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Abstract

This paper presents a uni ed framework for object detec-
tion, segmentation, and classi cation using regions. Regi
features are appealing in this context becaudg:they en-
code shape and scale information of objects naturd®y;
they are only mildly affected by background clutter.

g@eecs.berkeley.edu

over time, ranging from cascades [32], branch and bound
strategies [18] to more ef cient classi er evaluation [23]

Yet, there is something profoundly unsatisfying about

this approach. First of all, classi cation of a window as
containing, say, a horse, is not the same as segmenting out
the pixels corresponding to a horse from the background.

Hence, some post-process relying on quite different cues

Regions have not been popular as features due to theirwould be required to achieve that goal. Secondly, the brute-

sensitivity to segmentation errors. In this paper, we dbgrt
producing a robust bag of overlaid regions for each image
using Arbehezet al, CVPR2009 Each region is repre-

force nature of window classi cation is not particularly-ap

pealing. Its computational complexity is proportionaltie t
product of the number of scales, locations, and categories.

sented by a rich set of image cues (shape, color and tex-Thirdly (and this may matter more to some than to others), it

ture). We then learn region weights using a max-margin

differs signi cantly from the nature of human visual detec-

framework. In detection and segmentation, we apply a gen-tion, where attention is directed to certain locations Hase
eralized Hough voting scheme to generate hypotheses of oben low-level salience as well as high-level contextual cues

jectlocations, scales and support, followed by a veri oati
classi er and a constrained segmenter on each hypothesis.

The proposed approach signi cantly outperforms the
state of the art on the ETHZ shape databa8& 1% av-
erage detection rate compared to Ferraet al's 67:2%),
and achieves competitive performance on the Caltegxh
database.

1. Introduction

Ever since the early work on face detection in the late
90s ([28], [32]), the dominant strategy for object detection

in a scene has been multi-scale scanning. A xed size and

rather than uniformly to all locations.

So what is the alternative? The default answer going
back to the Gestalt school of visual perception, is in “per-
ceptual organization”. Low and middle level vision fur-
nishes the entities on which recognition processes can oper
ate. We then have a choice of what these entities should be:
points, curves or regions? Over the last decade, low-level
interest point-based features, as proposed by [30] and [21]
have tended to dominate the discourse. The computer vision
community, by and large, didn't have faith in the ability of
generic grouping processes to deliver contours or regibns o
suf ciently high accuracy for recognition.

Our belief is that recent advances in contour [22] and
region detection [2] make this a propitious time to build an

shape window is swept across the image, and the contents,, o4 ch to recognition using these more spatially exténde

of the window are input to a classi er which gives an an-

and perceptually meaningful entities. This paper focuses o

swer to the question: is there an instance of object categoryusing regions, which have some pleasant properties (1) they

C (face, car, pedestrian, etc.) in the window? To nd ob-

jects of different sizes, the image is sub-sampled in a pyra-

mid, typically with neighboring levels being a quarter oc-
tave (* 2) apart. This strategy continues to hold in recent
papers, such as [7] on pedestrian detection and [10] on th

PASCAL challenge. Various speed-ups have been offered
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encode shape and scale information of objects naturally; (2
they specify the domains on which to compute various fea-
tures, without being affected by clutter from outside the re

gion.
While de nitely a minority trend, there has been some
relevant work in the last decade using regions/segments
which we review brie y. [16] estimates the 3D geometric
context of a single image by learning local appearance and



geometric cues on super-pixels. [29] uses a normalized cut-
based multi-layer segmentation algorithm to identify seg-
mented objects. This line of work suffers initially from un-
reliable regions produced by their segmentation methods,
The work from [25] and [31] is most similar to our ap-
proach. However, in addition to the problem of unstable £
regions, [25] takes regions as whole bodies of objects and_ =
ignores local parts, while [31] represents objects as regio Flgure 1. Detect|on and segmentation results on two example
trees but also exploits structural cues of the trees forlmatc the ETHZ shape database using our uni ed approach.
ing and such cues may not be reliable.

Starting with regions as the basic elements of our ap- .)
proach, we use a generalized Hough-like voting strategy for
generating hypotheses of object location, scale and stippor .)
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L | Iy O

Here, we are working in a long-standing tradition in com-
puter vision [8, 3, 21, 20, 27, 24].

