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Abstract

We propose an unsupervised method for reference res-

olution in instructional videos, where the goal is to tem-

porally link an entity (e.g., “dressing”) to the action (e.g.,

“mix yogurt”) that produced it. The key challenge is

the inevitable visual-linguistic ambiguities arising from the

changes in both visual appearance and referring expression

of an entity in the video. This challenge is amplified by

the fact that we aim to resolve references with no supervi-

sion. We address these challenges by learning a joint visual-

linguistic model, where linguistic cues can help resolve vi-

sual ambiguities and vice versa. We verify our approach

by learning our model unsupervisedly using more than two

thousand unstructured cooking videos from YouTube, and

show that our visual-linguistic model can substantially im-

prove upon state-of-the-art linguistic only model on refer-

ence resolution in instructional videos.

1. Introduction

The number of videos uploaded to the web is growing

exponentially. In this work, we are particularly interested in

the narrated instructional videos. We as humans often ac-

quire various types of knowledge by watching them – from

how to hold a knife to cut a tomato, to the recipe of cooking

a tomato soup. In order to build a machine with the same

capability, it is necessary to understand entities (e.g. knife)

and actions (e.g. cut) in these videos.

From a learning point of view, data from instructional

videos pose a very interesting challenge. They are noisy,

containing unstructured and misaligned caption uploaded

by users or generated automatically by speech recognition.

Even worse, the key challenge arises from inevitable am-

biguities presented in videos. For example, in Figure 1(a),

“oil” mixed with “salt” is later referred as a “mixture” – a

linguistic ambiguity due to a referring expression. An onion

in Figure 1(b) looks very different from its original appear-

ance before being cut – a visual ambiguity due to a state

change. Lastly, “yogurt” is later referred to “dressing” and

its appearance changes completely as shown in Figure 1(c)

(b) Visual Ambiguity

Cut the onion Put the onion into

Resolved by linguistic similarity

(a) Linguistic Ambiguity

Stir oil and salt Use the mixture �

Resolved by visual similarity

(c) Visual-Linguistic Ambiguity

✁✂✄ ☎✆✝✞✟✠ � Add the dressing

Resolved by our joint modeling

✡✞✠ ☛☞✝☞✠✌✍✎☞ �

Figure 1. Our goal is to resolve references in videos – temporally

linking an entity to the action that produced it. (a), (b), and (c) il-

lustrate challenges resulting from different types of ambiguities in

instructional videos and how they are resolved. Our model utilizes

linguistic and visual cues to resolve them. An arrow pointing to an

action outcome indicates the origin of the entity.

– both linguistic and visual ambiguities.

In this paper, we address how to resolve such ambigui-

ties. This task is known as reference resolution: the linking

of expressions to contextually given entities [50]. In other

words, our goal is to extract all actions and entities from a

given video, and resolve references between them. This is

equivalent to temporally link each entity (e.g. “ice”) to the

action (e.g. “freeze water”) that produced it. For example,

“mixture” in Figure 1(a) refers to the outcome of the ac-

tion “stir oil and salt”, and “dressing” in Figure 1(c) is the

outcome of the action “mix yogurt with black pepper”.

There have been various attempts to address reference

and coreference resolution in both language understand-



ing [6, 30], and joint vision and language domains [27, 32,

45, 47]. However, most of the previous works either assume

that there is enough supervision available at training time

or focus on the image-sentence reference resolution, where

annotations are easier to obtain. Unfortunately, obtaining

high-quality reference resolution annotations in videos is

prohibitively expensive and time-consuming.

Thus, in order to avoid requiring explicitly annotated

data, we introduce an unsupervised method for reference

resolution in instructional videos. Our model jointly learns

visual and linguistic models for reference resolution – so

that it is more robust to different types of ambiguities. In-

spired by recent progress in NLP [23, 39], we formulate our

goal of reference resolution as a graph optimization task. In

this case, our task of reference resolution is reformulated

as finding the best set of edges (i.e. references) between

nodes (i.e. actions and entities) given observation from both

videos and transcriptions.

We verify our approach using unstructured instructional

videos readily available on YouTube [35]. By jointly opti-

mizing on over two thousand YouTube instructional videos

with no reference annotation, our joint visual-linguistic

model improves 9% on both the precision and recall of

reference resolution over the state-of-the-art linguistic-only

model [23]. We further show that resolving reference is

important to aligning unstructured speech transcriptions to

videos, which are usually not perfectly aligned. For a phrase

like “Cook it,” our visual-linguistic reference model is able

to infer the correct meaning of the pronoun “it” and improve

the temporal localization of this sentence.

In summary, the main contributions of our work are: (1)

introduce the challenging problem of reference resolution

in instructional videos. (2) propose an unsupervised graph

optimization model using both visual and linguistic cues to

resolve the visual and linguistic reference ambiguities. (3)

provide a benchmark for the evaluation of reference resolu-

tion in instructional videos.

