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Abstract – Spectrum sensing has been an active re-
search area for the past two decades. Nonetheless, cur-
rent spectrum sensing systems provide only coarse oc-
cupancy data. They lack information about the detailed
signal patterns in each band and can easily miss fleeting
signals like radar.

This paper presents SpecInsight, a system for acquir-
ing a detailed view of 4 GHz of spectrum in realtime.
SpecInsight’s design addresses the intrinsic conflict be-
tween the need to quickly scan a wide spectrum and
the desire to obtain very detailed information about each
band. Its key enabler is a learned database of signal pat-
terns and a new scheduling algorithm that leverages these
patterns to identify when to sample each band to maxi-
mize the probability of sensing active signals.

SpecInsight is implemented using off-the-shelf USRP
radios with only tens of MHz of instantaneous band-
width, but it is able to sense 4 GHz of spectrum, and
capture very low duty-cycle signals in the radar band.
Using SpecInsight, we perform a large-scale study of the
spectrum in 7 locations in the US that span major cities
and suburban areas, and build a first-of-its-kind database
of spectrum usage patterns.

1 INTRODUCTION

There has been a significant interest over the past
two decades in sensing the wireless spectrum and under-
standing how it is used [32, 34, 16]. Spectrum sensing
has been a recurring topic not only for the research com-
munity [6, 26], but also for the government [29, 9], the
military [1], and industry [20, 21]. Despite all of these ef-
forts, our understanding of the wireless spectrum is still
quite limited. State-of-the-art sensing equipment provide
only coarse information of spectrum occupancy. Con-
sider for example the Microsoft Spectrum Observatory
(MSO), a state-of-the-art large-scale system for track-
ing spectrum usage [21]. Fig. 1(a) shows a typical MSO
spectrum report. The figure reveals important informa-
tion about spectrum occupancy, over a span of multi-
ple GHz. Yet, the figure also misses informative details
about how the spectrum is used. If one focuses the sens-
ing resources on a single band and continuously listens
to that band, one would discover that the above report
has missed the fleeting (low duty-cycle) signal in the

radar band around 3.5 to 3.6 GHz, which is shown in
Fig. 1(c). In fact, not only did it miss the presence of the
signal but it also missed how the signal uses the spectrum
– i.e., its periodicity in time and its span in frequency.
There are many signals that are missed in the MSO re-
port. Fig. 1(b) shows another example. The band is used
by the Air Force Satellite Control Network. The signal in
the figure is difficult to catch since it hops in a 45 MHz
band, occupying only 1 kHz at a time, i.e., its occupancy
is 2×10−5.

Learning the details of how the spectrum is used –
e.g., the time-frequency utilization patterns in Fig. 1(b)
and Fig. 1(c) – is fundamental to the design of dynamic
spectrum access (DSA) systems as it can significantly in-
crease the opportunity for spectrum sharing by leverag-
ing signal periodicity. A band that has a periodic occu-
pancy like the one in Fig. 1(c) can be easily time mul-
tiplexed with secondary users. The information can also
reveal breaches of spectrum regulations by detecting ab-
normal utilization patterns, which would be invisible in
coarse occupancy reports. The utilization patterns could
also provide insight into the diverse technologies occu-
pying the spectrum. The research community may know
the technologies in the ISM and Cellular bands. Yet, the
vast majority of the spectrum is occupied by undocu-
mented technologies (e.g., radios in government bands),
which are little known to the research community.

However, obtaining detailed spectrum utilization pat-
terns is challenging, particularly for low occupancy sig-
nals like those in Fig. 1. Sensing hardware has limited
bandwidth and cannot acquire multiple GHz in realtime.
Therefore, spectrum sensing platforms like those used
by Microsoft resort to sequential scanning of the spec-
trum; they hop from one band to the next, sensing only
tens of MHz at any moment [21]. As a result, they obtain
only high level occupancy statistics; but they can neither
detect the low-occupancy signals nor identify their uti-
lization patterns. Scaling the sensing system to a GHz-
wide bandwidth, while obtaining fine-grained informa-
tion about each band, is a significant challenge that re-
mains unaddressed by past work.

This paper introduces SpecInsight, a multi-GHz spec-
trum sensing system that reveals the detailed patterns of
spectrum utilization in real-time. Underlying our design
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Figure 1: Occupancy vs. Realtime Spectrum Patterns: The top graph shows an occupancy report obtained by the Microsoft Spectrum Observatory
(MSO). Today’s sensing reports can easily miss low occupancy signals. For example, the report in (a) has missed the Air Force Signal in (b) and
the radar signal in (c). Graphs(b&c) are examples of SpecInsight’s output, which captures the spectrum time-frequency patterns. The patterns are
visualized as intensity maps, where the vertical and horizontal axes represent frequency and time respectively.

is a basic insight that any sensing system using a com-
modity radio is limited to tens of MHz at a time, and
hence will have to sample the multi-GHz spectrum. The
question, however, is: Which bands should we sample at
what times in order to minimize the probability of miss-
ing active signals?

We address this question by observing that many spec-
trum bands are used according to some time-frequency
patterns (e.g., always-on in time and frequency, always-
on but hopping periodically in frequency, periodic in
time but fixed in frequency, etc.). By learning these pat-
terns, SpecInsight can schedule its scans of the various
spectrum bands so as to maximize the probability that it
will detect the presence, absence, and variation of spec-
trum utilization patterns, in every band.

SpecInsight implements this design principle in two
phases. First, SpecInsight has an innovative algorithm
for learning spectrum utilization patterns. In contrast to
past work on detecting WiFi or other technologies in the
ISM band, our algorithm has to search for previously un-
known patterns without making assumptions about the
technologies occupying a particular band. The output of
the algorithm is used to populate a database of spectrum
patterns and their locations. Second, SpecInsight has a
smart scheduling algorithm that leverages the spectrum
patterns in the database to sense multiple GHz using
only tens of MHz of bandwidth, and still output the de-
tailed spectrum utilization patterns as they occur in real-
time. The algorithm is formalized as a multi-armed ban-
dit game [11] in order to balance the tradeoffs between
exploitation of known patterns and exploration of new
and changing spectrum dynamics.