Input
The rest of this paper is organized as follows. Section 2 ’ - .b )
overviews our method and describes the use of regions as el (D '
ementary units. Section 3 describes a discriminative fearn Regiontree Bag of regions

ing framework for region weighting. Section 4 describes Figure 2. The “bag of regions” representation of a mug exampl
our main recognition algorithm which has three stages: (1) Regions are collected from all nodes of a region tree geeérat
voting, (2) veri cation, and (3) segmentation. We show our by [2]. Therefore, these regions range in scale from supeigi
experimental results in Section 5, and conclude in Sectionto the whole image. Note that here “bag” implies discardiieg t
6. Figure 1 shows some of our nal detection and segmen- Structure.
tation results.

2. Overview of the Approach

The pipeline of our region-based recognition framework
is as follows: rst, each image is represented by a bag of
regions derived from a region tree as shown in Figure 2.
Regions are described by a rich set of cues (shape, color (@) (b)
and texture) inside them. Next, region weights are learned
using a discriminative max-margin framework. After that,
a generalized Hough voting scheme is applied to cast hy-
potheses of object locations, scales, and support, fodowe
by a re nement stage on these hypotheses which deals with
detection and segmentation separately.

(©) (d)
Figure 3. The “contour shape” region descriptor. (a) Oagjim-
. . age, (b) A region from the image, (gPP brepresentation of the
2.1. Region Extraction region in (b), (d) Our contour shape descriptor based on[je).

We start by constructing a region tree using the hierarchi- scriptors using other image cues are computed in the sameeman

cal segmentation engine of [2]. The regions we consider are
the nodes of that tree, including the root which is the entire by concatenating cell signals into a histogram. In this pape
image. We use them as the basic entities for our approach.we consider the following region cues:

Figure 2 presents an example of our region trees, as well

as a bag of regions representing the input image. Contour shape, given by the histogram of oriented re-

sponses of the contour detectd? b[22]

2.2. Region Description Edge shape, where orientation is given by local image
gradient (computed by convolution witHal 0 1] I-

ter alongx- andy-axes). This captures high frequency
information .g texture), whilegP bis designed to
suppress it.

We describe a region by subdividing evenly its bounding
box into ann  n grid, as illustrated in Figure 3. In the
experiments reported, we use= 4. Each cell encodes
information only inside the region. We capture different
region cues from the cells, and each type of cue is encoded  Color, represented by the , a andbhistograms in the



CIELAB color space
Texture, described by texton histograms

Distances between histograms of region cues are charactel
ized using 2 measure.

Our region representation has several appealing proper:
ties. Firstly, the scale invariant nature of region degorip
enables us to compare regions regardless of their relative
sizes. Secondly, background clutter interferes with negio
representations only mildly compared to interest point de-
scriptors. Thirdly, our region descriptor inherits ingigh
from recent popular image representations such as GIST
[26], HOG [7] and SIFT [21]. At the coarsest scale, where
the region is the root of the tree, our descriptor is simitar t
GIST. Atthe nest scale, when the regions are the leaves of
the tree, our representation resembles the SIFT descriptor

3. Discriminative Weight Learning

Not all . IV siani t for discriminat Figure 4. Weight learning on regions. For each column, tipe to
ot all regions are equally signi cant for discriminat- image is the exemplar, and the bottom four are regions inrorde

ing an object from another. For example, wheel regions are pighest learned weight. Note that the most discrimireatis-
more important than uniform patches to distinguish a bi- gions (leaf and body of the apple logo, handle of the mug) have
cycle from a mug. Here, we adapt the framework of [13] the highest weights from learning. (best viewed in color)

for learning region weights. Given an exemplarcon-

taining one object instance and a qudrydenotef ;i =

12000 M ande_J :;j =1:2;::1;N their bags of region ~ optimization is formulated as follows:
features. <
The distance fronh toJ is de ned as: min EWTW +C i (6)
N W i=1
D(I!J )= wdd =hm;di; (1) st owhxg 1 g5 08i=1;2:5T (7)
i=1 w O (8)
wherew; is the weight for featuré/ , and When integrating multiple cues for a single region, we

learn one weight for each cue. Figure 4 shows some exam-

13— mi l.¢J
4 = mjm d(f; ’fi ) (2) ples of learned weights on regions when contour shape cue
is used.
is the elementary distance betwdénand the closest fea- As in [13], we model the probability of quetdy beingin

tureind . Note that the exemplar-to-query distance is asym- the the same category as exempldoy a logistic function:
metric,i.e.,D(I'J )6 D!l ).