2. Related Work

Coreference/Reference Resolution in Vision In addi-

tional to the core task of coreference/reference resolution in

NLP [6, 12, 30], there has been recent attempts to address

these tasks in conjunction with vision. One task related to

our goal of reference resolution in instructional videos is the

recent progress on words to image regions reference resolu-

tion, where the goal is to spatially localize an object given

a referring expression [16, 22, 28, 38, 41, 45, 49, 60, 61].

On the other hand, coreference resolution in texts aligned

with the image/video has been shown to be beneficial to

the task of human naming [47], image understanding [15],

and 3D scene understanding [27]. The most related to our

work is the joint optimization of name assignments to tracks

and mentions in movies of Ramanathan et al. [47]. Never-

theless, our task is more challenging in both the linguistic

and visual domains due to the drastic change in both visual

appearances and linguistic expression introduced by state

changes of the entities.

Instructional Videos. Instructional videos have been used

in several contexts in computer vision. The first is semi-

supervised and weakly supervised learning, where the tran-

scription is treated as action label without accurate tempo-

ral localization [35, 62]. As significant progress has been

made on classifying temporally trimmed video clips, recent

works aim to obtain the procedural knowledge from the in-

structional videos [2, 3, 52]. Our goal of reference resolu-

tion in instructional videos is a step further as it requires the

explicit expression of what action to act on which entities.

Procedural Text Understanding. Our goal of resolving

reference in transcription of instructional videos is related

to the procedure text understanding in the NLP commu-

nity [4, 18, 23, 29, 33, 34, 36]. While most approaches re-

quire supervised data (ground truth graph annotation) dur-

ing training [18, 29, 34], Kiddon et al. proposed the first

unsupervised approach for recipes interpretation [23]. The

linguistic part of our approach is inspired by their model.

However, as we would show in the experiments, the joint

modeling of language and vision plays an important role to

interpret the noisier transcription in online videos.

Learning from Textual Supervision. Our learned visual

model needs to observe fine-grained details in a frame based

on textual supervision to improve reference resolution. This

is related to recent progress on aligning and matching tex-

tual description with image [19, 54] or video [8, 9, 42, 59,

63]. Another line of work aim to learn visual classifiers

based on only textual supervision [5, 7, 11, 48]. Our visual

model is trained only with the transcription and is able to

help reference resolution in instructional videos.

Extracting Graph from Image/Video. Our formulation of

reference resolution as graph optimization is related to the

long-standing effort of extracting graphs from image/video.

This includes recent progress in scene graphs [13, 20, 51,

64], storylines [1, 14, 17, 31, 53], and action understand-

ing [10, 44, 55]. Our approach of extracting graph associ-

ating the entities with action outputs is related to works in

robotics where the goal is to transform natural language in-

structions for the robots to execute [26, 32, 56, 58]. It is

important to note that our approach is unsupervised while a

large part of the graph extraction approaches require graph

annotation at the training stage.

3. Model

Our main goal in this paper is resolving references given

an instruction video. Given a video, can we identify all ref-

erences from entities to actions? For example, “dressing” is

referring to the outcome of the action “mix the yogurt and
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Figure 2. An action graph (G) is a latent representation of refer-

ences in an instructional video. Both visual (V ) and linguistic (L)

cues of an instructional video are dependent on an action graph,

and they are conditionally independent given an action graph.

black pepper” (shown in Figure 2). Despite its many poten-

tial applications, this task comes with two major challenges.

First of all, videos contain different types of ambiguities.

For example, some entities change their shapes, some are

referred by different names, or both. Second, obtaining a

large-scale annotation for references in videos is not trivial.

Hence, we propose an unsupervised model for refer-

ence resolution. Our model is unique in a way that it (1)

learns unsupervisedly, (2) uses both linguistic and visual

cues from instructional videos, and (3) utilizes the history

of actions to resolve more challenging ambiguities. We for-

mulate our goal of reference resolution as a graph optimiza-

tion task [39]. More specifically, we use the action graph

(see Section 3.2) as our latent representation because our

goal of reference resolution is connecting entities to action

outputs. An overview of our unsupervised graph optimiza-

tion is shown in Figure 4. We will first describe our model

and discuss the details of our optimization in Section 4.

3.1. Model Overview

Our goal is to design an unsupervised model that can

jointly learn with visual and linguistic cues of instructional

videos. To this end, our model consists of a visual model

handling video, a linguistic model handling transcription,

and an action graph representation encoding all reference-

related information. Our model is illustrated in Figure 2.

In summary, our task is formulated as a graph optimiza-

tion task – finding the best set of edges (i.e. references) be-

tween nodes (i.e. actions and entities). Essentially, an action

graph is a latent representation of actions and their refer-

ences in each video, and observations are made through a

video with its visual (i.e. frames) and linguistic (i.e. instruc-

tions) cues; as illustrated in Figure 2. The fact that an action

graph contains all history information (i.e. references over

time) helps to resolve a complex ambiguity. Under this for-

mulation, our approach can simply be about learning a like-

lihood function of an action graph given both observations.

