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Abstract—Sparse representation, due to its clear and pow-
erful insight deep into the structure of data, has seen a recent
surge of interest in the classification community. Based on this,
a family of reliable classification methods have been proposed.
On the other hand, obtaining sufficiently labeled training
data has long been a challenging problem, thus considerable
research has been done regarding active selection of instances
to be labeled. In our work, we will present a novel unified
framework, i.e. BMSAL(Batch Mode Sparse Active Learning).
Based on the existing sparse family of classifiers, we define
rigorously the corresponding BMSAL family and explore their
shared properties, most importantly (approximate) submodu-
larity. We focus on the feasibility and reliability of the BMSAL
family: The first one inspires us to optimize the algorithms and
conduct experiments comparing with state-of-the-art methods;
for reliability, we give error-bounded algorithms, as well as
detailed logical deductions and empirical tests for applying
sparse in non-linear data sets.

Keywords-batch mode sparse active learning; sparse classifi-
cation; active learning; submodularity

I. INTRODUCTION

Sparse representations from overcomplete dictionaries
have been highlighted as one of the crucial principles in sig-
nal processing [8]. Under the sparseland model [29] where
classes of signals are linear subspaces spanned by bases in
this dictionary, there has been a recent surge of interest in
exploring sparsity in signals. Much of the excitement comes
from the discovery that sparse representation can be reduced
to linear programming or second conic programming when
the solution is sparse enough [10, 7, 5]. Following this
thread, considerable research has been performed to explore
frameworks to solve sparse coding [9, 30, 12], dictionary
learning [31, 23, 1, 24], compressive sensing[18, 6], etc.

Recently, a new direction in sparse representation and
pattern recognition is to combine them together, i.e.
Sparse Classification. Developments show that sparsity
is relevant to data sets in many applications, such as
face recognition[32, 33], digit recognition[15], remote
sensing[22] and speech recognition[14]. A key observation is
that these data sets satisfy the linear subspace assumption[4]
that samples from single class lie on a linear subspace.
Sparse representations in nonlinear data sets are motivated
by [33], which discussed the feasibility of sparse classifica-
tion in general data sets.

However, machine learning algorithms, including sparse
classification, often suffer from insufficiently labeled train-
ing data. A traditional way to overcome this problem is
active learning[35], i.e., selecting optimal query in each
iteration to be labeled. Conventional active learning methods
are performed in single mode, by selecting a single instance,
querying for its label and retraining in each iteration. Itera-
tive retraining and long waiting time for the next query will
be the efficiency concern; and there tends to be information
overlap between selected instances in different iterations. To
solve this problem, we will perform it in batch mode, i.e.,
selecting a batch of samples each iteration [17, 16].

In this paper, we propose a novel framework combining
both the sparse representation and batch mode active learn-
ing, namely, batch mode sparse active learning(BMSAL).
Although the BMSAL problem is related to the Dictionary
Learning problem[20, 1], the existing methods(e.g. the K-
SVD method) cannot be directly applied to the BMSAL
problem, because the dictionary learning problem allows
constructions and transformations(such as projection) of
basis, but the BMSAL problem must select basis from a
given data set otherwise the selected samples cannot be
labeled.

A. Challenges and Contributions

The main challenges for batch mode sparse active learning
are manifold:

∙ How to design well-defined objective functions for BM-
SAL: we formally define the “correspondence” rela-
tionships between BMSALs and sparse classifications,
and propose a family of BMSAL methods based on it

∙ Reliability concern: Sparse representation based meth-
ods are proven to work well in data sets with the
linear subspace guarantee. Although Yang et al. [33]
demonstrates the feasibility of sparse in nonlinear data
sets, they didn’t provide experimental results. We will
test the reliability with both analysis and extensive
experiments.

∙ Time concern: Batch mode active learning problem
itself is NP-hard, and sparse representation is time-
consuming. We will perform a greedy algorithm as well
as timing speedups to solve the time issue.
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To this end, three members in the BMSAL family are
defined, corresponding to three closely-related sparse clas-
sification methods: NN(Nearest Neighbor [27]), NS(Nearest
Subspace [3]) and L1(ℓ1-Minimization [32]). We show that
the BMSAL family naturally imply submodularity[25] or
approximate submodularity[21], both of which are crucial
properties to guarantee greedy algorithms. To further speed
up the algorithm in large-scale data sets, specific optimiza-
tion techniques are employed, such as OMP(Orthogonal
Matching Pursuit [12]). We have applied this method to
the document classification data set and have compared it
with the results from using state-of-the-art batch mode active
learning methods.

The rest of this paper is organized as follows: Section II
gives a brief overview of the sparse classification family as
the background of our work. Section III defines the BMSAL
methods corresponding to the three sparse classification
methods given in section II, proves their (approximate)
submodularity and gives efficient algorithms respectively.
Section IV conducts the experiments in both synthetic and
real-world data sets. Section V gives concluding remarks.