In the weight learning stage, supposings an object of p(l:J)= 1
categoryC, we nd a pair ofJ andK such that] is an l+exp[ D! ) ]
object of the same categoBandK is an object of a differ-
ent category. The learning algorithm enforces the follavin

9)

where | and | are parameters learned in training.

condition: . ) )
4. Detection and Segmentation Algorithms
D(II! K||< ) > D(II !‘]U .) (3) Our uni ed object recognition framework contains three
=hw ;d*i > hw;d" i (4)  components: voting, veri cation and segmentation. For a
= hwxUE i > o (5) given query image, the voting stage casts initial hypothe-
ses of object positions, scales and support based on region
wherexVK = dK  dY .| Supposing we construdt matching. These hypotheses are then re ned through a veri-
such pairs fol from the training set, thug; x2;:: ;X7 cation classi er and a constrained segmenter, respebtive

(we dropped the superscripts for clarity). The large-nrargi to obtain nal detection and segmentation results. Figure



Exemplars
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Figure 5. The pipeline of our object recognition algorithamsist of three stages. For an input query image, the votagescasts initial
hypotheses of object positions, scales and support basethtmhned regions from exemplars. These hypotheses arepthis iof the next
stages and are re ned through a veri cation classi er andastrained segmenter, respectively, to obtain nal dédecind segmentation
results. Figure 6 describes details of the voting stageFagute 7 illustrates the segmentation pathway.

Images

Ground truths

Query

5 depicts the pipeline of our recognition algorithms for the y-axes. Thus, in the-direction:
apple logo category. The query image is matched to each 8 _ R B! R! R _ R

apple logo exemplar in the training set, whose ground truth X2 = xT o+ (X x®) s¢ = (12)
bounding boxes and support masks are both given as inputs. &£ = B R :§f' (13)

X X X
All region weights are determined as in Section 3. . L . .
g g and same equations apply to thalirection. Figure 6 il-

4.1. Voting lustrates suc.h generalized Hough voting based on a pair of
matched regions.

The goal here, given a query image and an object cate- Eqn.11, 12 and 13 summarizes bounding box voting be-
gory, is to generate hypotheses of bounding boxes and (partween one pair of matched regions. An early rejection is
tial) support of objects of that category in the image. To applied to the voted box either if its voting score is too low
achieve it, we use a generalized Hough voting scheme based if the box is (partially) outside the image. For all matdhe
on the transformation between matched regions as well agegions between a quedy and all exemplars of one cate-

the associated objects in the exemplars. gory, we generate a set of bounding boxes accordingly for
Speci cally, given exemplar , its ground truth bounding  objects of that category id for each pair of regions. Fi-
boxB' and support mask', we match a regioR' in | nally, we cluster these bounding boxes by a mean-shift [6]
to another regioR? in queryJ . Then the vote for the  algorithm in the feature spacg . Here, we favor mean-
bounding box8 of the object in) is characterized by: shift over other clustering methods because it allows adap-
] tive bandwidth setting for different clusters. Thus, twgka
g=T(s] riiRY) (10) bounding boxes are more likely to merge than two small

boxes if they differ in the same amount in the feature space.
One main advantage of this voting algorithm based on

region matching is that it can recover the full support of an

object if only a small fraction of that object. @, the leaf of

the apple logo or the handle of the mug) is matched. It gives

not only position but also reliable scale estimation of the

bounding boxes. It also allows for aspect ratio deformation

Svt(B) = wer g(de 1dss ) h(R':R?) (11) of bounding boxes during transformation.

where =[X;y;Sy;sy] characterizes the center coordinates
[x;y] and the scalefs,;sy] of a region or bounding box,
andT is some pre-de ned transformation function with its
parameters derived by the matched regiansand s .