Formally, we optimize the following likelihood function:

argmax
G

P (L,V|G; θV , θL), (1)

where G, V, and L are the sets of temporally grounded

action graph, videos, and corresponding speech transcrip-

tions, respectively. θV and θL are parameters of visual and

linguistic models. Under the assumption that observations

are conditionally independent given the action graph, it can

be further broken down into

argmax
G

P (L|G; θL)P (V|G; θV ). (2)

We can thus formulate the visual and linguistic models sep-

arately, while they are still connected via an action graph.

3.2. Temporally Grounded Action Graph (G)

An action graph is an internal representation containing

all relevant information related to actions, entities, and their

references: (1) action description (e.g. add, dressing, on the

top), (2) action time-stamp, and (3) references of entities.

As an example, let’s take a look at Figure 2(b), the case of

making a salad. Each row represents an action, and each

edge from an entity to an action represents a reference to

the origin of the entity. Essentially, our goal is to infer these

edges (i.e. reference resolution). This latent action graph

representation connects both linguistic and visual models

as in Eq. (2). Also, all its reference information later is used

to resolve complex ambiguities, which are hard to resolve

without the history of actions and references.

To this end, we define action graph by borrowing the

definition in [23] with a minor modification of adding tem-

poral information. An action graph G = (E,A,R) has

E = {eij}, a set of entity nodes eij , A = {ai} a set of ac-

tion nodes ai encompassing and grouping the entity nodes

into actions, and R = {rij}, a set of edges corresponding

to the references rij for each entity eij . The details are

defined as following (See Figure 2(b) for an example):

• ai = (predi, [eij ], zi): action node

– predi: predicate or verb of the action (e.g. put)

– eij = (tsynij , tsemij , Sij): entity nodes of ai
∗ t

syn
ij : its syntactic type (i.e. DOBJ or PP )

∗ tsemij : its semantic type (i.e. food, location, or other)

∗ Sij : its string representation (e.g. [in the bowl])

– zi = (fst, fend): starting and ending times of ai
• rij = o: directional edge or reference from entity eij to

its origin action node ao.

An auxiliary action node a0 is introduced for entity node

not referring to the outcome of another action. For exam-

ple, if the raw food entity node eij “chicken” is not coming
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Figure 3. (a) We use RNN as the building blocks of our action graph embedding. f(a) is the embedding of action a. (c) shows the action

graph embedding of (b). In (c), the embedding of the word “dressing” is averaged with that of its origin, f(a1), to represent the meaning

based on its reference r31. This is then used recursively to compute f(a3), the embedding of the final step.

from another action, then rij will connect eij to a0. In addi-

tion, we allow entity node with empty string representation

Sij = [φ]. This can happen when the entity is implicit in

the transcription. For example, the sentence “Add sugar”

implies an implicit entity that we can add the sugar to.

In summary, our action graph is a latent structure

that constraints visual and linguistic outputs through

P (L|G; θL) and video P (V |G; θV ), and also contains all

reference information to resolve ambiguities. The defini-

tion of action graph and its relationships to other models

are illustrated in Figure 2. Our goal of reference resolu-

tion is reformulated as optimizing the action graph with the

highest likelihood given by Eq. (2).

3.3. Visual Model

Visual model P (V |G; θV ) is a model that links an ac-

tion graph to visual cues (i.e. video frames). The motivation

of our visual model is that it can help resolving linguistic-

based ambiguities, and an action graph constrains visual

outputs. In other words, our visual model computes a like-

lihood of an action graph given a set of video frames, where

θV is the parameters of the model.

For a video V = [x1, . . . , xT ], where xt is the image

frame at time t, and its corresponding action graph G, we

decompose P (V |G; θV ) frame by frame as:

P (V |G; θV ) =
T
∏

t=1

P (xt|Hz̄t) (3)

where Hi = (a1:i, r1:i) is the subgraph before action i, and

z̄t is the action label of frame t. That means z̄t = i if frame

t belongs to action i. z̄t = 0 corresponds to the background.

The key novelty of our visual model is the joint formula-

tion of frame xt and the corresponding subgraph Hz̄t . This

formulation is vital to our success of improving reference

resolution using visual information. Consider the final ac-

tion “add dressing on the top” in Figure 2(b). If we swap

the references of “dressing” and “on the top”, then it will

induce a very different meaning and thus visual appearance

of this action (i.e. adding vegetable on top of yogurt, instead

of adding yogurt on top of vegetable). Our use of Hz̄t in-

stead of az̄t in the visual model catches these fine-grained

differences and helps reference resolution; setting our ap-

proach apart from previous joint image-sentence models.

