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Figure 1: Key factors for skin cancer care include early detection and tracking over time.

1 Introduction

Dermatology is a medical field which stands to be heavily augmented by the use of artificial intel-
ligence techniques. Diseases are visually screened for, and many disease diagnoses are performed
strictly with an in-clinic visual examination. Discerning between skin lesions is difficult - the differ-
ence between skin cancer (melanoma, carcinoma) and benign lesions (nevi, seborrheic keratosis) is
minute (Figure 1). With 5.4 million cases of skin cancer diagnosed each year in the United States
alone, the need for quick and effective clinical screenings is rising [1, 2]. Patients with skin cancer
tend to be afflicted with many moles, and so one of the challenges in skin cancer screenings is
identifying them amongst a myriad of benign lesions. Another key element of these diagnoses is
based on inspecting temporal changes in lesions - a fast changing lesion is more likely to be malignant.
As such, patients and providers need tools to support this at scale.

Recent advances in detection and tracking using CNNs [3–5] has the potential to augment healthcare
providers by (1) detecting points of malignancy, and (2) finding corresponding lesions across images,
allowing them to be tracked temporally. However, the primary challenge in using traditional detection
techniques is working in a low-data regime without the availability of high volumes of annotated
and labeled data - the largest existing open-source skin cancer dataset of photographic images is
the Edinburgh Dermofit dataset, containing 1,300 biopsied images. To overcome this we develop a
domain-specific data synthesis technique which stitches small single-lesion images onto large body
images. Both the body images and the skin lesions images are heavily augmented with various
techniques, and the lesions are blended onto the bodies using Poisson image editing [6].
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Figure 2: Data Synthesis. (Left) Example biopsied skin lesion and raw body images. (Middle)
Generated training images for detection and corresponding label masks. Red areas represent blended
malignant lesions, yellow areas represent benign lesions. (Right) Generated training images for
tracking, along with a few example pixel-wise correspondences.

For large-scale lesion detection, we use this synthetic data to train a fully-convolutional CNN on the
task of pixel-wise classification between three classes: background, benign lesion, malignant lesion,
then post-processing to generate region proposals. For image-to-image tracking, a network is trained
(using image pairs containing altered lesion and pose positions) to output pixel-wise positional shift.

Our method demonstrates a working end-to-end CNN system capable of tackling two critical diagnos-
tic tasks with superior performance to baseline techniques. It is trained with very little original data
and thus the techniques demonstrated here can be easily transferred to other data-limited domains.

2 Data Synthesis

We create a domain-specific data augmentation technique for generating synthetic images from two
low-data sources: high-quality lesion images (1,300 biopsy-proven cancers and moles), and body
images (400 back, leg, and chest images) whose skin regions have been manually segmented. We
first generate images for detection and then further augment them for tracking. These images are
intended to mimic the real-world clinical case of patients exhibiting many lesions, some possibly
malignant, with the need to track them over time.

Detection data is generated in two steps: (1) A blending position on the body image is chosen
using local feature matching between a lesion image and the body image, (2) the lesion image is
blended into the body image using Poisson image editing. For tracking, data is generated by further
augmenting detection images - that is, given a detection image, we create a pair of images from it.
The purpose here is to recreate temporal images (which will exhibit changes in lesion shape/size, as
well as body changes) and to force the network to learn pixel-wise correspondence by focusing on
the distortion in local texture information.

3 System Pipeline

Our system is composed of two parts: the first detects malignant and benign skin lesions, the second
tracks them across images. The detection network is trained with the synthetic images (skin lesion +
body images) described in the previous section, using pixel-wise labels. Once the detection network
is trained to convergence, its weights are used to initialize the tracking network. This network is then
trained on image-pairs formed from the detection data.

The detection component is intended to highlight to a clinician the potentially malignant lesions on a
given input image. Providers are often faced with body regions containing a multitide of lesions and
discerning malignancy is a challenging task. Our system feedforwards an input image through the
CNN, outputs a pixel-wise heatmap over the five classes of interest, and then uses post-processing
techniques to make the heatmap more human-interpretable. Examples of raw prediction results and
post-processed images are shown in Figure 4.

The tracking component of our system is intended to find pixel-wise correspondence between two
images of the same body part, in order to track lesions over time. Shown in Figure 3, the tracking
network is an adaptation of the detection network. During the feedforward pass the two images are
fed through the net, which then outputs a 2D vector field of correspondences.
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Figure 3: Detection and Tracking System. The network is trained on synthetic data and tested on
real data. The detection network is composed of a conv section followed by a deconv section, with
skip-link connections. In the top right we show the raw prediction heat map and the detection result
after post processing. The tracking network takes the conv component of the detection network, and
splits it up into a smaller conv part, and an atrous conv part. The two tracking images are each fed
through the network and merged by a subtraction before the per-pixel shift prediction.

4 Experiments and Results

Example results for detection are shown in the first three rows of Figure 4, whose columns show
examples as they are processed from input images to raw network output to post-processed results.
Our method is compared to a baseline sliding window method (bottom row of Figure 4). For
quantitative comparison, we test detection using 108 clinical images, and include results of two
non-expert humans trained on Edinburgh Dermofit dataset to detect malignant lesions. The generated
receiver-operator curve shown in the left part of Figure 5.

For tracking, we compare our results to two baseline techniques: SIFTFlow, and Deformable Spatial
Pyramids (DSP) [7, 8]. Example image results are shown in Figure 4, where green lines show
correctly predicted correspondences, and red lines show incorrect predictions. For quantitative
comparison, we evaluate tracking accuracy using the percentage-of-correct-keypoints (PCK) metric.
Our test set is composed of 260 pairs of correspondence labels manually annotated on temporal image
pairs. These image pairs vary in pose, background, distance, viewpoint, and illumination condition.
Results are plotted in Figure 5, in comparison to both baselines.

Figure 4: Qualitative Results. Left: Detection results, Right: Tracking results. Four examples from
our detection pipeline, compared to a baseline sliding-window classifier technique. Two examples
from our tracking pipeline, compared to SIFT-Flow and DSP baselines, using α = 0.05.
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Figure 5: Quantitative Results. Detection results (left): ROC curve comparing our technique against
a baseline sliding window method and two non-expert humans. Recall rate is shown in the parenthesis
of the legend. Tracking Results (right): mean percentage of correct keypoints (PCK) as a function of
α = p/L, where p is the number of pixels, and L is the diagonal length of the image.

5 Conclusion

Here we show large-scale detection and tracking of skin lesions across images using FCN in a low-
data regime using domain-specific data augmentation. In the absence of large amounts of labeled and
annotated data, we generate high volumes of synthetic data using 1,300 biopsy-proven clinical images
of skin lesions and 400 body images. Skin lesion images are blended onto body images, heavily
augmented with a variety of techniques, and used to train a detection network. We demonstrate
human-interpretable detection with this method, and demonstrate superior performance over baseline.
We then further augment the data and generate image pairs with pixel-wise correspondence between
them, and use this to train a tracking network whose architecture is partially composed of the
detection network and initialized with its trained weights, outperforming both SIFTFlow and DSP.
The networks are trained on synthetic data and tested on real-world data.

AI systems of this sort have the potential to improve the way healthcare is practiced, which may extend
outside of the clinic. Algorithms such as these could aid providers at spotting suspicious lesions
amongst benign ones, and at observing temporal changes in lesions that may signify malignancies.
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