A voting score is also assigned to each box by combining
multiple terms:

wherewg: is the learned weight oR' after normaliza- 4.2. Veri cation

tion,g(dr: ; drs ) characterizes similarity between descrip- A veri cation classi er is applied to each bounding box
torsdg: anddgs , andh(R' ; RY ) penalizes region shape hypothesis from voting. In general, any object moeet;,
differences between two regions. [10] and [23], can be applied to each hypothesis. However,

In generalT in Eqn.10 can be any given transformation in order to fully exploit the use of region representatioe, w
function. In our experiments, we restrict our transformiati ~ follow the method of [13] using the region weights derived
model to allow only translation and scaling in bothand in Section 3.



used to mark some of the leaves of the region tree as de -
nitely belonging to the object, and some others as de nitely
background. We propagate these labels to the rest of the
leaves using the method of [1], thus getting the bene t of
both top-down and bottom-up processing.
More precisely, let , M' andB' be the exemplar, its
ground truth support mask and bounding box, respectively.
Then, for a regiorR' in | and one of its matching region
RY in the query imagd , we computél (M '), the trans-
formation of the ground truth magk' onJ . T(M ') pro-
Figure 6. Voting stage. This shows a Hough voting schemedbase vides an initial top-down guess for the location, scale and
on region matching using a speci ¢ transformation function= shape of the object il . Its complement provides the top-
[X;y;$x: Sy] includes the center coordinatsy] and the scales 44y guess for the background. Since we do not want to
[Sx: sy] of a bounding boxT transforms a ground truth bounding o6 the segmentation be completely determined by these
boxB' of R' to a new bounding bo¥ of R’ based on match- “ . ”
ing betweerR' andR” . This transformation provides not only tqp-do_vvn guesse;, we allow for a zone of *don't know
position but also scale estimation of the object. It alsoved! for pixelsina xed neighborhood of the boundary Pf the tran.s-
aspect ratio deformation of bounding boxes. formed exemplar mask, and consider as the priors for object
and background only pixels greater than a given Euclidean
distance from the boundary of the projected ground truth
maskT (M '). Since we have the constraint that the whole
matched regioR” must be part of the object, we union this
with the object mask to produce the “constrained mask”.
Thus, we construct a segmeit on the query by us-
ing both the exemplar mask and the low-level information

Figure 7. Segmentation stage. The initial seeds (greenkijecb ?;';i?igr??égtlwvzgz’)gs :ltltjasttfzaeti(\j/(a”r]lalzlgbu(ert(\a/v ;ér':?\:rt]hzany
and red for background) are derived from transformationhef t : ! P P

| . o .
exemplar mask (with black boundary). The constrained mask i transformed mgs’lﬁ (M7), and discard itif the score is low.
combination of the seeds and the matched part (mug handiesin t We alslo aSSIQ? ascofeg(M ) toM based on matched
case). Note that our method is able to recover the complgéetob ~ regionsR’ andR* :

support from one of its parts.
Sseg(M ) = wri g(dri ;drs ) (16)

wherewg: andg(dg: ;dgs ) are de ned in Section 4.1.
Thus, we de ne the con dence map df to | based on
R' as the maximal response of each regiodin The -
nal con dence map fod for a given category is the double
LN summation of these con dence maps over all region$ jn
Sver (B) = 5 Pl B) (14)  and over all exemplars of that category.
1

The veri cation score of a bounding bdX with respect
to categoryC is de ned as the average of the probabilities
of B to all exemplars of catego/@:

5. Experimental Results

andp(l ¢ ; B) are computed using Eqn.9. The overall de-  We evaluate our object recognition method on the ETHZ
tection scoreSeet (B) of B for categoryC is a combina-  shape and the Caltech 101 databases.

tion of the voting score, o (B‘) and the veri cation score

Sver (B), for instance, the product of the two: 5.1. ETHZ Shape

The ETH Zurich shape database (collected by V. Ferrari
et al. [12]) consists of ve distinctive shape categories (ap-
plelogos, bottles, giraffes, mugs and swans) in a totab&f
images. It is a challenging database because target objects

The segmentation task we consider is that of precisely appear over a wide range of scales and locations (see Figure
extracting the support of the object. It has been addressed i 10). In particular, we mark object support in the images as
the past by techniques such as OBJ CUT [17]. In our frame-ground truth masks for our segmentation task.
work, the region tree is the result of bottom-up processing; Initially, we construct region trees for images. This gives
top-down knowledge derived from the matched exemplar is on average 100regions per image. Since color and tex-