To compute P (xt|Hz̄t ; θV ), we learn a joint embedding

space for video frames and action (sub)graphs, inspired by

visual-semantic embedding works [24, 54]. In other words,

we learn θV that can minimize the cosine distances between

action graph features and visual frame features.

Action Graph Embedding. In order to capture the differ-

ent meanings of the action conditioned on its references, we

propose a recursive definition of our action graph embed-

ding based on RNN-based sentence embedding [25]. Let

g(·) be the function of RNN embedding that takes in a list

of vectors and output the final hidden state h. Our action

graph embedding f(·) is recursively defined as:

f(ai) = g
([

W (predi),
[

W (eij) + f(arij )
]])

, (4)

where W is the standard word embedding function [40, 43],

and rij is the origin of eij . In other words, compared to the

standard sentence embedding, where the embedding of eij
is simply W (eij), we enhance it by combining with f(arij ),
the embedding of the action it is referring to. This allows

our action graph embedding to capture the structure of the

graph and represent different meaning of the entity based

on its reference. An example is shown in Figure 3.

Frame Embedding We use a frame embedding function

from the image captioning models [21, 57]. By transform-

ing the responses of convolutional layers into a vector, it has

been shown to capture the fine-grained detail of the image.

3.4. Linguistic Model

Similar to the visual model, our linguistic model

P (L|G; θL) links an action graph to linguistic observation.

In our case, we use transcripts L of spoken instructions in
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videos as our linguistic observation. Then, we know that an

action graph will constrain what kind of instructions will be

given in the video. Essentially, the linguistic model com-

putes the likelihood of an action graph given transcriptions

of the instructional video.

We decompose the linguistic model as follow:

P (L|G; θL) = P (L,ZL|A,R,Z; θL)

∝ P (L|A; θL)P (A|R; θL)P (ZL|Z; θL), (5)

where ZL is the time-stamps of L, and A, R, Z are the

actions, references, and time-stamps of the action graph G,

respectively. We assume the conditional independence of

the time-stamps and that R is independent of L given A.

Here, P (L|A) parses the action nodes from transcrip-

tions using the Stanford CoreNLP package [37].

P (A|R) measures the likelihood of the references given

the actions. We adapt the model of Kiddon et al. [23] and

refer the readers to their paper for details. Briefly, the key

models we use are:

- Verb Signature Model to capture the property of the verb.

For example, “add” tend to combine two food entities.

- Part-Composite Model to represent the probable ingredi-

ents of an entity. For example, the dressing is more likely

to be made up of oil compared to beef.

- Raw Food Model to determine if an entity is an action

outcome. For example, “flour” is less likely to be an action

outcome compared to “dough.”

We measure P (ZL|Z) independently for each action i,

where P (zLi|zi) is defined as:

P (zLi|zi) ∝ e−
|fst

Li
−fst

i
|

σ e−
|fend

Li
−fend

i
|

σ (6)

4. Learning & Inference

We have discussed how we formulate references in in-

structional videos by the latent structure of an action graph.

Using this model, our goal of reference resolution is essen-

tially the optimization for the most likely action graph given

the videos and transcriptions based on Eq. (2).

The first challenge of optimizing Eq. (2) is that both the

action graph G, and the model parameters θL, θV are un-

known because we aim to learn reference resolution in an

unsupervised manner without any action graph annotation.

We thus take a hard EM based approach. Given the cur-

rent model parameters θV and θL, we estimate the tempo-

rally grounded graphs G (Section 4.2). Fixing the current

graphs G, we update both the visual and linguistic models

(Section 4.3). An overview of our optimization is shown in

Figure 4. In the following, we will describe our initializa-

tion, inference, and learning procedures in more details.

4.1. Graph Initialization

Initially, we have neither an action graph G nor model

parameters θV and θL. Hence, we initialize an action graph

G based on a text transcription as the following.

A list of actions A is extracted using Stanford CoreNLP

and the string classification model [23]. To simplify our

task, we do not update A from the initial iteration. This

means all actions we consider are grounded in the transcrip-

tion. A reference r of each action is initialized to one of

the entities in its next action. This is proved to be a strong

baseline because of the sequential nature of instructional

videos [23]. A temporal location z of each action is ini-

tialized as the time-stamp of the action in the transcription.

4.2. Action Graph Optimization (E­step)

In this section, we describe our approach to find the best

set of action graphs G given model parameters θV and θL.

This is equivalent to find the best set of references R and

temporal groundings Z for actions in each G, because the

set of actions A is fixed from initialization. Jointly opti-

mizing these variables is hard, and hence we relax this to

finding the best R and Z alternatively.

Our reference optimization is based on a local search

strategy [23]. We exhaustively update the graph with all

possible swapping of two references in the current action

graph, and update the graph if a reference swapped graph



has a higher probability based on Eq. (2). This process is

repeated until there is no possible update.

