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Abstract

Despite the recent trend of increasingly large datasets for object detection, there
still exist many classes with few training examples. To overcome this lack of train-
ing data for certain classes, we propose a novel way of augmenting the training
data for each class by borrowing and transforming examples from other classes.
Our model learns which training instances from other classes to borrow and how
to transform the borrowed examples so that they become more similar to instances
from the target class. Our experimental results demonstrate that our new object
detector, with borrowed and transformed examples, improves upon the current
state-of-the-art detector on the challenging SUN09 object detection dataset.

1 Introduction

Consider building a sofa detector using a database of annotated images containing sofas and many
other classes, as shown in Figure 1. One possibility would be to train the sofa detector using only
the sofa instances. However, this would result in somewhat poor performance due to the limited
size of the training set. An alternative is to build priors about the appearance of object categories
and share information among object models of different classes. In most previous work, transfer of
information between models takes place by imposing some regularization across model parameters.
This is the standard approach both in the discriminative setting [1, 2, 3, 4, 5, 6, 7, 8] and in generative
object models [9, 10, 11, 12, 13, 14].

In this paper, we propose a different approach to transfer information across object categories. In-
stead of building object models in which we enforce regularization across the model parameters,
we propose to directly share training examples from similar categories. In the example from Fig-
ure 1, we can try to use training examples from other classes that are similar enough, for instance
armchairs. We could just add all the armchair examples to the sofa training set. However, not all
instances of armchairs will look close enough to sofa examples to train an effective detector. There-
fore, we propose a mechanism to select, among all training examples from other classes, which ones
are closer to the sofa class. We can increase the number of instances that we can borrow by applying
various transformations (e.g., stretching armchair instances horizontally to look closer to sofas). The
transformations will also depend on the viewpoint. For instance, a frontal view of an armchair looks
like a compressed sofa, whereas the side view of an armchair and a sofa often look indistinguishable.
Our approach differs from generating new examples by perturbing examples (e.g., adding mirrored
or rotated versions) from its own class [15]. Rather, these techniques can be combined with ours.

Our approach looks for the set of classes to borrow from, which samples to borrow, and what the best
transformation for each example is. Our work has similarities with three pieces of work on transfer
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Figure 1: An illustration of training a sofa detector by borrowing examples from other related classes. Our
model can find (1) good examples to borrow, by learning a weight for each example, and (2) the best transfor-
mation for each training example in order to increase the borrowing flexibility. Transformed examples in blue
(or red) box are more similar to the sofa’s frontal (or side) view. Transformed examples, which are selected
according to their learned weights, are trained for sofa together with the original sofa examples. (X on images
indicates that they have low weights to be borrowed)

learning for object recognition. Miller et al. [9] propose a generative model for digits that shares
transformations across classes. The generative model decomposes each model into an appearance
model and a distribution over transformations that can be applied to the visual appearance to generate
new samples. The set of transformations is shared across classes. In their work, the transfer of
information is achieved by sharing parameters across the generative models and not by reusing
training examples. The work by Fergus et al. [16] achieves transfer across classes by learning a
regression from features to labels. Training examples from classes similar to the target class are
assigned labels between +1 and −1. This is similar to borrowing training examples but relaxing the
confidence of the classification score for the borrowed examples. Wang et al. [17] assign rankings to
similar examples, by enforcing the highest and lowest rankings for the original positive and negative
examples, respectively, and requiring borrowed examples be somewhere in between. Both of these
works rely on a pre-defined similarity metric (e.g. WordNet or aspect based similarity) for deciding
which classes to share with. Our method, on the other hand, learns which classes to borrow from as
well as which examples to borrow within those classes as part of the model learning process.

Borrowing training examples becomes effective when many categories are available. When there
are few and distinct object classes, as in the PASCAL dataset [18], the improvement may be limited.
However, a number of other efforts are under way for building large annotated image databases
with many categories [19, 20, 21]. As the number of classes grows, the number of sets of classes
with similar visual appearances (e.g., the set of truck, car, van, suv, or chair, armchair, swivel chair,
sofa) will increase, and the effectiveness of our approach will grow as well. In our experiments,
we show that borrowing training examples from other classes results in improved performance upon
the current state of the art detectors trained on a single class. In addition, we also show that our
technique can be used in a different but related task. In some cases, we are interested in merging
multiple datasets in order to improve the performance on a particular test set. We show that learning
examples to merge results in better performance than simply combining the two datasets.

