets can still depend upon which
method of automated boxing is used. It is still the case that Text-
onSVM is to be preferred over a correlation-based algorithm for
particle picking because: (1) for our four negatively stained spec-
imens we find that the FSC curves are essentially identical for
data sets boxed manually or with TextonSVM, but when a
cross-correlation algorithm is used, this is true for only 3 of the
4 specimens. (2) For our two cryo-EM specimens the FSC curves
for automatically boxed particles is very similar, although one
of them is again slightly better for the class-edited data set boxed
with TextonSVM.
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