To optimize our temporal alignment Z, we compute the

probabilities of actions for each time based on a language

model Eq. (6) and a visual model Eq. (3). Then, we can use

dynamic programming to find the optimal assignment of Z

to each time based on Eq. (2).

4.3. Model Update (M­step)

Given the action graphs, we are now ready to update our

linguistic and visual models.

Linguistic Model Update. We use the statistics of semantic

and syntactic types of entities for the verb signature model.

For part-composite model, we use Sparse Determinant Met-

ric Learning (SDML)[46] to learn a metric space where

the average word embedding of origin’s food ingredients

is close to that of the current entity eij . We use logistic

regression to classify if the argument is a raw food.

Visual Model Update Given the temporally grounded ac-

tion graph, for each frame xt, we are able to get the corre-

sponding subgraph Hz̄t . With it as the positive example,

we collect the following negative example for our triplet

loss: (1) H̃z̄t , which is the perturbed version of Hz̄t . We

randomly swap the connections in Hz̄t to generate H̃z̄t as

negative example. (2) Hi, where i 6= z̄t, subgraph corre-

sponding to other frames are also negative examples. Using

the positive and negative examples, we are able to update

all our embeddings using backpropagation of triplet loss.

5. Experiments

Given an entity such as “dressing”, our goal is to infer its

origin – one of the previous actions. We formulate this as

a graph optimization problem, where the goal is to recover

the most likely references from entities to actions given the

observations from transcriptions and videos. We perform

the optimization unsupervisedly with no reference supervi-

sion. In addition to our main task of reference resolution,

we show that referencing is beneficial to the alignment be-

tween videos and transcriptions.

Dataset. We use the subset of ∼2000 videos with user up-

loaded caption from the WhatsCookin dataset [35] for our

unsupervised learning. Because there is no previous dataset

with reference resolution, we annotate reference resolution

labels on this subset for evaluation. We use k-means clus-

tering on the captions to select 40 videos, and annotate ac-

tion nodes A, their temporal locations Z, and references R.

This results in 1135 actions, more than two thousand enti-

ties and their references. Note that this annotation is just for

evaluation, and we do not use this annotation for training.

Implementation Details. Our visual embedding is initial-

ized by the image captioning model of [21]. Our linguis-

tic model is initialized by the recipe interpretation model

of [23]. All models use learning rate 0.001. For models

involving both visual and linguistic parts, we always use

equal weights for P (L|G) and P (V |G).

5.1. Evaluating Reference Resolution

Experimental Setup. For evaluation, we first run our

model unsupervisedly on all the instructional videos in the

dataset. The action and entity nodes here are generated au-

tomatically by the Stanford CoreNLP parser [37]. The se-

mantic types of the entities are obtained using unsupervised

string classification [23]. After the optimization is finished,

we apply one E-step of the final model to the evaluation set.

In this case, we use the action and entity nodes provided

by the annotations to isolate the errors introduced by the

automatic parser and focus on evaluating the reference res-

olution in the evaluation set. We use the standard precision,

recall, and F1 score as evaluation metric [23].

Baselines. We compare to the following models:

- Sequential Initialization. This baseline seeks for the near-

est preceding action that is compatible for reference resolu-

tion, which is a standard heuristic in coreference resolution.

This is used as the initial graph for all the other methods.

- Visual/Linguistic Model Only. We evaluate in separation

the contribution of our visual and linguistic model. Our lin-

guistic model is adapted from [23]. We additionally incor-

porate word embedding and metric learning to improve its

performance in instructional videos.

- Raw Frame Embedding Similarity (RFES). We want to

know if direct application of frame visual similarity can

help reference resolution. In this baseline, the visual model

P (V |G) is reformulated as:

P (V |G) ∝
∏

(i,j)∈A

∏

z̄t=i,z̄τ=j

s(xt, xτ ), (7)

where s(·, ·) is the cosine similarity between the frame em-

beddings given by [21] and A is the set of all the action

pairs that are connected by references in G. In other words,

RFES model evaluates the likelihood of a graph by the total

visual similarities of frames connected by the references.

- Frame Embedding Similarity (FES). We extend RFES to

FES by optimizing s(·, ·) during the M-step to maximize

the probability of the current graphs. In this case, FES is

trained to help reference resolution based on frame-to-frame

similarity. We compare to this baseline to understand if our

model really captures fine-grained details of the image be-

yond frame to frame visual similarity.

- Visual+Linguistic w/o Alignment. Our unsupervised ap-

proach faces the challenge of misaligned transcriptions and

videos. We evaluate the effect of our update of Z to the

reference resolution task.