Implementation & Results: We have implemented
SpecInsight using two USRP radios [8], equipped with
the SBX and WBX daughterboards.1 Our prototype
senses over 4 GHz of spectrum, from 50 MHz to
4.4 GHz. We have compared SpecInsight with a setup
that uses exactly the same hardware but sequentially
scans the spectrum (similar to the Microsoft Spectrum
Observatory). Our results show that the probability of
missing active signals is 10× lower with SpecInsight
when compared to sequential scanning.

We have used the prototype to sense the spectrum in
seven locations, including three major US cities and four
suburban areas. We report the results of analyzing one
week of data from each location and comparing their
spectrum patterns. Our main findings are:

• Large swaths of the spectrum may appear completely
empty when they actually have active signals. In par-
ticular, about 39% of the bandwidth below 4.4 GHz is
used by signals whose occupancy is less than 0.0001,
and hence are typically invisible to sequential scan-
ning.

• One may think that the common way the spectrum is
used is highly dynamic – i.e., a source may transmit
at any time. We found that about 65% of the spec-
trum utilization patterns are either always on, or trans-
mit periodically. Further, among the dynamic patterns,
only 5% are highly dynamic2. Thus, knowing the spec-

1The use of two radios is not fundamental to our design but rather
imposed by the range of frequencies of the USRP daughterboards.

2Defined as having a standard deviation of when the signal will next
appear that exceeds 200ms.
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trum patterns is highly useful for smart scheduling of
sensing activities.

Contributions

• SpecInsight is, to our knowledge, the first spectrum
sensing system capable of detecting and tracking fleet-
ing signals (whose occupancy is ~10−5) in multi-GHz
spectrum, while using only tens of MHz of instanta-
neous bandwidth. Past systems have not been able to
combine specificity with scalability: they either pro-
vide detailed spectrum occupancy in a single band,
e.g., ISM [25, 14], or they obtain coarse occupancy
data but miss low-occupancy signals like those in Fig-
ures 1b and 1c [21].

• SpecInsight introduces an innovative algorithm for
learning spectrum usage patterns, and a smart schedul-
ing algorithm for tracking the presence, absence, and
variations of these patterns in realtime over a wide
bandwidth of 4 GHz.

• The paper presents a large scale study of spectrum us-
age patterns in 7 US locations that span urban and sub-
urban areas, illustrating which signal patterns appear
in which parts of the spectrum.

2 RELATED WORK

Past work on spectrum sensing may be divided into
narrow-band and wide-band techniques. Narrow-band
techniques assume the radio bandwidth is at least as wide
as the sensed band. They focus on ways to accurately
detect a signal. They may use energy level [31], cyclo-
stationarity [14], signal waveform [34], wavelet trans-
form [27], or response to interference [23]. Wide-band
sensing techniques try to cover a wide spectrum signifi-
cantly larger than the radio’s own bandwidth. The tradi-
tional approach scans the spectrum sequentially and re-
ports average occupancy [21, 34]. Some recent proposals
exploit the sparsity of spectrum utilization to sense the
spectrum without sampling it at the Nyquist rate, lever-
aging techniques like compressive sensing [24, 4] or the
sparse FFT [12, 10, 13]. For example, BigBand [13] is
able to recover the full signals in the spectrum, but under
a sparsity assumption that only a small fraction of the
spectrum is occupied, so it cannot be used in crowded
spectrums, e.g., under 1.5GHz. Another scheme, Quick-
Sense [33], employs a hierarchical search algorithm and
analog filters to sense the white spaces, which spans only
hundreds of MHz where the wireless technologies are
mostly documented.

SpecInsight is a wide-band spectrum sensing technol-
ogy. SpecInsight, however, differs from the above work
in that it does not need sparsity assumptions or custom
analog filters. Additionally, SpecInsight covers a wider

band than this prior work and provides details of the us-
age patterns in each band (frequency hopping, periodic,
continuous in time but not in frequency, etc. ).

SpecInsight also builds on past work that proposed the
use of sensing history for dynamic spectrum access [34].
Specifically, a series of theory papers [17, 36] models the
behavior of primary users as a Markov process [36] and
predicts future opportunities for dynamic spectrum ac-
cess. SpecInsight differs from these past proposals both
in objective and technique. Specifically, while they fo-
cus on finding some portion of the spectrum that is idle,
SpecInsight focuses on exhaustively characterizing all
active signals in the entire spectrum. As a result, the al-
gorithms SpecInsight uses for characterizing historical
patterns and scheduling sensing operations differ from
the models in past work. Also, SpecInsight is focused on
practical system design and empirical data and is sup-
ported by a spectrum study that spans multiple locations
in the US.

Another line of work focuses on collaborative sens-
ing, where different nodes share spectrum data in order
to cover a large geographical area. For example, Spec-
Net [16] uses spectrum analyzers in different locations to
sense the spectrum and share their results; V-Scope [35]
mounts spectrum sensors on public vehicles and lever-
ages mobility to enable large-area sensing of the white
spaces. SpecInsight complements these systems by en-
abling multi-GHz spectrum sensing on relatively low-
cost and easily accessible USRP radios.

Our work is also related to past literature on signal
feature extraction. Many of these systems are focused on
the ISM band with the objective of identifying WiFi in-
terferers [19, 25, 14]. SpecInsight builds on the idea of
signal feature extraction. However, it differs both in the
features it extracts and the algorithm it uses to extract
them. These differences stem from SpecInsight’s use of
features to identify spectrum utilization patterns that can
be leveraged for smart scheduling of sensing operations,
rather than to identify particular technologies. Addition-
ally, SpecInsight spans a 40× wider band than the ISM
band, and hence has to deal with a greater diversity of
wireless techniques, of which the majority are undocu-
mented.