II. SPARSE REPRESENTATION

In this section we will give a definite statement of sparse
classification task and BMSAL model. There is a brief
introduction to three methods in sparse classification, the
NN, NS and L1 methods.

A. The Sparseland Model

The sparseland model [29] is the basis of both the sparse
classification and BMSAL task. We will restate the sparse-
land model here in the perspective of supervised learning.
We want to classify all the data instances (represented
using 𝑑-dimension vectors) into classes {1, 2, ⋅ ⋅ ⋅ , 𝐶}. For
each class 𝑖, the distribution of data instances forms a
linear subspace ℒ𝑖. These linear subspaces are disjoint,
and each can be spanned using very few bases. The set
of all these essential bases is called a dictionary, denoted
using 𝒟. Given a test sample 𝒙, there exists 𝜶, such that
𝒟𝜶 = 𝒙. Particularly 𝜶 is very sparse for only elements
corresponding to bases in the subspace of 𝒙’s class could
be nonzero. We define 𝛼 as the sparse representation of 𝒙.

Sparse classification is based on this representation. Sup-
pose the samples in the dictionary 𝒟 are given and labeled
with 𝑦𝒟. Now for each instance 𝒙 in the unlabeled data set
𝒯 , we can find the sparse representation 𝜶. Ideally the non-
zero entries in 𝜶 determine which class the instance is in,
but practically we must find ways to measure the “sparsity”
of entries for each class. Following this thread, we can define
different score function 𝑓(𝒟, 𝑦𝒟,𝒙, 𝑐) where 𝑐 denotes the
𝑐-th class, and the final classification is

𝑦𝒙 = argmin
𝑐∈{1,2,⋅⋅⋅ ,𝐶}

𝑓(𝒟, 𝑦𝒟,𝒙, 𝑐)

Note in section we will give three different definitions of 𝑓 .

Note sparseland model requires the linear subspace as-
sumption over the structure of data sets. It is proven that data
sets in face recognition[32, 33], digit recognition[15], remote
sensing[22] and so on approximately satisfy this assumption
but others might not. In this paper we strictly derive the
BMSAL family from the sparseland model but extend the
application of them to non-linear data sets, such as document
classification.

Given size 𝑘, a BMSAL task aims to find an optimized
dictionary 𝒟 to be queried. We also need a score function
𝑔(𝒟) to measure the informativeness of selected set. Specif-
ically the selected set is

𝒟∗ = argmax
𝒟⊆𝒮,∣𝒟∣=𝑘

𝑔(𝒟)

Table I gives a summary of variables used in our model:

Symbol Explanation
𝐶 The total number of classes
𝒟 The dictionary of sparse representation
𝒯 The test set, i.e. set of unlabeled data instances
𝒮 The set of all samples, 𝒮 = 𝒟 ∪ 𝒯
ℒ𝑖 The subspace spanned by data instances in class 𝑖
𝑦𝒟 The label of data instances in the dictionary 𝒟
𝑘 The number of instances to be selected, i.e., the size of 𝒟
𝑓 The score function of sparse classification tasks
𝑔 The score function of BMSAL tasks

Table I
LIST OF VARIABLES

B. Sparse Classification Family

In this section we will introduce three methods of sparse
classification(namely L1, NS and NN), by defining score
function 𝑓 in three ways.

L1 Method : Mostly there are infinite number of sparse
representations given a test data instance 𝒙 and dictionary
𝒟. We seek for the sparsest solution using equation (1)[11],
observing that ℓ0-norm(denoted by ∣∣ ⋅ ∣∣0) represents the
number of non-zero entries:

min ∣∣𝜶∣∣0, s.t. 𝒙 = 𝒟𝜶 (1)

Unfortunately, the problem is NP-complete and even hard
to approximate, as proven by theoretical results [2]. Al-
ternatively we minimize the ℓ1 norm, and this gives a
reliable result when the representation is sparse enough
[32, 10]. This ℓ1-norm could be solved efficiently by recent
research[9]. Define 𝛿

(𝒟)
𝑐 (𝜶) as the characteristic vector, such

that the only non-zero entries are entries in 𝜶 that correspond
with the indices of bases in class 𝑐. The score function is the
error generated using 𝛿

(𝒟)
𝑐 (𝜶) as the sparse representation:

𝑓L1(𝒟, 𝑦𝒟,𝒙, 𝑐) = ∣∣𝒟𝛿(𝒟)
𝑐 (𝜶∗)− 𝒙∣∣𝑝 (2)

where 𝜶∗ = argmin
𝜶

{∣∣𝜶∣∣1 : 𝒙 = 𝒟𝜶} and 𝑝 may be 1 or

2.
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NS Method : Nearest Subspace (NS, [3]) classifier finds
the class 𝑖 whose subspace ℒ𝑖 has the smallest projection
distance with data instance 𝒙, i.e.