Stet (B) = Svot (B) Sver (B) (15)

4.3. Segmentation
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Figure 8. Comparison of detection performance with Feetaél [11] on the ETHZ shape database. Each plot shows the dmtaetie
as a function of false positives per image (FPPI) under th®@®AL criterion (a detected bounding box is considered obifét overlaps

50% "intersection over union” with the ground truth bounding<poOur method signi cantly outperforms theirs over all \eategories
at every FPPI point betwed; 1:5].

ture cues are not very useful in this database, we only use| Categories | Voting only | Verify only | Combined |

gP bbased contour shape cues as region features. In the Applelogos| 872 9.0 | 854 53] 906 6:2
weight learning stage, we construct exemplar images and| Bottles 930 30 | 932 54 | 948 36
their similar/dissimilar pairs in the following way: we tak Giraffes 794 1.3 | 736 55| 798 18
the bounding boxes of objects in training as exemplars. For| Mugs 726 120| 814 54 | 832 55
each exemplar, similar instances are the bounding boxe§ Swans 822 100 | 808 9:7 | 868 89

containing objects of the same category as the exemplar‘,J Average | 829 43 | 829 28 | 871 28 |
and dissimilar instances are the ones containing objects of
different categories as well as a collection of background Table 1. Object detection results in ETHZ shape. Detectioesr

regions, all in the training set. (%) at 0:3 FPPI based on only voting scores, only veri cation
In the voting stage, we choose the functions in Eqn.11 scores, and products of the two are reported, for each ohaai
as: category and the overall average o%drials.
g(dg! ;dgs ) =maxf0;1 2(dgi;dro )9 (17) | Categories | Bounding Box| Segments |
h(R':R?)=1[ Asp(R')=Asp(R’) 1=1] (18) Applelogos| 502 7:7 [ 772 111
where 2() speci es the chi-square distance, and MR B(_)ttles 7350 256 9056 155
. ; . Giraffes 340 07 742 25
is the aspect ratio of the bounding boxR®f The last equa- ) ) ) )
tion enforces aspect ratio consistency between matched re- Mugs /2251 760 44
P y Swans 288 42 | 606 13

gions. In the experiment, we use= 2 and = 0:6. _ _ _ _
We split the entire set into half training and half test for |Average | 516 25 [757 3:2 |
each category, and the average performance oamdom

i . ; . . ) Table 2. Object segmentation results in ETHZ shape. Pegoce
splits is reported. This is consistent with the implemeatat (%) is evaluated by pixel-wise mean Average Precision (AR) 0

in [11] which reported the state-of-the-art detection perf 5 315 The mean APs are computed both on the bounding boxes

mance on this database. Figure 8 shows our cqmparison 1QDbtained in Section 4.1, and the segments obtained in $etio
[11] on each of the categories. Our method signi cantly

outperforms [11] on all ve categories, and the average de- | Categories | Sld. Windows| Regions| Bnd. Boxes|

tection rate increases I30%(87:1  2:8% with respect to Applelogos 30,000 115 31
their 67:2%) at false positive per image (FPPI) rate®8 Bottles 1;500 168 11
under the PASCAL criterion. Detection rates on individual | Gjraffes 14: 000 156 6:9
categories are listed in Table 1. Mugs 16:000 189 53

We also evaluate segmentation performance on each of| gwans 10; 000 132 2:3

the5 categories using mean average precision (AP) of pixel-
wise classi cation. AP is de ned by the area underneath the Table 3. A comparison of the number of sliding windows, regio
recall-precision curve. Table 2 shows the precision accura and bounding boxes that need to be considered for diffesgst
cies. The overall mean AP on the object segments using ouidories in ETHZ shape. The number of regions for each category
constrained segmentation algorithm achie¥&§  3:2%, the average number of regions from images of that categdrg. T
signi cantly higher than on the bounding boxes from vot- numper of bounding boxes is the average number of votes from
ing. Examples of object detection and segmentation results>¢Ction 4.1 that need to obtain full recall of objects. Thebar
are shown in Figure 10. of sliding windows is estimated in the Appendix.
Table 3 compares the number of sliding windows, re-
gions, and bounding boxes that need to be considered for



| Image cues | 5train | 15 train | 30 train |
(R) Contour shape 41:5 55:1 60:4
(R) Edge shape 30.0 42:9 480
(R) Color 19:3 271 27:2
(R) Texture 239 314 327
(R) All 40:9 59.0 65:2

| (P)GB | 426 | 584 | 632 |
(R) Contour shape+(P) GB 44:1 65:0 73:1
(R) All + (P) GB 457 64:4 725