Finally, our work supplements past work on large-
scale spectrum measurements [6, 18, 26, 15]. First, our
findings about spectrum occupancy and usage confirm
many past spectrum observations; Second, by enabling
wide-band spectrum sensing on low-cost devices, we be-
lieve SpecInsight opens up the possibility of even larger
scale spectrum measurements.

3 SPECINSIGHT’S DESIGN

The goal in designing SpecInsight is to build a tool for
sensing spectrum usage, extracting occupancy patterns,
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Figure 2: Flowchart of SpecInsight’s Architecture: SpecInsight has
two phases: the learning phase and the sensing phase. In the learning
phase, SpecInsight extracts and learns the patterns in the spectrum and
initializes the pattern database; in the sensing phase, SpecInsight uses
the learned patterns to schedule when to sense each band. The pattern
database stores and maintains the learned patterns, which are represen-
tative frequency-time blocks of the underlying signal.

and detecting their repeated occurrences. Its key feature
is the ability to provide realtime occupancy information
of 4 GHz of spectrum using inexpensive commodity ra-
dios whose realtime bandwidth is limited to tens of MHz
(e.g., USRPs). Anyone can download the SpecInsight
software, deploy it on a USRP radio, and start sensing
GHz of spectrum in their location.It not only senses a
large bandwidth, but also provides finer details at each
frequency, so that domain experts in each band can look
into the spectrum patterns captured by SpecInsight for
further analysis. We envision that such a system will help
make wide-band spectrum sensing ubiquitous.

SpecInsight operates in two phases: a learning phase
and a sensing phase. During the learning phase, SpecIn-
sight sequentially scans the entire spectrum. It uses the
collected data to extract and learn the different usage pat-
terns which it then stores in a pattern database as shown
in Fig. 2. Once the database has been populated with the
usage patterns of each frequency band, SpecInsight goes
into the sensing phase. It uses a smart scheduling algo-
rithm to pick the best frequency band to sense based on
the learned patterns. SpecInsight then collects signals in
the chosen band and uses a pattern recognition algorithm
to decide if the signals belong to a known usage pattern.
If not, SpecInsight continues sensing that frequency band
for an extended period to learn new usage patterns and
update the pattern database.

What are the patterns? Spectrum patterns are a key
concept in SpecInsight’s design. A pattern is a represen-
tative time-frequency block which characterizes the un-
derlying signal in both time and frequency dimensions.
In the example of Fig. 2, pattern 1 spans the whole fre-
quency bandwidth but is narrow in time, while pattern 2
reveals a utilization that is continuous in time but occu-
pies a narrow bandwidth in frequency. The question now
is, how do we determine the frequency and time widths
of these blocks? On the frequency axis, SpecInsight sets

FCC
Band

Pattern1

Pattern2

CDF







Step1:Extractthepatterns
Step2:Detectthe

distributionofoccurrences









CDF

 

  



Figure 3: SpecInsight’s Learning Phase: To extract pattern informa-
tion in any given FCC band, SpecInsight employs two steps in the
learning phase: 1) extract the patterns; 2) detect the distribution of oc-
currences of the patterns. The patterns extracted by SpecInsight, as
well as the distributions of their occurrences are stored in the pattern
database.

the frequency range of a given pattern equal to one block
in the FCC spectrum allocation table [2]. On the time
axis, SpecInsight is presented with a trade-off: a short
duration allows us to better detect fleeting signals while
a long duration allows us to capture longer signals that
repeat at a much larger time granularity. To be able to
capture both types of signals, SpecInsight uses both short
and long time durations. Specifically, in our implemen-
tation, we use durations of 5 ms and 50 µs.

For each time-frequency block as defined above,
SpecInsight normalizes its power so that the maximum
power is equal to 1. This is necessary since two wireless
users with the same usage pattern can have significantly
different power levels due to different signal attenuations
from these users to SpecInsight’s sensing antenna. Thus,
if we do not normalize, two time-frequency blocks with
the same usage pattern can be misidentified as two differ-
ent patterns. Normalizing also allows us to match time-
frequency blocks measured at different spatial locations
which allows us to discover similar usage patterns across
different urban and suburban areas.

Next, we describe how SpecInsight learns these pat-
terns and uses them to schedule its sensing of each band.

4 THE LEARNING PHASE

In the learning phase, SpecInsight extracts and learns
information of the spectrum patterns. This process is
summarized by Fig. 3. Since SpecInsight divides the fre-
quency spectrum into FCC bands according to the FCC
allocation table, we focus only on a single FCC band in
the following discussions. First, SpecInsight extracts pat-
terns that exist in this band. Because some FCC bands
(e.g., the ISM band) are shared by different types of sig-
nals, there might be more than one signal pattern in the
band. In this case, SpecInsight extracts and records all of
the patterns it can capture. Second, as shown in Fig. 3,
SpecInsight keeps track of when each pattern repeats it-
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Figure 4: How SpecInsight Extracts Patterns in One FCC Band

self and draws the distribution of the time intervals be-
tween different occurrences of the same pattern. This dis-
tribution characterizes the timing properties of the un-
derlying signal, e.g., a fixed-cycle signal would have a
concentrated distribution while a dynamic signal would
have a scattered distribution. SpecInsight stores the list
of existing patterns and its corresponding distribution of
occurrences in the spectrum pattern database. In the fol-
lowing two subsections §4.1 and §4.2, we describe these
two steps in detail.