2 Learning to Borrow Examples

Consider the challenging problem of detecting and localizing objects from a wide variety of cat-
egories such as cars, chairs, and trees. Many current state-of-the-art object detection (and object
recognition) systems use rather elaborate models, based on separate appearance and shape com-
ponents, that can cope with changes in viewpoint, illumination, shape and other visual properties.
However, many of these systems [22, 23] detect objects by testing sub-windows and scoring corre-
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sponding image patches x with a linear function of the form: y = β>Φ(x), where Φ(x) represents
a vector of different image features, and β represents a vector of model parameters.

In this work, we focus on training detection systems for multiple object classes. Our goal is to
develop a novel framework that enables borrowing examples from related classes for a generic object
detector, making minimal assumptions about the type of classifier, or image features used.

2.1 Loss Function for Borrowing Examples

Consider a classification problem where we observe a dataset D = {xi, yi}ni=1 of n labeled training
examples. Each example belongs to one of C classes (e.g. 100 object classes), and each class
c ∈ C = {1, ..., C} contains a set of nc labeled examples. We let xi ∈ RD denote the input feature
vector of length D for the training case i, and yi be its corresponding class label. Suppose that
we are also given a separate background class, containing b examples. We further assume a binary
representation for class labels1, i.e. yi ∈ C ∪ {−1}, indicating whether a training example i belongs
to one of the given C classes, or the “negative” background class2.

For a standard binary classification problem, a commonly used approach is to minimize:

min
βc

(
nc+b∑
i=1

Loss
(
βc · xi, sign(yi)

)
+ λR(βc)

)
, (1)

where i ranges over the positive and negative examples of the target class c; βc ∈ RD is the vector of
unknown parameters, or regression coefficients, for class c; Loss(·) is the associated loss function;
and R(·) is a regularization function for β.

Now, consider learning which other training examples from the entire dataset D our target class c
could borrow. The key idea is to learn a vector of weights wc of length n + b, such that each wci
would represent a soft indicator of how much class c borrows from the training example xi. Soft
indicator variableswci will range between 0 and 1, with 0 indicating borrowing none and 1 indicating
borrowing the entire example as an additional training instance of class c. All true positive examples
belonging to class c, with yi = c, and all true negative examples belonging to the background class,
with yi = −1, will have wci = 1, as they will be used fully. Remaining training examples will have
wci between 0 and 1. Our proposed regularization model takes the following form:∑

c∈C
min
βc

min
w∗,c

(
n+b∑
i=1

(1− w∗,ci )Loss
(
βc · xi, sign(yi)

)
+ λR(βc) + Ωλ1,λ2(w∗,c)

)
, (2)

subject to wci = 1 for yi = −1 or c, and 0 ≤ wci ≤ 1 for all other i, where we defined3 w∗ = 1−w,
and where i ranges over all training examples in the dataset. We further define Ω(w∗) as:

Ωλ1,λ2(w∗) = λ1

∑
l∈C

√
nl‖w∗(l)‖2 + λ2‖w∗‖1, (3)

where w∗(l) represents a vector of weights for class l, with w∗(l) = (w∗j1 , w
∗
j2
, · · · , w∗jnl

) for yjm = l.
Here, Ω(·) regularizes w∗,c using a sparse group lasso criterion [24]. Its first term can be viewed as
an intermediate between the L1 and L2-type penalty. A pleasing property of L1-L2 regularization is
that it performs variable selection at the group level. The second term of Ω(·) is an L1-norm, which
keeps the sparsity of weights at the individual level.

The overall objective of Eq (2) and its corresponding regularizer Ω(·) have an intuitive interpretation.
The regularization term encourages borrowing all examples as new training instances for the target
class c. Indeed, setting corresponding regularization parameters λ1 and λ2 to high enough values
(i.e. forcing w to be an all 1 vector) would amount to borrowing all examples, which would result
in learning a “generic” object detector. On the other hand, setting λ1 = λ2 = 0 would recover the
original standard objective of Eq (1), without borrowing any examples. Figure 2b displays learned
wi for 6547 instances to be borrowed by the truck class. Observe that classes that have similar
visual appearances to the target truck class (e.g. van, bus) have wi close to 1 and are grouped
together (compare with Figure 2a, which only uses an L1 norm).

