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Our Approach
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We designed Q(S) as the objective function over S, a subset of the unlabeled set. It measures the informativeness of S, so collective active learning could be viewed as selecting:

S =argmax{Q(S)}
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Criteria of Objective Function Algorithm Design

We use three criteria to design Q(S): e Submodularity: Our definition of Q(S) satisfy the monotonic

e Maximum Uncertainty: H(S) as summation of entropies submodularity property, which guarantees a greedy algorithm

e Maximum Impact: Graph-cut-based design of C(S), which could be seen e Error Bound: This greedy algorithm has an approximation rate of (1-1/e)
as a summation of maximum impacts over samples in S e Speedups; We parallelized the algorithm for scaling up to real large data

e Minimum Redundancy: We theoretically proved that definition of C(S) sets

minimizes redundancy
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