4.1 Extracting the Patterns

Fig. 4 outlines how SpecInsight extracts the patterns
and identifies patterns from noises in a given FCC band.
Since patterns are in the form of time-frequency blocks
of signals, SpecInsight needs to first transform the I/Q
time samples output 3 by the sensing hardware into two-
dimensional time-frequency samples. SpecInsight does
this by taking the FFTs over a sequence of successive
time windows to obtain time-frequency blocks.4 How-
ever, not all time-frequency blocks extracted by SpecIn-
sight represent actual signals. Some of them might just be
noise. So, how can SpecInsight tell signal patterns apart
from noise? The intuition is that wireless signals intrin-
sically have certain regularities in the way that they use
the spectrum, which are reflected by the time-frequency
blocks SpecInsight extracts. On the other hand, noise is
random. So if we run a clustering algorithm on the time-
frequency blocks collected by SpecInsight, signal pat-
terns will be clustered and noise will be filtered out. 5

There may be multiple spectrum patterns in the same
FCC band. In such scenarios, the clustering algorithm
can also distinguish between the different patterns, i.e.,
blocks belonging to each utilization pattern are clustered
together and separated from others. This is essential for
SpecInsight’s sensing phase, because the smart schedul-
ing algorithm has different scheduling strategies for sig-
nals with different patterns (e.g., fixed-cycle or dynamic

3I/Q samples are the real and imaginary parts of the time samples.
4SpecInsight also squares the magnitude since blocks are repre-

sented in terms of their powers.
5Some signals like the direct spread-spectrum signals which are be-

low the noise floor will not be captured by SpecInsight. However, with-
out prior knowledge of the spreading codes, any energy-based detection
will likely miss these signals.
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Figure 5: Examples where Euclidean distance fails

in time). Often each pattern ties to a specific technol-
ogy, e.g., WiFi and Bluetooth are clustered to two differ-
ent patterns; however, the goal of distinguishing different
patterns is not to precisely identify wireless technologies,
but to separate different patterns of spectrum utilization
to sense the spectrum more efficiently.

4.1.1 Clustering Metric

Our clustering algorithm needs a distance metric in or-
der to group time-frequency blocks into different clusters
of usage patterns, where a small distance between two
blocks means they are likely to be in the same cluster. A
straightforward solution would be to use the Euclidean
distance between two blocks. However, Euclidean dis-
tance does not work for some signals (e.g., the ones
showed in Fig. 5 (a) and (b)), because it does not take into
account possible shifts in the signals. For fleeting signals,
the time pulse can appear at any time shift within each
time-frequency block; for the frequency hopping signals,
the center frequency in each time-frequency block can be
different.

To solve this issue, we compute the shifted correlation
between two time-frequency blocks. We shift the time-
frequency blocks in both time and frequency and pick the
minimum Euclidean distance across all shifts as our clus-
tering metric. Formally, given two time-frequency blocks
B1(f , t) and B2(f , t), our clustering metric is:

D(B1,B2) = min
∆f ,∆t

∑
f ,t
|B1(f , t)−B2(f −∆f , t−∆t)|2 (1)

where ∆f and ∆t represent any possible shift in fre-
quency and time respectively. Using the above metric,
we are now able to correctly cluster together the two
time-frequency blocks in Fig. 5(a) and Fig. 5(b). Unfor-
tunately, while the shifted distance metric solves the is-
sue in Fig. 5, it creates a new problem that it can render
two different usage patterns indistinguishable. For exam-
ple, consider the two usage patterns in Fig. 6. Fig. 6(a)
shows four time-frequency blocks of a frequency band
with a static signal that has the same center frequency all
the time and Fig. 6(b) shows four time-frequency blocks
of a frequency band with a dynamic signal that hops from
one center frequency to another. For any pair of time-
frequency blocks in Fig. 6(a) and (b), the above distance
metric will be small since the shifted correlation will
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align the center frequencies in the blocks with the hop-
ping signal (demonstrated in Fig. 6(c)). Hence, all these
time-frequency blocks will be clustered together as the
same pattern, while they are actually different signals.

To solve this problem, we constrain the time and
frequency shift of the time-frequency block to a small
range. Instead of computing the Euclidean distance in
Eq. 1 for all values of ∆t and ∆f , we compute it only
for a small range of ∆t and ∆f . To see how this approach
can solve this problem, consider again the four blocks
(B1,B2,B3, and B4) which contain a frequency hopping
signal shown in Fig. 6(b). By constraining the shift, the
distance metric between blocks B1 and B2 now becomes
large because the center frequencies in B1 and B2 are far
apart and cannot be aligned with a small shift as can be
seen from Fig. 6. However, the distance metric between
blocks B1 and B3 remains small since the center frequen-
cies are near and can be aligned with a small shift. Thus,
for a frequency hopping pattern, some pairs of blocks
will have a small distance metric and some pairs will
have a large distance metric. This will allow us to dis-
tinguish this usage pattern from the static usage pattern
shown in Fig. 6(a) where all pairs of blocks have the
same small distance metric.

The main question, however, becomes: If two time-
frequency blocks like B1 and B2 in Fig. 6(b) have a large
distance metric, how can we still cluster them together?
Although B1 and B2 have a large distance metric, they
are linked together via a chain of blocks that have small
distance metrics. In other words, B1 has a small distance
metric with B3 which in turn has a small distance metric
with B4 which has a small metric with B2. Thus, although
some of these blocks have large distance metric, they are
still linked together via a chain structure which allows us

to cluster them correctly as we will discuss in §4.1.2.

4.1.2 Clustering Algorithm

Machine learning provides us with a rich body of clus-
tering algorithms. However, many of the well-known
clustering algorithms such as the k-means do not work
for this application. These algorithms are going to clus-
ter together time-frequency blocks that have a small dis-
tance metric. As a result, they are not capable of cap-
turing the chain structure cluster described above, where
two blocks can have a large distance metric and yet be-
long to the same cluster. Thus, we need a clustering algo-
rithm that is capable of clustering these chain structures.

To this end, we use the OPTICS algorithm [5]. This al-
gorithm achieves exactly the above goal. At a high level,
OPTICS is built on the concept of “reachability”. Two
time-frequency blocks are directly linked together if they
have a small distance metric. Two other blocks B1 and B2
belong to the same cluster if there is a path of blocks that
links B1 to B2. For example, in Fig. 6(b), the path was
B1,B3,B4,B2. Thus, a cluster can be interpreted as a set
of time-frequency blocks such that any pair of blocks can
reach each other. Another advantage of the OPTICS al-
gorithm over the k-means is that it does not require the
number of clusters as an input. For the exact details of
the OPTICS algorithm, we refer the reader to [5].