1This is a standard “1 vs. all” classification setting.
2When learning a model for class c, all other classes can be considered as “negative” examples. In this

work, for clarity of presentation, we will simply assume that we are given a separate background class.
3For clarity of presentation, throughout the rest of the paper, we will use the following identity w∗ = 1−w.
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(a) Only with L1-norm (b) Learned by Ω(·) without (c) Learned by Ω(·) with
the Heaviside step function the Heaviside step function

Figure 2: Learning to borrow for the target truck class: Learned weights wtruck for 6547 instances using
(a) L1-norm; (b) Ω(·) regularization; and (c) Ω(·) with symmetric borrowing constraint.

We would also like to point out an analogy between our model and various other transfer learning
models that regularize the β parameter space [25, 26]. The general form applied to our problem
setting takes the following form:∑

c∈C
min
βc

(∑
i

Loss(βc · xi, sign(yi)) + λR(βc) + γ‖βc − 1
C

C∑
k=1

βk‖22

)
. (4)

The model in Eq (4) regularizes all βc to be close to a single mode, 1
C

∑
k βk. This can be further

generalized so that βc is regularized toward one of many modes, or “super-categories”, as pursued in
[27]. Contrary to previous work, our model from Eq (2) regularizes weights on all training examples,
rather than parameters, across all categories. This allows us to directly learn both: which examples
and what categories we should borrow from. We also note that model performance could potentially
be improved by introducing additional regularization across model parameters.

2.2 Learning

Solving our final optimization problem, Eq (2), for w and β jointly is a non-convex problem. We
therefore resort to an iterative algorithm based on the fact that solving for β given w and for w given
β are convex problems. The algorithm will iterate between (1) solving for β given w based on [22],
and (2) solving for w given β using the block coordinate descent algorithm [28] until convergence.
We initialize the model by setting wci to 1 for yi = c and yi = −1, and to 0 for all other training
examples. Given this initialization, the first iteration is equivalent to solving C separate binary
classification problems of Eq (1), when there is no borrowing4

Even though most irrelevant examples have low borrowing indicator weights wi, it is ideal to clean
up these noisy examples. To this end, we introduce a symmetric borrowing constraint: if a car class
does not borrow examples from chair class, then we would also like for the chair class not to borrow
examples from the corresponding car class. To accomplish this, we multiply wci by H(w̄yi

c − ε),
where H(·) is the Heaviside step function. We note that wci refers to the weight of example xi to
be borrowed by the target class c, whereas w̄yi

c refers to the average weight of examples that class
yi borrows from the target class c. In other words, if the examples that class yi borrows from class
c have low weights on average (i.e. w̄yi

c < ε), then class c will not borrow example xi, as this
indicates that classes c and yi may not be similar enough. The resulting weights after introducing
this symmetric relationship are shown in Figure 2c.

3 Borrowing Transformed Examples

So far, we have assumed that each training example is borrowed as is. Here, we describe how we
apply transformations to the candidate examples during the training phase. This will allow us to
borrow from a much richer set of categories such as sofa-armchair, cushion-pillow, and car-van.
There are three different transformations we employ: translation, scaling, and affine transformation.

Translation and scaling: Translation and scaling are naturally inherited into existing detection
systems during scoring. Scaling is resolved by scanning windows at multiple scales of the image,
which typical sliding-window detectors already do. Translation is implemented by relaxing the
location of the ground-truth bounding box Bi. Similar to Felzenszwalb et al. [22]’s approach of
finding latent positive examples, we extract xi from multiple boxes that have a significant overlap
with Bi, and select a candidate example that has the smallest Loss(βc · xi, sign(yi)).

4In this paper, we iterate only once, as it was sufficient to borrow similar examples (see Figure 2).