Results. The results are shown in Table 1. By sequential

initialization, we already have a reasonable performance be-



Stir Peach Mix cornstarch Cut [ ]

Visual-Linguistic Model w/o alignment

Pour [ ]✄

✄

Drain [ ]

Visual-Linguistic Model w/o alignment

Drizzle oil [ ] Add onion [ ]

✄

� �

✄

Drain [ ]

Our Visual Linguistic Model

Drizzle oil [ ] Add onion [ ]

�

✄ ✄

�

Stir Peach Mix cornstarch Cut [ ] Pour [ ]

Linguistic Model Only

✄

✄

Drain [ ]

Linguistic Model Only

Drizzle oil [ ] Add onion [ ]

✄

✄ ✄

✄

Stir Peach Mix cornstarch Cut [ ]

Our Visual-Linguistic Model

Pour [ ]�

✄

Figure 5. Our reference resolution results. Each row shows the outputs of a type of our model. The first row is of the linguistic only model.

For both videos, it fails to resolve long range references. Now, adding the visual information (the 2nd row), our model can resolve longer

range references. For example, in the left video, our model can correctly infer the third step is cutting peach (output two steps ahead) using

the visual cue. Finally, we show the effect of having alignment in the process of visual-linguistic reference resolution (the 3rd row). For

the right video, when the onion appears, our model recognizes that it should be another entity ∅, rather than onion, that refers “drizzle oil”.

Methods P R F1

Sequential Initialization 0.483 0.478 0.480

Random Perturbation 0.399 0.386 0.397

Our Visual Model Only 0.294 0.292 0.293

Our Linguistic Model Only [23] 0.621 0.615 0.618

RFES + Linguistic w/o Align 0.424 0.422 0.423

FES + Linguistic w/o Align 0.547 0.543 0.545

Our Visual + Linguistic w/o Align 0.691 0.686 0.688

Our Visual + Linguistic (Our Full) 0.710 0.704 0.707

Table 1. Reference resolution results. Our final model significantly

outperforms the linguistic only model. Note that using vision to

help reference resolution is non-trivial. Directly adding frame sim-

ilarity based visual models is not improving the performance.

cause of the sequential nature of instruction. This is ver-

ified by the fact that if we perform random perturbation

to this graph (maximum 10 edge swaps in this case), the

reference resolution performance actually goes down sig-

nificantly. Optimizing using just the visual model for this

problem, however, is not effective. Without proper regu-

larization provided by the transcription, the visual model is

unable to be trained to make reasonable reference resolu-

tion. On the other hand, by using only our linguistic model,

the performance improves over sequential baseline by re-

Sequential Initialization With Linguistic Model

Pour Coconut Rum To the glassact1

Add Cream [ ]act2

Pour Coconut Rum To the glassact1

Add Cream [ ]act2

Figure 6. Qualitative results of the linguistic model. [φ] stands for

the implicit entity. On the left, the sequential baseline reference

“cream” as the previous action outcome without understanding

that it is a raw ingredient. On the other hand, our linguistic model

understands (1) cream is raw ingredient, and further (2) “add” is

usually used to combine food entities, and thus is able to infer the

reference of the implicit entity correctly.

solving references including common pronoun such as “it”,

or figuring out some of the words like “flour” is more likely

to be raw ingredients and is not referring back to previous

action outcomes. Qualitative comparison of the linguistic

model is shown in Figure 6.

Importance of our action graph embedding. Direct ap-

plication of initial frame-level model RFES to the linguistic

model, however, cannot improve the reference resolution.

This is due to the visual appearance changes caused by the

state changes of the entities. The extension of FES improves

the performance by 10% compared to RFES since FES op-

timizes the frame similarity function to help reference reso-

lution. Nevertheless, it is still unable to improve the perfor-

mance of the linguistic model because whole-frame simi-





References

[1] H. Agrawal, A. Chandrasekaran, D. Batra, D. Parikh, and

M. Bansal. Sort story: Sorting jumbled images and captions

into stories. In EMNLP, 2016.

[2] J.-B. Alayrac, P. Bojanowski, N. Agrawal, I. Laptev, J. Sivic,

and S. Lacoste-Julien. Unsupervised learning from narrated

instruction videos. In CVPR, 2016.

[3] J.-B. Alayrac, J. Sivic, I. Laptev, and S. Lacoste-Julien.

Joint discovery of object states and manipulating actions.

arXiv:1702.02738, 2017.

[4] J. Andreas and D. Klein. Alignment-based compositional

semantics for instruction following. In EMNLP, 2015.

[5] T. L. Berg, A. C. Berg, J. Edwards, M. Maire, R. White, Y.-

W. Teh, E. Learned-Miller, and D. A. Forsyth. Names and

faces in the news. In CVPR, 2004.

[6] A. Björkelund and J. Kuhn. Learning structured perceptrons

for coreference resolution with latent antecedents and non-

local features. In ACL, 2014.

[7] P. Bojanowski, F. Bach, I. Laptev, J. Ponce, C. Schmid, and

J. Sivic. Finding actors and actions in movies. In ICCV,

2013.

[8] P. Bojanowski, R. Lajugie, E. Grave, F. Bach, I. Laptev,

J. Ponce, and C. Schmid. Weakly-supervised alignment of

video with text. In ICCV, 2015.