𝑓NS(𝒟, 𝑦𝒟,𝒙, 𝑐) = min
𝜷

∣∣𝒟𝑐𝜷 − 𝒙∣∣22 (3)

It can be viewed as a first-step relaxation of the L1 method,
for both of the classifiers determine the same class with high
probability if the data set is close to ideal condition. Under
such circumstances, the sparse representation 𝜶 of 𝒙 has
only nonzero entries in class 𝑐, hence 𝒟𝛿

(𝒟)
𝑐 (𝜶) = 𝒙, i.e.

the projection distance of 𝒙 to ℒ𝑖 is zero.

NN Method : Nearest Neighbor (NN, [27]) method classifies
text data instance 𝒙 into the class of the nearest labeled data
instance, i.e.

𝑓NN(𝒟, 𝑦𝒟,𝒙, 𝑐) = min
𝒃∈𝒟𝑐

∣∣𝒙− 𝒃∣∣22 (4)

Using similar verification method, we can show that NN
and L1 classifier are guaranteed to the same output is when
sparse representation 𝛼 is almost 1-sparse, i.e. approximately
with single nonzero entry.

NN, NS and L1 methods need increasing computational
power while requiring decreasingly strong assumptions at
the same time. Roughly speaking, NN assumes the sparse
representation is 1-sparse, NS assumes exactly the sparse-
land model, i.e., only the entry corresponding with its class
can be nonzero. By contrast, L1 is more reliable for different
data sets, even nonlinear data sets.

III. THE PROPOSED APPROACH

A. The BMSAL Family

How to design criteria in objective function based batch
mode active learning is a central problem. We want to define
BMSAL score functions based on sparse classification score
functions by defining correspondence relationships between
𝑔 and 𝑓 . To make the representation more sparse, we want
to select the dictionary that best minimizes score function 𝑓
for any possible labeling, strictly defined as:

𝑔inst(𝒟) = Λ−max
𝑦𝒟

{∑
𝒙∈𝒮

min
𝑐∈{1,⋅⋅⋅ ,𝐶}

𝑓inst(𝒟, 𝑦𝒟,𝒙, 𝑐)

}
(5)

where 𝒮 = {𝒙1,𝒙2, ⋅ ⋅ ⋅ ,𝒙𝑛} is the set of samples, and Λ
is a constant to ensure that 𝑔(𝒟) ≥ 0 for all 𝒟 ⊆ 𝑆.

To demonstrate how the correspondence works, we first
derive 𝑔NN(𝒟) corresponding to the NN method. No matter
what the labeling will be, the minimum score function of 𝒙
will be

min
𝑐∈{1,⋅⋅⋅ ,𝐶}

min
𝒃∈𝒟𝑐

∣∣𝒙− 𝒃∣∣22 = min
𝒃∈𝒟

∣∣𝒙− 𝒃∣∣22
We add all these minimum values together over all 𝒙 ∈ 𝒮
to measure the dictionary, i.e.

𝑔NN(𝒟) = ΛNN −
∑
𝒙∈𝒮

min
𝒃∈𝒟

∣∣𝒙− 𝒃∣∣22

Theorem 1 defines the corresponding BMSAL tasks of NN,
NS and L1 methods. For the purpose of convenience, we
will call the three instances BMSAL-NN, BMSAL-NS and
BMSAL-L1 respectively in our context.

Theorem 1. The corresponding BMSAL instances of NN,
NS and L1 are given as follows:

𝑔NN(𝒟) = ΛNN −
∑
𝒙∈𝒮

min
𝒃∈𝒟

∣∣𝒙− 𝒃∣∣22 (6)

𝑔NS(𝒟) = ΛNS −
∑
𝒙∈𝒮

∣∣𝒙−𝒟𝒟†𝒙∣∣22 (7)

𝑔L1(𝒟) = ΛL1 −
∑
𝒙∈𝒮

min{∣∣𝜶∣∣1 : 𝒟𝜶 = 𝒙} (8)

where † denotes pseudoinverse, and we assume 𝑝 = 1 in
equation (2).

Proof: For equation (7), we can see that

min
𝑐∈{1,⋅⋅⋅ ,𝐶}

𝑓NS min
𝜷

∣∣𝒟𝑐𝜷 − 𝒙∣∣22

is the square of distance of vector 𝒙 to subspace 𝒟, it can be
written as ∣∣𝒙−𝒟𝒟†𝒙∣∣22 using the concept of pseudoinverse.