SpecInsight uses the OPTICS algorithm in two places:

• During the learning phase: SpecInsight runs the full
OPTICS algorithm to cluster the collected usage pat-
terns and establish a pool of patterns. The number and
types of classes is data dependent. In §8, we describe
the classes of usage patterns which are revealed by our
experiments.

• During the sensing phase: SpecInsight uses OPTICS
to cluster the newly sensed usage pattern and deter-
mine whether they belong to an already learned cluster
of usage patterns or they form a new cluster of patterns
that needs to be added to the pattern database.

4.2 Detecting the Distribution of Occurrences

Once SpecInsight extracts and identifies a specific pat-
tern, it tracks the different times when the pattern recurs
and builds an occurrence distribution (step 2 in Fig. 3).
SpecInsight defines the pattern interval τ as the time be-
tween two consecutive occurrences of the pattern, and
the distribution of occurrences is defined as the statisti-
cal distribution of the pattern interval τ . It can be char-
acterized by its mean µ and standard deviation σ , which
SpecInsight computes over multiple measurements.

These statistics µ and σ are necessary to sense the
spectrum efficiently. The mean µ determines the period
of the pattern, and the standard deviation σ measures
how dynamic the signal is. Thus, µ can be used to decide
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(b) Fixed Cycle Signals (951.9 MHz - 952.1 MHz)
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(c) A Dynamic Signal (940 MHz - 940.5 MHz)

Figure 7: Examples of Usage Patterns Over Time: Three types of
signals are shown according to their timing characteristics: always-on
signals, fixed-cycle signals and dynamic signals.

how often and at what time we expect to see the signal
and σ tells us how precise our prediction is and can be
used to decide the duration over which we should sense
the band.

These distributions of pattern occurrences, as well
as the pool of patterns that SpecInsight extracts and
identifies, are stored in SpecInsight’s spectrum pattern
database (Recall Fig. 3 for an outline of what is in the
database). In the following section, we will expand on
how SpecInsight’s sensing phase can utilize this database
to sense the spectrum efficiently.

5 THE SENSING PHASE

After the pattern database is initialized in the learning
phase, SpecInsight goes into the sensing phase and uses
a smart scheduling algorithm to decide which frequency
band to sense at each given time. Before we delve into the
details, we will start with an example that gives some in-
tuition behind SpecInsight’s smart scheduling algorithm.

5.1 Intuition

SpecInsight’s scheduling strategy builds on the follow-
ing key intuitions. First, if a signal appears regularly ev-
ery period, it will be much easier to catch this signal
at its next predicted period even if it is a short fleeting
signal. Second, we should spend more time sensing fre-
quency bands with dynamic usage patterns and minimize
the time we spend sensing bands with usage patterns that
are static or have little uncertainty.

To better understand why this makes sense, let us con-
sider three simple examples of usage patterns that have
different time properties (i.e., their distributions of oc-
currences are very different): 1) always-on signals (µ ≈
0,σ ≈ 0) as in Fig. 7(a), 2) fixed cycle signals (σ ≈ 0)

as in Fig. 7(b), and 3) dynamic signals (σ is large) as in
Fig. 7(c). Intuitively, for always-on signals, we can scan
the frequency band less often in order to check from time
to time that the signal is still there. For fixed-cycle sig-
nals, we can predict exactly when the signal is going to
appear and sense the band precisely at that time. We also
might want to check at times when we predict the band
to be idle in case our prediction is wrong and there is an-
other user using the band with a different usage pattern.
For dynamic signals, the best strategy would be to sense
the band at random times but for longer durations. We
can afford to sense these bands for longer time given the
time we saved on bands with always-on and fixed-cycle
signals.

This gives the intuition. In the following section we
will formalize this intuition into the smart scheduling al-
gorithm that SpecInsight employs in its sensing phase.

5.2 The Smart Scheduling Algorithm

The smart scheduling algorithm needs to answer two
main questions:

• Which frequency band f to sense next?
• How long to stay in a frequency band f ?

Which frequency band f to sense next? Answering this
question requires balancing a trade-off between exploita-
tion and exploration. On one hand, we can exploit the in-
formation we learned from the sensing history to sched-
ule brief checks on the next occurrence of a signal in
some frequency band. On the other hand, due to the dy-
namics of the spectrum, the history information we have
might not be accurate. So we need to keep exploring the
spectrum in order to discover new usage patterns.

To address this trade-off, we formulate the problem as
a multi-armed bandit game [11]. The multi-armed ban-
dit game is a well studied problem in decision theory. In
this game, the gambler needs to iteratively choose from
K bandit machines, each of which will give her random
rewards according to an unknown distribution. Her goal
is to maximize the rewards in a given number of rounds.
The gambler could learn the distribution by repeatedly
pulling the levers. She then needs to decide whether to
exploit the information she learned and choose the lever
that maximizes her expected payoff or to just explore
more in order to better learn the distribution.

There is a large literature of solutions to the multi-
armed bandit game [30, 11]. In our implementation, we
adopt a simple but very effective solution called the ε-
greedy strategy which provides a very good approxima-
tion to the optimal decision [30]. In this solution, gam-
bler simply chooses the lever that maximizes her ex-
pected payoff for (1− ε) of the time and for the remain-
ing ε of the time she picks a lever at random. The choice
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Figure 8: The Reward Function: The reward function Rf (t) shows
how near we are to the next signal appearance. It is zero at the begin-
ning of a predicted period and one at the end, while linearly increasing
as we get nearer to time we predict the signal will appear.

of ε defines the degree to which we rely on the learned
information and ε is traditionally set to 0.1 [30].