4



Original Class Without transformation With transformation
Borrowed Classes AP improvement Borrowed Classes AP improvement

Truck car, van +7.14 car, van +9.49
Shelves bookcase +0.17 bookcase +4.73

Car truck, van +1.07 truck, van, bus +1.78
Desk lamp ∅ N/A floor lamp +0.30

Toilet ∅ N/A sink, cup -0.68

Table 1: Learned borrowing relationships: Most discovered relations are consistent with human subjective
judgment. Classes that were borrowed only with transformations are shown in bold.

Affine transformation: We also change aspect ratios of borrowed examples so that they look more
alike (as in sofa-armchair and desk lamp-floor lamp). Our method is to transform training examples
to every canonical aspect ratio of the target class c, and find the best candidate for borrowing. The
canonical aspect ratios can be determined by clustering aspect ratios of all ground-truth bounding
boxes [22], or based on the viewpoints, provided we have labels for each viewpoint. Specifically,
suppose that there is a candidate example xi to be borrowed by the target class c and there are L
canonical aspect ratios of c. We transform xi into xli by resizing one dimension so that {xli}0≤l≤L
contains allL canonical aspect ratios of c (and x0

i = xi). In order to ensure that only one candidate is
generated from xi, we select a single transformed example xli, for each i, that minimizes Loss(βc ·
xli, sign(yi)). Note that this final candidate can be selected during every training iteration, so that
the best selection can change as the model is updated.

Figure 1 illustrates the kind of learning our model performs. To borrow examples for sofa, each
example in the dataset is transformed into the frontal and side view aspect ratios of sofa. The
transformed example that has the smallest Loss(·) is selected for borrowing. Each example is then
assigned a borrowing weight using Eq (2). Finally, the new sofa detector is trained using borrowed
examples together with the original sofa examples. We refer the detector trained without affine
transformation as the borrowed-set detector, and the one trained with affine transformation as the
borrowed-transformed detector.

4 Experimental Results

We present experimental results on two standard datasets: the SUN09 dataset [21] and the PASCAL
VOC 2007 challenge [18]. The SUN09 dataset contains 4,082 training images and 9,518 testing
images. We selected the top 100 object categories according to the number of training examples.
These 100 object categories include a wide variety of classes such as bed, car, stool, column, and
flowers, and their distribution is heavy tailed varying from 1356 to 8 instances. The PASCAL dataset
contains 2,051 training images and 5,011 testing images, belonging to 20 different categories. For
both datasets, we use the PASCAL VOC 2008 evaluation protocol [18]. During the testing phase,
in order to enable a direct comparison between various detectors, we measure the detection score of
class c as the mean Average Precision (AP) score across all positive images that belong to class c
and randomly sub-sampled negative images, so that the ratio between positive and negative examples
remains the same across all classes.

Our experiments are based on one of the state-of-art detectors [22]. Following [22], we use a hinge
loss for Loss(·) and a squared L2-norm for R(·) in Eq (2), where every detector contains two root
components. There are four controllable parameters: λ, λ1, λ2, and ε (see Eq (2)). We used the
same λ as in [22]. λ1 and λ2 were picked based on the validation set, and ε was set to 0.6. In order
to improve computation time, we threshold each weight wi so that it will either be 0 or 1.

We perform two kinds of experiments: (1) borrowing examples from other classes within the same
dataset, and (2) borrowing examples from the same class that come from a different dataset. Both
experiments require identifying which examples are beneficial to borrow for the target class.

4.1 Borrowing from Other Classes

We first tested our model to identify a useful set of examples to borrow from other classes in order
to improve the detection quality on the SUN09 dataset. A unique feature of the SUN09 dataset is
that all images were downloaded from the internet without making any effort to create a uniform
distribution over object classes. We argue that this represents a much more realistic setting, in which
some classes contain a lot of training data and many other classes contain little data.
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Figure 3: Borrowing Weights: Examples are ranked by learned weights, w: (a) shelves examples to be
borrowed by the bookcase class and (b) chair examples to be borrowed by the swivel chair class. Both show
that examples with higher w are more similar to the target class. (green: borrowed, red: not borrowed)
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(a) Number of examples (b) Borrowed-set (c) Borrowed-transformed
before/after borrowing AP improvements AP improvements

Figure 4: (a) Number of examples used for training per class before borrowing (blue) and after borrowing
(red). Categories with fewer examples tend to borrow more examples. AP improvements (b) without and (c)
with transformations, compared to the single detector trained only with the original examples. Note that our
model learned to borrow from (b) 28 classes, and (c) 37 classes.