For the L1 classifier when 𝑝 = 1, we have

∣∣𝒟𝛿(𝒟)
𝑐 (𝜶)∣∣1 ≥ ∣∣𝜶∣∣1

On the other hand, if all the labels of 𝒟 are from the same
class 𝑐, 𝛿(𝒟)

𝑐 (𝜶) = 𝜶. Therefore, in this case we have found
the specific 𝑦𝒟 that maximizes the minimum error, and the
error is exactly the solution to the original ℓ1-minimization
function, i.e., equation (8) holds.

Besides the theoretical proof, we will give some intu-
itive explanations to the three members in BMSAL family.
BMSAL-NN selects the set of data instances with the
smallest summation of distances to the unselected instances;
BMSAL-NS selects one set spanning a subspace with the
smallest summation of projection distances with unselected
instances; BMSAL-NN selects the set with smallest summa-
tion of ℓ1-norm sparse representations.

In summary, we have deduced three corresponding BM-
SAL instances under a unified definition based on minimum
empirical error criterion. On the other hand, when studied
respectively, the objective functions have its own sense to
measure the informativeness.

B. Algorithm with Reliable Approximation Bound

(Approximate) submodularity is an important property of
a set function, for it guarantees the reliability of greedy algo-
rithm [25, 21], we will explore the submodularity property in
this section to give a reliable algorithm of the three BMSAL
methods. A set function 𝑔(𝒟) is approximately submodular
with 𝜖 ≥ 0 if for ∀𝒟1 ⊆ 𝒟2 ⊆ 𝒮 and 𝒙 ∈ 𝒮 −𝒟2, we have

𝑔(𝒟1 ∪ {𝒙})− 𝑔(𝒟1) ≥ 𝑔(𝒟2 ∪ {𝒙})− 𝑔(𝒟2)− 𝜖
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Figure 1. Demonstration of polytope 𝒦

Moreover, when 𝜖 = 0, it’s called submodular. There has
been a famous approximation rate maximizing the submod-
ular problem shown in lemma 1:

Lemma 1. [34, 25]If set function 𝑔(𝒟) is nonnegative,
monotonic and approximately submodular with 𝜖, then
greedy algorithm(algorithm 1) has the following guarantee:

𝑔(𝒟) ≥ (1− 1

𝑒
)𝑔(𝒟∗)− 𝑘𝜖

where 𝒟 is the output of algorithm 1 and 𝒟∗ is the optimal
solution subject to ∣𝒟∣ = 𝑘. Moreover, if 𝜖 = 0, the
approximation rate is exactly (1− 1

𝑒 ).

It’s not hard to check that BMSAL-NN, BMSAL-NS and
BMSAL-L1 are all nonnegative and monotonically increas-
ing functions. Here we assume 𝒙𝑇𝒙 = 1 and 𝒙𝑇𝒙′ ≥ 0,
∀𝒙,𝒙′ ∈ 𝒮 . This assumption could be achieved by normaliz-
ing and limiting elements to be non-negative. The following
lemmas 2, 3, 4 show that BMSAL-NN, BMSAL-NS and
BMSAL-L1 are all submodular:

Lemma 2. BMSAL-NN problem is submodular.

Proof: We only have to prove that if 𝑣𝒙(𝒟) =
min𝒃∈𝒟 ∣∣𝒙− 𝒃∣∣22, and ∀𝒙 ∈ 𝒮 , ∀𝒟 ⊆ 𝒮 , ∀𝒃1, 𝒃2 ∈ 𝒮 − 𝒟
such that 𝒃1 ∕= 𝒃2,

𝑣𝒙(𝒟)− 𝑣𝒙(𝒟∪{𝒃1}) ≥ 𝑣𝒙(𝒟∪{𝒃2})− 𝑣𝒙(𝒟∪{𝒃1, 𝒃2})
If the right side is zero, then the inequity holds trivially.
Otherwise, when the left side is not zero,

left side = min
𝒃∈𝒟

∣∣𝒃− 𝒙∣∣22 − ∣∣𝒃1 − 𝒙∣∣22
≥ min

𝒃∈𝒟∪{𝒃2}
∣∣𝒃− 𝒙∣∣22 − ∣∣𝒃1 − 𝒙∣∣22 ≥ right side

Otherwise, it means that ∃𝒃 ∈ 𝒟, ∣∣𝒙 − 𝒃∣∣22 ≤ ∣∣𝒙 − 𝒃1∣∣22,
hence the right side is also zero.

The proof that BMSAL-NS is approximately submodular
has been covered in the work [20].

Lemma 3. BMSAL-NS problem is 4𝑘𝜇-approximately sub-
modular, where 𝜇 is the incoherency of the system:

𝜇 = max
𝒃𝑖,𝒃𝑗∈𝒮,𝒃𝑖 ∕=𝒃𝑗

𝒃𝑇𝑖 𝒃𝑗

and 𝑘 is the number of samples to be selected in the BMSAL
task.