Thus, 10% of the time, SpecInsight is going to pick
a random frequency band to sense and 90% of the time,
it will pick the band that gives it the maximal reward.
But what is the reward function that SpecInsight needs to
maximize? SpecInsight avoids missing a signal by going
to its frequency band just before it expects the signal to
appear. As a result, SpecInsight uses an indication of how
near we are to the next expected appearance of a signal
in the frequency band as its reward function. Formally,
we calculate the reward function for a frequency band f
at time t as:

Rf (t) = 1− T +µ�(t−T)/µ�− t
µ

(2)

where T is the last time the signal was observed and µ is
the mean value of the pattern interval time as described
in §4.2. The reward function is normalized to 1 in order
to compare bands with different mean pattern interval µ .

To better understand this reward function, consider the
example shown in Fig. 8. Given the last appearance of a
signal at time T and the expected cycle µ , we predict
the signal will appear again at times T + µ ,T + 2µ ,T +
3µ , · · · . Thus at time t, we predict that the signal will
appear next at time T + µ�(t − T)/µ� and we are T +
µ�(t−T)/µ�− t away from it. Since the farthest we can
be away from the next appearance is µ , we normalize by
µ and subtract it from 1 so that the nearer we are, the
larger the reward function is.

How long to stay in a frequency band f ? Once SpecIn-
sight decides which frequency band to sense, it needs to
decide how long to stay in that band. We refer to this
as the dwell time td. The dwell time is determined by
the number of measurements (time-frequency blocks) we
need to collect in each band. It is directly related to the
dynamics of the pattern, for the following reason: The
more dynamic the usage pattern is, the more uncertain
we are of our predictions, so that the offset between the
predicted occurrence of the signal and the actual occur-
rence is bigger. To compensate for that, we need to have

Algorithm 1: Smart Scheduling Algorithm

Procedure SMARTSCHEDULING({f}, {µ}, {σ}, {T})
t ← Current Time
if RAND([0,1])< ε then � The ε-greedy strategy

f ∗ ← RAND({f}) � Pick random frequency
else

for f in {f} do
µ ,T ←{µ}f ,{T}f
if µ �= 0,∞ then

Rf (t)← 1− T+µ�(t−T)/µ�−t
µ

else
Rf (t)← RAND([0,1])

f ∗ ← argmaxf Rf (t)
td ← min{6{σ}f ∗ , small constant}
return {f ∗, td}

longer measurement time in order to capture the signal.
As a result, the number of measurements needs to be pro-
portional to the uncertainty in our predictions of when
the signals are going to appear.

The dynamics of the pattern, i.e., the level of uncer-
tainty, is captured by the standard deviation σ of the pat-
tern interval τ which SpecInsight extracts in the learn-
ing phase. The bigger σ is, the more dynamic the us-
age pattern is. SpecInsight uses the 3-Sigma Rule [28] to
determine the dwell time td. The rule states that a ±3σ
interval centered at the mean of the distribution covers
most of the cases. For example, in a Gaussian distribu-
tion, it covers 99.7% of the probabilities. More generally,
for any distribution it covers at least 90%. Based on this
rule, SpecInsight sets the dwell time to be td = 6σ .

A few points are worth noting:

• The reward function in Eq. 2 is not well defined for
frequency bands with always-on usage patterns where
µ = 0 and for frequency bands with no signals where
µ = ∞ (always idle). For these frequency bands, we
pick the reward function randomly between 0 and 1.

• Frequency bands with fixed-cycle signals, always-on
signals, or no signals have σ ≈ 0. For these bands, we
set a minimum dwell time td such that the collected
data contains at least a few time-frequency blocks.

• Some frequency bands might contain multiple pat-
terns, where each pattern has its own µ and σ . SpecIn-
sight randomly picks one of the usage patterns’ µ and
σ to calculate the reward function and the dwell time.

• In the case of fixed-cycle signals, SpecInsight is able
to track the signals while sequential scanning only de-
tects the signal with some probability. Our ability to
track the signals is important in the case of fleeting pe-
riodic signals like the one in Fig. 1(c), which are very
easy to miss using sequential scanning.

• Finally, SpecInsight is a best-effort system and might
miss sensing deadlines if pattern dynamism in the en-
tire spectrum is very high. In the worst case, if all
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of the bands in the spectrum were equally highly dy-
namic, it would degrade to randomly sampling the
bands but would still be no worse than sequential scan-
ning. Fortunately, as we will show in section §8, only
very few (< 5%) of the patterns are highly dynamic in
today’s spectrum and SpecInsight works well.

Finally, a pseudocode of SpecInsight’s smart schedul-
ing algorithm is shown in Alg. 1.

6 IMPLEMENTATION

We implement SpecInsight on USRP software ra-
dios [8]. Since each USRP daughterboard works in a par-
ticular frequency range, we use two USRPs that simul-
taneously run SpecInsight: the first USRP is equipped
with an SBX daughterboard, and works in the frequency
range from 400 MHz to 4.4 GHz, and the second USRP
is equipped with a WBX daughter-board and works in the
frequency from 50 MHz to 2.2 GHz. We connect the two
USRPs to the same antenna using a power splitter. We
use an ultra-wideband omni-directional outdoor antenna
that works from 25 MHz to 6 GHz [22].

In order to maximize the USRP capabilities, we tune
the bandwidth and sampling rate to their maximum
(40 MHz and 50 Ms/s). We set the two USRPs to
sense non-overlapping frequency ranges, i.e, 50 MHz to
2.2 GHz and 2.2 GHz to 4.4 GHz. Each of them runs an
independent version of SpecInsight’s sensing algorithm,
and their spectrum pattern databases are combined to-
gether. Thus, SpecInsight senses a total spectrum band-
width of 4.35 GHz, from 50 MHz to 4.4 GHz. SpecIn-
sight divides this spectrum into 171 bands based on the
FCC spectrum allocation table [2]. For each band, it
learns its spectrum patterns and schedules when to sense
the band according to the algorithms in §4 and §5.

Implementing SpecInsight in realtime is challenging.
SpecInsight needs to process a data stream over a Gbit/s.
In order to support such high data rates, we implement all
major computations using Intel’s streaming SIMD exten-
sion (SSE2) instruction set, which provides instruction-
level parallelization. We also use the FFTW library [3]
for fast FFT implementation. Consequently, we are able
to run SpecInsight in realtime on a machine with an 8-
core Intel-i7 processor and 8 GB of RAM.