Among 100 classes, our model learned that there are 28 and 37 classes that can borrow from other
classes without and with transformations, respectively. Table 1 shows some of the learned borrowing
relationships along with their improvements. Most are consistent with human subjective judgment.
Interestingly, our model excluded bag, slot machine, flag, and fish, among others, from borrowing.
Many of those objects have quite distinctive visual appearances compared to other object categories.

Figure 3 shows borrowed examples along with their relative orders according to the borrowing in-
dicator weights, wi. Note that our model learns quite reliable weights: for example, chair examples
in green box are similar to the target swivel chair class, whereas examples in red box are either
occluded or very atypical.

Figure 4 further displays AP improvements of the borrowed-set and borrowed-transformed detec-
tors, against standard single detectors. Observe that over 20 categories benefit in various degrees
from borrowing related examples. Among borrowed-transformed detectors, the categories with the
largest improvements are truck (9.49), picture (7.54), bus (7.32), swivel chair (6.88), and bookcase
(5.62). We note that all of these objects borrow visual appearance from other related frequent ob-
jects, including car, chair, and shelves. Five objects with the largest decrease in AP include plate (-
3.53), fluorescent tube (-3.45), ball (-3.21), bed (-2.69), and microwave (-2.52). Model performance
often deteriorates when our model discovers relationships that are not ideal (e.g. toilet borrowing
cup and sink; plate borrowing mug).

Table 2 further breaks down borrowing rates as a function of the number of training examples, where
a borrowing rate is defined as the ratio of the total number of borrowed examples to the number of
original training examples. Observe that borrowing rates are much higher when there are fewer
training examples (see also Figure 4a). On average, the borrowed-set detectors borrow 75% of
the total number of original training examples, whereas the borrowed-transformed detectors borrow
about twice as many examples, 149%.

Table 3 shows AP improvements of our methods. Borrowed-set improve 1.00 and borrowed-
transformed detectors improve 1.36. This is to be expected as introducing transformations allows us
to borrow from a much richer set of object classes. We also compare to a baseline approach, which
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Figure 5: Detection results on random images containing the target class. Only the most confident detection
is shown per image. For clearer visualization, we do not show images where both detectors have large over-
lap. Our detectors (2nd/4th row) show better localizations than single detectors (1st/3rd row). (red: correct
detection, yellow: false detection)

Number of Training Examples 1-30 31-50 51-100 101-150 > 150 ALL
Borrowed-set 1.69 0.48 0.43 0.48 0.13 0.75

Borrowed-Transformed 2.75 2.57 0.94 0.81 0.17 1.49

Table 2: Borrowing rates for the borrowed-set and borrowed-transformed models. Borrowing rate is defined
as the ratio of the number of borrowed examples to the number of original examples.

Methods Borrowed-set All examples from the same classes Borrowed-Transformed
AP without borrowing 14.99 16.59 16.59

AP improvements +1.00 +0.30 +1.36

Table 3: AP improvements of the borrowed-set and borrowed-transformed detectors. We also compared
borrowed-transformed method against the baseline approach borrowing all examples, without any selection
of examples, from the same classes our method borrows from. 2nd row shows the average AP score of the
detectors without any borrowing in the classes used for borrowed-set or borrowed-transformed.

uses all examples in the borrowed classes of borrowed-transformed method. For example, if class A
borrows some examples from class B and C using borrowed-transformed method, then the baseline
approach uses all examples from class A, B, and C without any selection. Note that this baseline
approach improves only 0.30 compared to 1.36 of our method.

Finally, Figure 5 displays detection results. Single and borrowed-transformed detections are visu-
alized on test images, chosen at random, that contain the target class. In many cases, transformed
detectors are better at localizing the target object, even when they fail to place a bounding box around
the full object. We also note that borrowing similar examples tends to introduce some confusions
between related object categories. However, we argue that this type of failure is much more tolerable
compared to the single detector, which often has false detections of completely unrelated objects.