For BMSAL-L1 problem, the proof that it is submodular
is quite lengthy, so we only provide a sketch of proof. In
the proof we present a nice geometry interpretation of ℓ1

minimization problem, this interpretation is also the basis
of algorithm 3.

Lemma 4. BMSAL-L1 problem is submodular.

Proof: First let’s consider the ℓ1 problem

min ∣∣𝜶∣∣1, s.t. 𝒟𝜶 = 𝒙

We can rewrite it using second conic programming concepts:

min𝜸, s.t. ∃𝜶,𝒟𝜶 = 𝒙, ∣∣𝜶∣∣1 ≤ 𝜸 (9)

Since the dual cone of ∣∣𝒙∣∣1 ≤ 𝜸 is ∣∣𝒙′∣∣∞ ≤ 𝜸′, we can
write the dual problem of (9):

max𝒙𝑇𝒛, s.t. ∣∣𝒟𝑇𝒛∣∣∞ ≤ 1 (10)

Note 𝒟 is a set of bases, so primal problem (9) has a
solution; since obviously the dual problem (10) has a strictly
feasible solution 0, by the strong duality, programming (9)
and (10) has exactly the same optimal value. Let the value
be 𝑣𝒙(𝒟), we can see that 𝑔L1(𝒟) = ΛL1 −

∑
𝒙∈𝒟 𝑣𝒙(𝒟) is

submodular if ∀𝒙 ∈ 𝒟, ∀𝒟 ⊆ 𝒮, ∀𝒃𝑟, 𝒃𝑠 ∈ 𝒮 − 𝒟 such that
𝒃𝑟 ∕= 𝒃𝑠,

𝑣𝒙(𝒟)− 𝑣𝒙(𝒟∪{𝒃𝑟}) ≥ 𝑣𝒙(𝒟∪{𝒃𝑠})− 𝑣𝒙(𝒟∪{𝒃𝑟, 𝒃𝑠})
(11)

To prove (11), we introduce a nice geometry interpretation
by (10). Given 𝒟 with column vectors 𝒃1, ⋅ ⋅ ⋅ , 𝒃𝑘 ∈ ℝ

𝑑, we
can see the solution ∣∣𝒟𝑇𝒛∣∣∞ ≤ 1 forms a polytope 𝒦
satisfying:
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∙ For each 𝒃𝑖 there are two hyperplanes �̇�+
𝑖 and �̇�−

𝑖 ,
orthogonal to vector 𝒃𝑖 and tangent to the hypersphere
with radius one and its center at the origin. Let 𝒫𝑖

denotes the space between these two planes, i.e., 𝒫𝑖 =
{𝒛 : 𝒃𝑇𝒛 ≤ 1} Then

𝒦 =
∩

𝒃𝑖∈𝒟
𝒫𝑖 (12)

∙ The solution is the projection of polytope 𝒦 over vector
𝒙.

∙ 𝒟1 ⊆ 𝒟2 ⇔ 𝒦2 ⊆ 𝒦1, because more bases in 𝒟 mean
more limitation hyperplanes of 𝒦 due to equation (12).

Following this interpretation, the next step is to project 𝒦
into a lower dimension space. Note we have known that
columns in 𝒟 span the whole space 𝒰 of samples, if we
project 𝒦 through vectors in 𝒰⊥ onto 𝒰 , we will get a
well-closed dim(𝒰)-polytope 𝒦proj, for the completeness of
𝒟 in spanning 𝒰 indicates that every vertex of 𝒦proj is a
intersection of at least dim(𝒰) hyperplanes. Figure 1(a) is
a demonstration of 𝒦.

For equation (11), let 𝒦proj denote the polytope constructed
by 𝒟 and 𝒦′

proj denote the polytype constructed by 𝒟∪{𝒃𝑠}.
We can assume 𝒦proj ∕= 𝒦′

proj, otherwise (11) holds trivially.
Note the optimal solution must be reached in a vertex, let
that optimal vertex of 𝒦proj be 𝒗𝐴 and that of 𝒦proj be 𝒗𝐵 .
Then consider hyperplane �̇�𝑟, which intersects with existing
hyperplanes and restricts 𝒦proj and 𝒦′

proj into 𝒦new and 𝒦′
new

respectively; let the optimal vertices of the two polytopes
be 𝒛′

𝐴 and 𝒛′
𝐵 .