7 USRP CALIBRATION

SpecInsight is not hardware specific, and can be used
with various radios. The radio hardware, however, may
have its own spurs, i.e., fake signals generated by hard-
ware noise, which might be recognized by SpecInsight
as patterns. Thus, when running SpecInsight on a partic-
ular hardware platform, the radio should be calibrated to
identify hardware-specific spurs and eliminate them.

We calibrate the USRPs used in our prototype. All of
our calibration experiments are conducted in a Faraday
shield room which blocks all signals from the outside.

Calibration in the absence of signals: We put our sens-
ing setup in the shield room, and collect measurements in
the absence of any transmission. Since all active signals
from the outside are blocked by the room, every received
signal that is above the noise floor is a spur from the hard-
ware. We noted two types of USRP spurs: 1) the USRP
always shows power at the baseband DC frequency, 2)
the time samples received during the first 10ms after
power-on are corrupted. We add filters to SpecInsight to
remove these spurs before running the algorithms. After
adding these filters, SpecInsight does not detect any pat-
tern in the samples collected by the USRPs in the shield
room. This complies with the fact that there are no ac-
tive signals in the environment, and random noise is dis-
carded by the pattern clustering algorithm.

Calibration in the presence of transmission: USRPs
do not adapt the receiver’s gain with the signal power.
As a result, signals whose power is higher than the
ADC’s maximum quantization level are clipped at the re-
ceiver. Clipping distorts the received signal and changes
its frequency representation (creating harmonics). To en-
sure that the received signal’s frequency representation
matches that of the signal over the air, the receiver should
be operating in its linear range without clipping.

The common approach to avoid clipping is to add au-
tomatic gain control (AGC) to the receive chain [7]. US-
RPs however do not implement AGC. To address this is-
sue, SpecInsight detects the occurrences of clipping by
counting the number of time samples that are equal to the
maximum quantization value. Once clipping is detected,
SpecInsight drops the samples and sends out alerts. Dur-
ing our experiments, which encompass 7 locations and a
total of 49 days, we noted only 7 occurrences of clipping,
which were removed from the data. Please note that the
clipping problem is specific to our sensing hardware but
not fundamental to the algorithm; to avoid it, one could
use a more expensive hardware that implements AGC.

We run experiments in the shield room with a trans-
mitter to check SpecInsight’s ability to detect a pattern
correctly and eliminate clipping events. We let the trans-
mitter transmit continuously, but vary its transmission
power. We confirm that SpecInsight detects the signal in
the correct frequency band as long as there is no clipping,
and generates an alert whenever the signal clips.

8 EMPIRICAL RESULTS

8.1 SpecInsight’s Accuracy

We compare SpecInsight with a setup that uses ex-
actly the same USRP hardware but sequentially scans the
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Figure 9: Comparison of SpecInsight with Sequential Scanning: (a)
shows that overall SpecInsight reduces errors by 10× in comparison to
sequential scanning; (b) shows that SpecInsight uses its time wisely
spending less time on always-on and fixed-cycle bands and more time
on dynamic bands.

spectrum, as typical in today’s systems [21]. For sequen-
tial scanning, the dwell time of each band is set to 50ms,
which matches the average dwell time of SpecInsight.

To compare the accuracy of the two systems, we need
the ground truth. However, existing sensing hardware
does not have 4 GHz of instantaneous bandwidth thus
cannot provide the ground truth for such a wideband.
To address this issue, we use 10 USRPs to continuously
monitor a subset of the bands within the 4 GHz spectrum,
and obtain their ground truth. This provides us with the
ground truth needed to calculate the accuracy of SpecIn-
sight and sequential scanning for this particular sub-set
of bands. We then repeat the experiment for different
subsets of bands.

We categorize the bands based on their usage patterns
to: always-on (on for > 95% of the time), fixed-cycle
(σ < 5ms), and dynamic (σ > 100ms). In our experi-
ments, we consider equal number of bands (20) of each
type; for each band we run the experiment for 1 hour.
For both SpecInsight and sequential scanning, we com-
pute the following two metrics for each type of bands:

• Percentage Occupancy Error: This is the percent-
age difference between the ground truth occupancy of
a band and the occupancy reported by SpecInsight and
sequential scanning. We define occupancy as the per-
centage of time the band is occupied.

• Percentage of Sensing Time: This is the percentage
of the total amount of time that the sensing algorithm
spends in each type of band.

Results: The results using the above two metrics are
shown in Fig. 9. For always-on bands, SpecInsight
spends 50× less time in these bands and still achieves the
same accuracy as sequential scanning. For fixed-cycle
bands, SpecInsight spends 10× less time in these bands

Boston,MA

NewYorkCity,
NY

Amherst,MA

UpperArlington,
OH

Redmond,WA

SanFrancisco,
CA

Maui,HI

Figure 10: SpecInsight’s Measurement Locations.

and yet has 50× higher accuracy. For bands with more
dynamics, SpecInsight can afford to spend 2.5× more
time in these bands which translates into 4× higher ac-
curacy. Finally, overall, SpecInsight has 10× higher ac-
curacy than sequential scanning for the same time bud-
get. This is due to its smart scheduling algorithm, which
spends as little time as needed on always-on and fixed-
cycle signals, and saves its time for dynamic signals.

8.2 Real-World Spectrum Analytics

We deployed SpecInsight in seven locations in the
US, including three major cities and four suburban areas,
which cover the East Cost, West Cost and Pacific islands
(Fig. 10). In each location, we analyzed one week of data
collected by SpecInsight. We report the results below.

