

Fluidic Topology Optimization with an Anisotropic Mixture Model

Yifei Li MIT CSAIL

Tao Du MIT CSAIL

University of Wisconsin-Madison

Bo Zhu

Dartmouth College

Iteration 20

Iteration 50

Sangeetha Grama Srinivasan

Tencent LightSpeed Studios

Kui Wu

Eftychios Sifakis

University of Wisconsin-Madison

Wojciech Matusik

MIT CSAIL

Fluidic devices are everywhere in engineering, medicine, our daily life,...

Hydraulic Pump Heat Sink

Propeller •••

Conventional fluidic device design relies on human expertise

Evaluation

Computational Design with Differentiable Simulation

Challenges in Geometry Representation

Accurate Boundary

Accurate Simulation at Solid-Fluid Interface Requires Flexible Boundary Condition

Prior Works

Arbitrary Topology

Flexible Boundary Condition (slip boundary?)

Contribution

Anisotropic Mixture Model for Continuous & Unified Material Representation

Anisotrony

Anisotropic Mixture Model

Arbitrary Topology

Sharp Interface

Flexible Boundary Modeling

Method Outline

Goal: A continuous material model that models solid, fluid and boundary conditions

Energy Minimization Formulation of Stokes Flow

Energy Minimization Formulation of Stokes Flow

$$\min_{\nu} \int_{\Omega} \lambda (\nabla \cdot \nu)^2 dx + \int_{\Omega} \mu \|\nabla \nu\|^2$$

incompressibility viscous she
$$\lambda \to \infty \text{ perfectly incompressible Stoke}$$

Fluid Phase

^{2}dx

ear stress

es flow

Modeling Solid Phase Solid as "impermeable fluid"

Solid Phase

$$dx + \int_{\Omega} k_f ||v||^2 dx$$

ear stress friction

Modeling Solid Phase Matrix Form Parameterization

$$\min_{v} \int_{\Omega} \lambda (\nabla \cdot v)^{2} dx + \int_{\Omega} \mu \|\nabla v K_{f}^{*}\| K_{f} \in K_{f} \in K_{f} \in \mathcal{N}$$

$$K_{m} \in \mathcal{N}$$
Fund Phase

Solid Phase

$$\begin{split} & K_{m}^{\frac{1}{2}} \|^{2} dx + \int_{\Omega} \|K_{f}^{\frac{1}{2}} v\|^{2} dx \\ & \in S^{d}_{+} \qquad \qquad K_{f} \in S^{d}_{+} \end{split}$$

Modeling No-Slip Boundary Condition No-Slip shares parametrization with Solid

Solid Phase

$$\int_{\Omega}^{\frac{1}{2}} ||^{2} dx + \int_{\Omega} ||K_{f}^{\frac{1}{2}}v||^{2} dx$$

$$K_f = \infty \cdot I$$

Modeling Slip Boundary Condition Anisotropic Modeling of Slip

$$\int_{M}^{\frac{1}{2}} \|^{2} dx + \int_{\Omega} \|K_{f}^{\frac{1}{2}}v\|^{2} dx$$

(Sec 4.2 for derivation) $K_m = I - nn^T$ $K_f = k_f nn^T, k_f \to \infty$ $\lambda = 0$

Unified Material Model for All Phases Over Parameterization of Direct Representation

Direct Parameterization (d=3)

$$\mathbf{K}_{m}, \mathbf{K}_{f} \in \mathbf{S}_{+}^{d \times d} \quad \lambda, k_{f} \in \mathbb{R}^{+} \quad \mathcal{N}$$
12
2

Reparameterization Intuition

Isotropic

Anisotropic

Low Dimension Parameterization

Parameter Visualization as Ellipses

Continuous Representation Differentiability in Phase Transitions

Optimized Geometry

Method Outline

Goal: Develop a physical model that jointly models solid, fluid and boundary

Discretization

Discretization Schemes

Discretization: Energy Discretization via variational form

$$\mu \|\nabla v K_m^{\frac{1}{2}}\|^2 dx + \int_{\Omega} \|K_f^{\frac{1}{2}}v\|^2 dx$$

Optimization

Optimization

 $V \le V_{frac}$ $\theta \in [\theta_{\min}, \theta_{\max}]$ subject to

Compliance, Direction and Anisotropic Regularizer

Applications

Tree Diffuser

Generate a fluidic diffuser that transports fluids from one inlet into 16 outlets, bypassing a small obstacle

tion 80x80x80

e 0.25

Tree Diffuser

Final Design

Cross Section Visualization

Connect inlets (two faces) with varying velocities to produce equal flows at the outlets (four faces).

tion 80x80x80

1e 0.25, 0.3

Optimization Iteration Visualization

Fluid Twister

Generate a twisting flow in the yz-plane at the outlet of the domain from a circularshaped constant inlet with inflow velocity

100x100x100

0.3

Optimization Visualization

Initial Loss: 22.575

Final Design

Anisotropic Mixture Model

people.csail.mit.edu/liyifei/topostokes/

Scalability via Iterative, Multi-Resolution solvers