Before going on, we assume 𝒛𝑇
𝐴𝒙 > 𝒛𝑇

𝐵𝒙, 𝒛𝑇
𝐴𝒙 > 𝒛′𝑇

𝐴 𝒙
and 𝒛𝑇

𝐵𝒙 > 𝒛′𝑇
𝐵 𝒙, because if any of the inequities is

violated, inequity (11) holds trivially. The following method
is performed to find 𝒛′′

𝐵 :
𝒛𝐴, 𝒛′

𝐴 and 𝒛𝐵 determine a unique 2-dimensional face
of 𝒦proj, then 𝒛′′

𝐵 is the intersection of this face, hyperplane
�̇�+
𝑟 and hyperplane �̇�+

𝑠 ; we can easily check that 𝒛′′
𝐵 must

exist. Let 𝒛𝛿 = 𝒛𝐴−𝒛′
𝐴+𝒛′′

𝐵 , since 𝒛𝐴, 𝒛
′
𝐴, 𝒛

′′
𝐵 and 𝒛𝐵 are

in the same 2-dimensional face of 𝒦proj, we can easily argue
that point 𝒛𝑊 = 𝒛𝐴 − 𝒛𝛿 is within that face as well. Figure
1(b) shows a simple demonstration when dim(𝒰) = 3. This
leads to the following equation:

𝒛𝛿 =
𝑘∑

𝑖=1

𝜆𝑖𝒃𝑖, where 𝜆𝑖 ≥ 0 (13)

From equation (13) as well as the observation that 𝒛′𝑇
𝐵 𝒙 ≥

𝒛′′𝑇
𝐵 𝒙, we have

(𝒛𝐴 − 𝒛′
𝐴 + 𝒛′

𝐵 − 𝒛𝐵)
𝑇𝒙

= (𝒛𝛿 + 𝒛′
𝐵 − 𝒛′′

𝐵)
𝑇𝒙

=

(
𝑘∑

𝑖=1

𝜆𝑖𝒃
𝑇
𝑖 𝒙

)
+ (𝒛′𝑇

𝐵 𝒙− 𝒛′′𝑇
𝐵 𝒙)

≥ 0

Therefore, equation (11) holds, BMSAL-L1 problem is
submodular.

According to the (approximate) submodularity, greedy
algorithm 1 is a reliable algorithm to implement any of the
three methods. Theorem 2 shows the reliable approximation
rate, as a corollary of lemmas 1, 2, 3 and 4:

Theorem 2. Regarding approximation rates of BMSAL-NN,
BMSAL-NS and BMSAL-L1 instances, we have:
∙ 𝑔NN(𝒟) ≥ (1− 1

𝑒 )𝑔NN(𝒟∗), 𝑔NN(𝒟) ≥ (1− 1
𝑒 )𝑔NN(𝒟∗)

∙ 𝑔NS(𝒟) ≥ (1 − 1
𝑒 )𝑔NS(𝒟∗) − 6𝑘2𝜇, where 𝜇 is defined in

lemma 3. [20]

Algorithm 1 Naive Greedy Algorithm Solving 𝑔(𝒟)
Input: 𝒮, 𝑔, 𝑘
1: initialize: 𝒟 ← ∅
2: for 𝑖 = 1 to 𝑘 do
3: 𝒟 ← 𝒟 ∪ {𝒙∗}

where 𝒙∗ = argmax𝒙∈𝒮−𝒟 𝑔(𝒟 ∪ {𝒙})
4: end for
5: return 𝒟

C. Speedups

In this section, we want to further speedup the BMSAL-
NS and BMSAL-L1 methods based on algorithm 1. The
problem comes from exhaustive search in line 3 in algorithm
1. We will give optimizations to avoid repeatedly computing
pseudoinverse or ℓ1-minimization.

BMSAL-NS Speedup : Suppose currently we have selected
𝒟𝑖 = {𝒃1, ⋅ ⋅ ⋅ , 𝒃𝑖}, and we want to select 𝒃𝑖+1. Then we
have ∑

𝒙∈𝒮
∣∣𝒙−𝒟𝑖+1𝒟†

𝑖+1𝒙∣∣22

=
∑
𝒙∈𝒮

(
∣∣𝒙−𝒟𝑖𝒟†

𝑖𝒙∣∣22 − (𝒙−𝒟𝑖𝒟†
𝑖𝒙)

𝑇 𝒃𝑖+1

)

This leads directly to algorithm 2, a feasible algorithm that
solves BMSAL-NS. Algorithm 2 is a modification of the
original OMP(Orthogonal Matching Pursuit) algorithm [30]
to be applied to BMSAL tasks.