4.2 Borrowing from Other Datasets

Combining datasets is a non-trivial task as different datasets contain different biases. Consider
training a car detector that is going to be evaluated on the PASCAL dataset. The best training set for
such a detector would be the dataset provided by the PASCAL challenge, as both the training and test
sets come from the same underlying distribution. In order to improve model performance, a simple
mechanism would be to add additional training examples. For this, we could look for other datasets
that contain annotated images of cars – for example, the SUN09 dataset. However, as the PASCAL
and SUN09 datasets come with different biases, many of the training examples from SUN09 are
not as effective for training when the detector is evaluated on the PASCAL dataset – a problem that
was extensively studied by [29]. Here, we show that, instead of simply mixing the two datasets, our
model can select a useful set of examples from the SUN09 for the PASCAL dataset, and vice-versa.
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Figure 6: SUN09 borrowing PASCAL examples: (a) Typical SUN09 car images, (b) Typical PASCAL car
images, (c) PASCAL car images sorted by learned borrowing weights. (c) shows that examples are sorted from
canonical view points (left) to atypical or occluded examples (right). (green: borrowed, red: not borrowed)

SUN09 PASCAL SUN09 SUN09
only only +PASCAL +borrow PASCAL

car 43.31 39.47 43.64 45.88
person 45.46 28.78 46.46 46.90

sofa 12.96 11.97 12.86 15.25
chair 18.82 13.84 18.18 20.45
mean 30.14 23.51 30.29 32.12
Diff. -6.63 +0.15 +1.98

PASCAL SUN09 PASCAL PASCAL
only only +SUN09 +borrow SUN09

car 49.58 40.81 49.91 51.00
person 23.58 22.31 26.05 27.05

sofa 19.91 13.99 20.01 22.17
chair 14.23 14.20 19.06 18.55
mean 26.83 22.83 28.76 29.69
Diff. -4.00 +1.93 +2.86

(a) Testing on the SUN09 dataset (b) Testing on the PASCAL 2007 dataset

Table 4: Borrowing from other datasets: AP scores of various detectors: “SUN09 only” and “PASCAL
only” are trained using the SUN09 dataset [21] and the PASCAL dataset [18] without borrowing any examples.
“SUN09+PASCAL” is trained using positive examples from both SUN09 and PASCAL. and negative examples
from the target dataset. “PASCAL+borrow SUN09” and “SUN09+borrow PASCAL” borrow selected examples
from another dataset for each target dataset using our method. The last Diff row shows AP improvements over
the “standard” state-of-art detector trained on the target dataset (column 1).

Figure 6 shows the kind of borrowing our model performs. Figure 6a,b display typical car images
from the SUN09 and PASCAL datasets. Compared to SUN09, PASCAL images display a much
wider variety of car types, with different viewpoints and occlusions. Figure 6c further shows the
ranking of PASCAL examples by wSUN09 car

i for i ∈ DPASCAL. Observe that images with high w
match the canonical representations of SUN09 images much better compared to images with low w.

Table 4 shows performances of four detectors. Observe that detectors trained on the target dataset
(column 1) outperform ones trained using another dataset (column 2). This shows that there exists
a significant difference between the two datasets, which agrees with previous work [29]. Next, we
tested detectors by simply combining positive examples from both datasets and using negative exam-
ples from the target dataset (column 3). On the SUN09 test set, the improvement was not significant,
and on the PASCAL test set, we observed slight improvements. Detectors trained by our model
(column 4) substantially outperformed single detectors as well as ones that were trained mixing the
two datasets. The detectors (columns 1 and 2) were trained using the state-of-art algorithm [22].

5 Conclusion

In this paper we presented an effective method for transfer learning across object categories. The
proposed approach consists of searching similar object categories using sparse grouped Lasso frame-
work, and borrowing examples that have similar visual appearances to the target class. We further
demonstrated that our method, both with and without transformation, is able to find useful object
instances to borrow, resulting in improved accuracy for multi-class object detection compared to the
state-of-the-art detector trained only with examples available for each class.

Acknowledgments: This work is funded by ONR MURI N000141010933, CAREER Award No.
07471 20, NSERC, and NSF Graduate Research Fellowship.
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