Combining Link and Content for Collective Active Learning

Http://www.arnetminer.org

Lixin Shi, Yuhang Zhao, and Jie Tang Dept. of Computer Science and Technology, Tsinghua University {shilixinhere, zhaoyh630}@gmail.com, tangjie@keg.cs.tsinghua.edu.cn

Paper Citation Network (Topics: WN, DM)

Word Index: [wireless learning classification]

Random Walk Framework

Table of symbols	
Symbol	Description
\mathcal{U}	The set of unlabeled data instances
L	The set of labeled data instances
G	The network representing the relationships between instances
x_i	The feature vector of instance i
y_i	The label of instance $i \in \mathcal{L}$
W	The similarity matrix
P	The transition matrix in the random walk framework
f_u	Expectation vector of instances in unlabeled data set
f_l	Expectation vector of instances in labeled data set
f_i	The expectation of instance i 's label
S	The set of instances to be selected
k	The number of instances to be selected

Calculating transition Probability

link: $l_{ij} = \frac{1}{d}$, Where d_j is number of links going out of x_i

Similarity: $w_{ij} = \exp\left(-\frac{1}{\sigma^2} ||x_i - x_j||^2\right)$

Transition Probability: $p_{ij} = \varepsilon l_{ij} + (1 - \varepsilon)$

 $\overrightarrow{f} = P\overrightarrow{f}$, where $\overrightarrow{f} = [f_1, f_2, ..., f_n]^T$, $P = (p_{ii})_{n \times n}$ f_i : expectation of label of instance i

 p_{ij} : Transition Probability from i to j

Our Approach

$$Q(S) = \alpha C(S) + (1 - \alpha)H(S), 0 \le \alpha \le 1, \text{ where } H(S) = \sum_{i \in S} H(i) = \sum_{i \in S} f_i \log \frac{1}{f_i} + (1 - f_i) \log \frac{1}{1 - f_i}$$

$$C(S) = \sum_{i \in U} (H(i))^{\beta} \left(\max_{j \in L \cup S} w_{ij} \right)^{1 - \beta} = \sum_{i \in U} (f_i \log \frac{1}{f_i} + (1 - f_i) \log \frac{1}{1 - f_i})^{\beta} \left(\max_{j \in L \cup S} w_{ij} \right)^{1 - \beta}$$

We designed Q(S) as the objective function over S, a subset of the unlabeled set. It measures the informativeness of S, so collective active learning could be viewed as selecting:

$$S = \underset{S \in U, |S| \le k}{\operatorname{arg max}} \{Q(S)\}$$

Criteria of Objective Function

We use three criteria to design Q(S):

- Maximum Uncertainty: H(S) as summation of entropies
- Maximum Impact: Graph-cut-based design of C(S), which could be seen as a summation of maximum impacts over samples in S
- Minimum Redundancy: We theoretically proved that definition of C(S)minimizes redundancy

Algorithm Design

- Submodularity: Our definition of Q(S) satisfy the monotonic submodularity property, which guarantees a greedy algorithm
- Error Bound: This greedy algorithm has an approximation rate of (1-1/e)
- Speedups: We parallelized the algorithm for scaling up to real large data sets

Experiments

Synthetic Data Set:

- Two classes denoted by different colors
- +: initially labeled samples
- O: selected samples
- Demonstrate the necessity of all three criteria

Networked Data Sets:

- 2 text classification data sets, with citation links, 1 with web links
- Outperform up to 6% compared with Stateof-the-art Baselines
- Stable performance over different sets

WebKB Data Set