Algorithm 2 OMP Algorithm Solving BMSAL-NS
Input: 𝒮, 𝑔, 𝑘
1: initialize: 𝒓𝑖 ← 𝒙𝑖, ∀1 ≤ 𝑖 ≤ 𝑛; 𝒟 ← ∅
2: for 𝑖 = 1 to 𝑘 do

3: 𝒟 ← 𝒟 ∪
⎧⎨
⎩argmax

𝒃∈𝒮−𝒟

𝑛∑
𝑗=1

𝒓𝑇
𝑗 𝒃

⎫⎬
⎭

4: 𝒓𝑗 ← 𝒓𝑗 −𝒟𝒟†𝒓𝑗 , ∀1 ≤ 𝑗 ≤ 𝑛
5: end for
6: return 𝒟

BMSAL-L1 Speedup : One possible way of speeding up
is recording the optimal solution information for 𝒙. In
the proof of lemma 4 a nice geographical interpretation is
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Figure 2. Results of BMSAL in Two Spirals Data Set. The red and blue points denote two classes, and the circles are selected points.

introduced, and we use this interpretation to explain the
algorithm: each time we find an optimal solution, it must
be a vertex 𝒛𝐴 of the polytope, i.e., an intersection of at
least dim(𝒰) faces. When a new basis 𝒃𝑖 is introduced, it
changes the optimal solution if and only if 𝒛𝐴 /∈ 𝒫𝑖, i.e.,

∣𝒃𝑇𝑖 𝒛𝐴∣ > 1 (14)

Using this condition we can eliminate many unnecessary
searches, especially when 𝒟 gets larger, very small part of
the candidates satisfy this condition. We can also record
the information that which conditions are tight, i.e., the
set 𝐹 of faces intersects at the optimal vertex; if a new
hyperplane �̇�+

𝑖 satisfies (14), then we can calculate the ∣𝐹 ∣
points generated by �̇�+

𝑖 intersecting faces in 𝐹 , the simple
observation is that the optimal solution must be one of
them. As a summary, algorithm 3 shows the sketch of the
algorithm.

Algorithm 3 Elimination Algorithm Solving BMSAL-L1
Input: 𝒮, 𝑔, 𝑘
1: initialize: 𝒛𝐴𝑖 ←∞, 𝐹𝑖 ← ∅, ∀1 ≤ 𝑖 ≤ 𝑛
2: for 𝑖 = 1 to 𝑘 do
3: for 𝒃 ∈ 𝒮 − 𝒟 do
4: initialize: 𝑟𝑒𝑠𝑢𝑙𝑡[𝒃]← 0
5: test each 𝒙𝑖

6: if ∣𝒃𝑇 𝒛𝐴𝑖∣ ≤ 1 then elimination
7: otherwise Calculate 𝒛𝐴𝑖 and 𝐹𝑖,
8: 𝑟𝑒𝑠𝑢𝑙𝑡[𝒃]← 𝑟𝑒𝑠𝑢𝑙𝑡[𝒃] + 𝒛𝑇

𝐴𝑖𝒙𝑖

9: end for
10: 𝒟 ← 𝒟 ∪ {argmax𝒃 𝑟𝑒𝑠𝑢𝑙𝑡[𝒃]}
11: end for

IV. EXPERIMENTS

In our experiment part, we will explore our model’s per-
formance, comparing with state-of-the-art batch mode active
learning methods. At the same time, there are discussions
about some practical concerns in our model.

The main goals of our experiments are twofold: first, it
is to prove that the proposed BSMAL methods work well
for synthetic and real-world data sets and they outperform
some state-of-art methods; second, we want to explore the
reliability of sparse methods, and experiment results show
that BMSAL-L1 works well in data sets with non linear

subspaces, or even highly nonlinear and low dimensional
data sets.

A. Non-linear Synthetic Data Sets

To test the performance of the sparse-related methods in
non-linear data set, we use a classical non-linear data set:
the Two Spirals data set [28]. It has been shown that the
two spirals data set is a challenge for linear classification
methods, since the data set itself is highly non-linear. Figure
2 demonstrates the data set on a 2-D plane, the blue and red
points denote the two classes respectively.

Result : Note the challenge in the Two Spirals data set
for sparse-related methods is twofold: first, it’s highly non-
linear; second, it’s in 2-D plane, but sparse assumes high-
dimensional data. The result shows that BMSAL-NN and
BMSAL-NS fails the task, all the results are of accuracy
about 50%+. Note BMSAL-NN fails because it assumes
the 1-sparse, i.e., it assumes that two near points tend to
be in the same class, but for the Two Spirals it’s not the
case: BMSAL-NN tends to select samples in the outer ring
(Figure 2(a)), but actually the inner rings are hard to classify
since it’s crowded with points from different classes. For
BMSAL-NS, figure 2(b) shows that the selected samples
are in an ill condition that they are crowded at the outer
ends of the spirals. That is because the Two Spirals set is 2-
dimensional, the distance to a subspace is 0 as long as there
are two vectors in the subspace, hence the conclusion is that
BMSAL-NS is sensitively dependent on high dimension. On
the other hand, BMSAL-L1 works very well, the accuracy
of 30 runs is (98.21 ± 1.40)%. Note in section III-B we
have mentioned that the vectors should be normalized, so
we have done a small trick before applying the algorithm,
that we move the origin to a far point, e.g., (100, 100). This
is roughly the normalization process. For linear subspace
model, normalization will not lose information since only
the direction of vectors matter; for non-linear model, that is
crucial to guarantee a good result.