Table 4. Mean classi cation rate (%) in Caltech 101 usingvit
ual and combinations of image cues. (R) stands for regiceda
and (P) stands for point-based. (R)All means combiningegjian
cues (Contour shape+Edge shape+Color+Texture). We rtbtite
cue combination boosts the overall performance signi lyant

different categories. We show that our voting scheme ob-
tains 3-4 orders of magnitude reduction on the number
of windows compared to the standard sliding window ap-
proach.

5.2. Caltech-101

The Caltech-101 database (collected by L. Feidteil.
[9]) consists of images from 101 object categories (exclud-
ing the background class). The signi cant variation in &atr
class pose, color and lighting makes this database challeng
ing. However, since each image contains only a single ob-

ject, usually large and aligned to the center, we bypass thed

voting step and consider the entire image as the boundin

only our veri cation step.

We follow the standard approach for evaluation. For
each category, we randomly pick 5, 15 or 30 images for
training and up to 15 images in a disjoint set for test. Each
test image is assigned a predicted label, and mean classi
cation rate is the average of the diagonal elements of the
confusion matrix.

To exploit multiple image cues, we extract four types of
region descriptors (two types of shape, color and texture,
all described in Section 2.2), as well as one point desaripto
(Geometric Blur or GB [4]). Table 4 lists the mean clas-
si cation rates with different combinations of these image

Figure 9. Mean recognition rate (%) over number of trainimg i
ages per category in Caltech 101. With 15 and 30 training @mag
per category, our method outperforms [14], [15], [33], [E8]d
[19] but not [5].

6. Conclusion

In this paper, we have presented a uni ed framework for
object detection, segmentation, and classi cation usag r
gions. Building on a novel region segmentation algorithm
which produces robust overlaid regions, we have reported
state-of-the-art detection performance on the ETHZ shape
database, and competitive classi cation performance en th
Caltech 101 database. We have further shown that (1) cue
combination signi cantly boosts recognition performance
(2) our region-based voting scheme reduces the number of
candidate bounding boxes by orders of magnitude over stan-
ard sliding window scheme due to robust estimation of ob-

. . ect scales from region matching.
box of the object. Thus, we use this database to benchmargI]( g g

Appendix

We compute the optimal sliding window parameter
choices with respect to the ground truth labeling of the test
set in ETHZ shape. This gives us an estimate of the to-
tal number of candidates a sliding window classi er would
need to examine in order to achieve full recall. To this end,
we rst compute relative scales of objects with respect to
image sizes in the test set. We denote the minimum and
maximum scales aSmin , andSpax - S00 < Spin <
Smax < 1. Next, we assume that the minimum span be-
tween neighboring windows in each image axis is a quarter

cues. We observe a performance gain (from 55.1% to 59.0%0f the minimum scale. Then for each level of window scale,

under 15 training) by combining different region cues in
our method. In addition, a second and signi cant boost
in performance is obtained by combining region contour
shape with point GB cues (from 58.4% to 65.0% under 15
training). This boost illustrates that region based descri
tors complements conventional point based descrip&ogs (
SIFT [21]) in recognition. Our method achieves competi-
tive performance in this database in comparison with other
recently published approaches in Figure 9.

we have roughl=(Sy» =4)? candidate locations. As for
searching over scales, we make a second assumption that
the neighboring levels are=8 octave apart. Then the num-
ber of scales needed to cover the rang€Safi, ; Smax | is

8100, (Smax =Smin ). So if we ignore aspect ratio change of
objects, the estimate of the number of winddwdecomes

N 1=(Smin :4)2 8|092(Sma>< =Snin) (19)
128109, (Smax =Smin )=Sain (20)



Figure 10. Detection and segmentation results in the ETHpesidatabase.
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