[9] P. Das, C. Xu, R. F. Doell, and J. J. Corso. A thousand frames

in just a few words: Lingual description of videos through

latent topics and sparse object stitching. In CVPR, 2013.

[10] Z. Deng, A. Vahdat, H. Hu, and G. Mori. Structure inference

machines: Recurrent neural networks for analyzing relations

in group activity recognition. In CVPR, 2016.

[11] O. Duchenne, I. Laptev, J. Sivic, F. Bach, and J. Ponce. Auto-

matic annotation of human actions in video. In ICCV, 2009.

[12] G. Durrett and D. Klein. Easy victories and uphill battles in

coreference resolution. In EMNLP, 2013.

[13] S. Fidler, A. Sharma, and R. Urtasun. A sentence is worth a

thousand pixels. In CVPR, 2013.

[14] A. Gupta, P. Srinivasan, J. Shi, and L. S. Davis. Understand-

ing videos, constructing plots learning a visually grounded

storyline model from annotated videos. In CVPR, 2009.

[15] M. Hodosh, P. Young, C. Rashtchian, and J. Hockenmaier.

Cross-caption coreference resolution for automatic image

understanding. In Proceedings of the Fourteenth Conference

on Computational Natural Language Learning, 2010.

[16] R. Hu, M. Rohrbach, J. Andreas, T. Darrell, and

K. Saenko. Modeling relationships in referential expres-

sions with compositional modular networks. arXiv preprint

arXiv:1611.09978, 2016.

[17] T.-H. K. Huang, F. Ferraro, N. Mostafazadeh, I. Misra,

A. Agrawal, J. Devlin, R. Girshick, X. He, P. Kohli, D. Batra,

et al. Visual storytelling. In NAACL, 2016.

[18] J. Jermsurawong and N. Habash. Predicting the structure of

cooking recipes. In EMNLP, 2015.

[19] J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully

convolutional localization networks for dense captioning. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016.

[20] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. A. Shamma,

M. S. Bernstein, and L. Fei-Fei. Image retrieval using scene

graphs. In CVPR. IEEE, 2015.

[21] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In CVPR, 2015.

[22] S. Kazemzadeh, V. Ordonez, M. Matten, and T. L. Berg.

Referitgame: Referring to objects in photographs of natural

scenes. In EMNLP, 2014.

[23] C. Kiddon, G. T. Ponnuraj, L. Zettlemoyer, and Y. Choi.

Mise en place: Unsupervised interpretation of instructional

recipes. In EMNLP, 2015.

[24] R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying

visual-semantic embeddings with multimodal neural lan-

guage models. TACL, 2015.

[25] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun,

A. Torralba, and S. Fidler. Skip-thought vectors. In Advances

in neural information processing systems, pages 3294–3302,

2015.

[26] T. Kollar, S. Tellex, D. Roy, and N. Roy. Toward understand-

ing natural language directions. In ACM/IEEE International

Conference on Human-Robot Interaction (HRI), 2010.

[27] C. Kong, D. Lin, M. Bansal, R. Urtasun, and S. Fidler. What

are you talking about? text-to-image coreference. In CVPR,

2014.

[28] J. Krishnamurthy and T. Kollar. Jointly learning to parse and

perceive: Connecting natural language to the physical world.

TACL, 1:193–206, 2013.

[29] T. A. Lau, C. Drews, and J. Nichols. Interpreting written

how-to instructions. In IJCAI, 2009.

[30] H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu,

and D. Jurafsky. Stanford’s multi-pass sieve coreference res-

olution system at the conll-2011 shared task. In Proceedings

of the Fifteenth Conference on Computational Natural Lan-

guage Learning: Shared Task, 2011.

[31] D. Lin, S. Fidler, C. Kong, and R. Urtasun. Visual semantic

search: Retrieving videos via complex textual queries. In

CVPR, 2014.

[32] C. Liu, S. Yang, S. Saba-Sadiya, N. Shukla, Y. He, S.-C. Zhu,

and J. Y. Chai. Jointly learning grounded task structures from

language instruction and visual demonstration. In EMNLP,

2016.

[33] R. Long, P. Pasupat, and P. Liang. Simpler context-

dependent logical forms via model projections. In ACL,

2016.

[34] H. Maeta, T. Sasada, and S. Mori. A framework for proce-

dural text understanding. In Proceedings of the 14th Inter-

national Conference on Parsing Technologies, 2015.

[35] J. Malmaud, J. Huang, V. Rathod, N. Johnston, A. Rabi-

novich, and K. Murphy. Whats cookin? interpreting cooking

videos using text, speech and vision. In NAACL HLT, 2015.

[36] J. Malmaud, E. J. Wagner, N. Chang, and K. Murphy. Cook-

ing with semantics. In Proceedings of the ACL 2014 Work-

shop on Semantic Parsing, 2014.