Explanation : Here we extend the explain in [33]: in non-
linear system, sparse representation performs a piecewise
approximation. In figure 3, we can see that since all of
the features are (roughly) normalized, the most competing

880880



points of two bases are the linear segment between them,
so sparse achieves piecewise approximation. The red bar in
figure 3 shows the error in ∣∣ ⋅ ∣∣2 measurement. Note the
piecewise argument can not only be applied to the curve
structure, but also to any continuous structure, where we
may use three points or more as a piece. The “normalization”
is essential to the piecewise argument, otherwise the points
nearer to the origin should be more competent(recall that in
ℓ1, the value of the coefficient counters, the point nearer to
origin has smaller coefficients). The training set is anther
crucial factor. If the training set is selected poorly, then
the piecewise approximation will be erroneous. It should
be distributed regularly, and denser in less smooth areas.
Actually the samples BSMAL-L1 selected have these good
features, hence we suggest using BMSPA-L1 and L1 at the
same time.

 

ERROR

Figure 3. A Piecewise Approximation to Nonlinear Structure

B. Non-linear Real-World Data Sets

Why Document Classification Document classification
doesn’t have linear subspace assumption, but we want to ex-
plain here that it could work both empirically and logically,
using a similar argument of [19]. First, the feature vectors
are high dimensional; typically the word indices have at least
thousands of entries. Then, we may find it useful to write
document features like this:

𝒙𝑖 = 𝒇𝑐 + 𝒆

where 𝑐 is the class label. It means that the feature vector
of 𝒙 is the shared feature vector 𝒇𝑐 plus 𝒆. And typically
𝒆 should contain the specific words for a given document.
For example, if the class labels are topics, such as Data
Mining topic, perhaps “data”, “mining” are the words from
𝒇𝑐, while words like “sparse” might surge up in a specific
document, but have no appearance in another data mining
paper. Hence “sparse” should be an entry in the error item.
Note a document in this class shouldn’t have too many such
words, so 𝒆 is sparse. That observation inspires us to use 𝑝 =
1 in the L1 method and expect it to have a good performance.

Setups and Results We test our proposed method in the
following widely-used text categorization data sets:

UCI 20NewsGroups[13] is a collection of approximately
20,000 newsgroup documents, partitioned (nearly) evenly

across 20 different newsgroups. We construct different bi-
nary classification models, the first one stands for easy task,
and the second one stands for hard:

∙ comp.sys.mac.hardware (963) vs comp.windows.x
(988): totally 3338 words.

∙ talk.religion.misc (628) vs alt.atheism (799): totally
3360 words.

WebKB[26] contains web pages from four computer sci-
ence departments, categorized into five topics: course, fac-
ulty, student, project, and staff. The webKB data set contains
877 data points and 1703 unique words.

We use two most popular batch mode active learning
methods as our baseline:

SVM active learning method is a batch mode active
learning method. Traditional SVM batch mode active learn-
ing samples the instances closest to the decision boundary
for labeling. We use a modified version by [17], which
incorporates the diversity information as well.

Fisher information matrix has been used by many batch
mode active learning methods. We choose the method pro-
posed in [16].

The results of the tests are shown in figure 4. Comparing
with other batch mode active learning and BMSAL methods,
BMSAL-L1 has an overall advantage. Other methods are not
so stable between different data sets, for example, we may
find that BMSAL-NN works quite well in figure 4(b) and
figure 4(c), but in figure 4(a) it doesn’t have a very good
performance. BMSAL-NS also performs well and stably, but
generally it doesn’t have as good performance as BMSAL-
NN.

In order to compare the reliability of the methods, we
compute the standard variances of the methods. Table II
shows that BMSAL-L1 method is quite reliable, i.e., it
tolerates outliers and non-linear properties, just as we have
argued in section IV-A.

Data Set BMSAL-L1 BMSAL-NS BMSAL-NN SVM Fisher
M.v.W 0.0260 0.0375 0.0311 0.0649 0.0299
R.v.A 0.0144 0.0294 0.0268 0.0492 0.0287

WebKB 0.0164 0.0187 0.0268 0.0492 0.0287

Table II
STANDARD VARIANCES IN REAL-WORLD DATA SETS

V. CONCLUSION

In this paper, a unified framework integrating the sparse
representation and batch mode active learning is proposed,
namely BMSAL. The main goal is to design batch mode
active learning method with high precision, efficiency and
reliability. We solve the problem by designing and optimiz-
ing the greedy algorithm, extending the piecewise argument
to non-linear data sets, and extensive experiments. An in-
triguing problem regarding our work is further speedups
of BMSAL-L1 and BMSAL-NS, applying the BMSAL
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Figure 4. Results of Real-World Data Sets

methods in very large scale applications is an interesting
problem.
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