8.2.1 The Spectrum Pattern Chart

In this section, we want to analyze how the spectrum
usage patterns are distributed across frequencies. Over
one week and seven locations, SpecInsight detected a
total of 312 different patterns corresponding to differ-
ent technologies. To be able to visualize these patterns,
we group them into classes according to their time and
frequency properties. In the time dimension, we divide
the patterns into always-on, fixed-cycle and dynamic. In
the frequency dimension, we divided the patterns into
frequency-hopping, fixed frequency, and wideband 6.
This gives us a total of 3×3=9 classes 7, where Fig. 11 (b)
shows one usage pattern example for each class. Based
on these usage patterns, we constructed the first-of-its-
kind spectrum pattern chart shown in Fig. 11 (a). In a
similar fashion to the FCC’s spectrum allocation chart,
the spectrum pattern chart shows the types of spec-
trum usage patterns seen in different frequency bands.
Please note that we group the patterns into these rough
classes just for the purpose of visualization; SpecIn-
sight’s database contains the exact and detailed patterns
in each FCC band, in the form of time-frequency blocks.

Results: Fig. 11(a) shows the spectrum pattern chart
(top) and the average spectrum occupancy chart (bottom)

6We label signals with bandwidth larger than 50MHz as wideband.
7Note in all of the experiments we did not see wideband signals that

are always on, or frequency hopping signals that repeat in a fixed cycle.
Hence, we ended up with a total of 7 classes.
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Time \ Freq Frequency Hopping Fixed Frequency WideBand

Always-On

Legend

1760-1761 MHz × 0.5s

Legend

681-687 MHz × 1 Day

Not detected

Fixed-Cycle Not detected

Legend

72.45-72.55 MHz × 1 Day

Legend

3300-3500 MHz × 1 Day

Dynamic

Legend

1235.3-1235.4 MHz × 0.5s

Legend

940-940.5 MHz × 1 Day

Legend

3300-3500 MHz × 1 Day

(b) Legend for rectangle fillings: We divide the patterns according to their time and frequency properties, which are the rows and columns of this
chart and each intersection defines a class of patterns. So there are a total of 3×3 = 9 types. We give examples for 7 types of signals, while the other
two (wideband always-on and frequency-hopping fixed-cycle signals) were not detected in any of the 7 locations.

Figure 11: The Spectrum Pattern Chart

over one week and seven locations. The bottom graph is
computed by averaging occupancy across locations and
the top graph is a superposition of the patterns across all
locations. The figure shows that although there are many
bands in the occupancy chart that are empty or nearly
empty, the pattern chart reveals that these bands are ac-
tually being used. For example, the occupancy in the fre-
quency ranges 1.2 GHz–1.85 GHz and 2.9 GHz–4.4 GHz
is less than 0.0001 (almost zero). However, SpecInsight
detected in these bands some frequency hopping signals
and some wide-band fleeting periodic signals. In fact, the
figure shows that although large swaths of the spectrum

may appear completely empty, they actually have active
signals. In particular, about 39% of the bandwidth below
4.4 GHz is used by signals whose occupancy is less than
0.0001. Moreover, the usage patterns in these band are
mostly of two types: 62.6% are frequency hopping sig-
nals and 33.5% are wideband fleeting signals.

To better understand how much bandwidth each type
of pattern spans and how much it contributes to the
spectrum occupancy, consider Fig. 12. The figure shows
the distribution of bandwidths and occupancies of the
patterns in government-owned bands, non-government
bands and shared bands (where both government and
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Figure 13: Statistics of Patterns According to the Timing Charac-
teristics: The figure shows that more than half of the patterns (65%)
have some timing regularities, either always-on or periodic.

non-government usage coexist). The results reveal that
usage patterns like frequency hopping and wideband sig-
nals occupy 53.3% of the bandwidth but only contribute
6.8% to the total spectrum occupancy. This is more ap-
parent in government-owned bands since these technolo-
gies are typically used in security applications. Particu-
larly, the government owns 56% of the spectrum but only
contributes 27.8% to the total occupancy.

8.2.2 Timing Analytics

In our timing analysis, we aim to answer the follow-
ing questions: How many of the spectrum patterns are
dynamic? How many are highly predictable (periodic or
always-on) signals? We use the standard deviation σ of
the pattern intervals (described in §4.2) to distinguish dy-
namic patterns from periodic and always-on signals. Of-
ten higher σ reveals a more dynamic usage pattern. How-
ever, this is not always true. Some periodic patterns have
a very large period (hours-days), and hence can have a
large standard deviation σ . Fig. 14 shows a usage pat-
tern in the government-owned 152 MHz band that re-
peats every day. In particular, it has a signal that is always
present, but at night, it is turned off in every other chan-
nel. To accommodate such periodic patterns with large σ ,
we distinguish between fast periodic and slow periodic.

Results: Fig. 13 shows the percentage of patterns that are
always-on, fast-periodic, slow-periodic and dynamic, out
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Figure 14: Example of a Slow Periodic Signal: Every other channel
of the signal is turned off at night for a fixed duration.
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val (σ ). Only less than 5% of the signals have very large σ .

of the 312 detected patterns. It reveals that only 35% of
the detected usage patterns are actually dynamic.

To gain more insight into how dynamic the frequency
bands are, we compute the CDF of the standard deviation
σ of signal intervals. Fig. 15 shows this CDF and reveals
that less than 5% of the patterns are highly dynamic, i.e.,
having a very large σ (σ > 200ms). These results show
that knowing the spectrum patterns is highly useful for
smart scheduling of sensing activities, and hence the ben-
efits of SpecInsight.

9 CONCLUSION

This paper presents SpecInsight, a system that can ac-
quire the detailed utilization patterns over 4 GHz of spec-
trum in real time. We implement SpecInsight using off-
the-shelf USRP radios and perform a large-scale study
of spectrum analytics in 7 US locations including ur-
ban and suburban areas. Consequently, we build the first-
of-its-kind spectrum pattern database characterizing how
the spectrum is utilized. We believe that SpecInsight en-
ables multiple applications such as dynamic spectrum ac-
cess, finding breaches of spectrum regulations, and un-
derstanding undocumented spectrum utilizations.
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