[37] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel,

S. Bethard, and D. McClosky. The stanford corenlp natu-

ral language processing toolkit. In ACL (System Demonstra-

tions), pages 55–60, 2014.



[38] J. Mao, J. Huang, A. Toshev, O. Camburu, A. Yuille, and

K. Murphy. Generation and comprehension of unambiguous

object descriptions. In CVPR, 2016.

[39] S. Martschat and M. Strube. Latent structures for coreference

resolution. TACL, 3:405–418, 2015.

[40] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and

J. Dean. Distributed representations of words and phrases

and their compositionality. In NIPS, 2013.

[41] V. K. Nagaraja, V. I. Morariu, and L. S. Davis. Modeling

context between objects for referring expression understand-

ing. In ECCV, 2016.

[42] I. Naim, Y. C. Song, Q. Liu, L. Huang, H. Kautz, J. Luo,

and D. Gildea. Discriminative unsupervised alignment of

natural language instructions with corresponding video seg-

ments. NAACL HLT, 2015.

[43] J. Pennington, R. Socher, and C. D. Manning. Glove: Global

vectors for word representation. In EMNLP, 2014.

[44] H. Pirsiavash and D. Ramanan. Parsing videos of actions

with segmental grammars. In CVPR, 2014.

[45] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo,

J. Hockenmaier, and S. Lazebnik. Flickr30k entities: Col-

lecting region-to-phrase correspondences for richer image-

to-sentence models. In ICCV, 2015.

[46] G.-J. Qi, J. Tang, Z.-J. Zha, T.-S. Chua, and H.-J. Zhang. An

efficient sparse metric learning in high-dimensional space

via l 1-penalized log-determinant regularization. In ICML,

2009.

[47] V. Ramanathan, A. Joulin, P. Liang, and L. Fei-Fei. Linking

people in videos with their names using coreference resolu-

tion. In ECCV, 2014.

[48] V. Ramanathan, P. Liang, and L. Fei-Fei. Video event un-

derstanding using natural language descriptions. In ICCV,

2013.

[49] A. Rohrbach, M. Rohrbach, R. Hu, T. Darrell, and

B. Schiele. Grounding of textual phrases in images by re-

construction. In ECCV, 2016.

[50] D. Schlangen, T. Baumann, and M. Atterer. Incremental ref-

erence resolution: The task, metrics for evaluation, and a

bayesian filtering model that is sensitive to disfluencies. In

SIGDIAL, 2009.

[51] S. Schuster, R. Krishna, A. Chang, L. Fei-Fei, and C. D.

Manning. Generating semantically precise scene graphs

from textual descriptions for improved image retrieval. In

Proceedings of the Fourth Workshop on Vision and Lan-

guage, 2015.

[52] O. Sener, A. R. Zamir, S. Savarese, and A. Saxena. Unsuper-

vised semantic parsing of video collections. In ICCV, 2015.

[53] G. A. Sigurdsson, X. Chen, and A. Gupta. Learning vi-

sual storylines with skipping recurrent neural networks. In

ECCV, 2016.

[54] R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y.

Ng. Grounded compositional semantics for finding and de-

scribing images with sentences. TACL, 2:207–218, 2014.

[55] B. Soran, A. Farhadi, and L. Shapiro. Generating notifica-

tions for missing actions: Don’t forget to turn the lights off!

In ICCV, 2015.

[56] S. Tellex, P. Thaker, J. Joseph, and N. Roy. Learning per-

ceptually grounded word meanings from unaligned parallel

data. Machine Learning, 94(2):151–167, 2014.

[57] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and

tell: A neural image caption generator. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2015.

[58] C. Xiong, N. Shukla, W. Xiong, and S.-C. Zhu. Robot learn-

ing with a spatial, temporal, and causal and-or graph. In

ICRA, 2016.

[59] R. Xu, C. Xiong, W. Chen, and J. J. Corso. Jointly model-

ing deep video and compositional text to bridge vision and

language in a unified framework. In AAAI, 2015.

[60] S. Yang, Q. Gao, C. Liu, C. Xiong, S.-C. Zhu, and J. Y. Chai.

Grounded semantic role labeling. In Proceedings of NAACL-

HLT, 2016.

[61] L. Yu, P. Poirson, S. Yang, A. C. Berg, and T. L. Berg. Mod-

eling context in referring expressions. In ECCV, 2016.

[62] S.-I. Yu, L. Jiang, and A. Hauptmann. Instructional videos

for unsupervised harvesting and learning of action examples.

In ACM MM, 2014.

[63] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun,

A. Torralba, and S. Fidler. Aligning books and movies: To-

wards story-like visual explanations by watching movies and

reading books. In ICCV, 2015.

[64] C. L. Zitnick and D. Parikh. Bringing semantics into focus

using visual abstraction. In CVPR, 2013.


