
Self-describing Delegation Networks for the Web

Lalana Kagal, Tim Berners-Lee, Dan Connolly, and Daniel Weitzner
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
Cambridge, MA

{lkagal, timbl, connolly, djweitzner}@csail.mit.edu

Abstract

As the necessity of flexible Web security becomes more
apparent and as the notion of using policies for access con-
trol gains popularity, the number of policy languages be-
ing proposed for controlling access to Web resources in-
creases. Instead of defining a single standard policy lan-
guage, we believe that there should be a way of embracing
different policy languages and of allowing interoperability
between systems that use different policy languages. We
propose Rein - a policy and delegation framework that is
grounded in Semantic Web technologies - to help the Web
preserve maximum expressiveness for local policy commu-
nities by enabling global interoperability of policy reason-
ing. Rein provides ontologies for describing policy and del-
egation networks, and provides mechanisms for reasoning
over them, both of which can be used to develop domain
and policy language specific access control frameworks for
Web resources. The focus of this paper is the delegation
mechanisms of the Rein policy framework that support both
delegation of authorization and trust. In this paper we give
a brief overview of the Rein framework, describe its dele-
gation mechanisms, and illustrate their usefulness through
some examples.

1 Introduction

As the Web emerges as one of the most important
ways of information dissemination across global bound-
aries, it becomes obvious that though a convenient and sim-
ple framework for search and retrieval of information, the
Web lacks easy-to-use and flexible security functionality re-
quired by users (we use the term “users” to imply website
administrators, application developers, or people in charge
of web content) for controlling access to pictures, calen-
dar entries, private blogs, draft documents, etc. Several
approaches for access control to Web resources have been
proposed such as XACML [21], WS-Policy [5], PeerTrust

[15], and Rei [18]. Each approach introduces its own policy
language and allows policies to be defined over shared on-
tologies. Instead of requiring everyone on the Web to con-
form their description of their policy relationships to a sin-
gle language, we leverage the power of the Semantic Web
to reason across the various languages (such as RDF-S [11],
OWL [7], and rule languages) that people use to describe
policies. Rein will help the Web preserve maximum expres-
siveness for local policy communities by enabling global
interoperability of policy reasoning.

Rein is a framework for policy specification and reason-
ing, which exploits the inherently decentralized and open
nature of the Web by allowing policies to be combined, ex-
tended, and otherwise handled in the same scalable, modu-
lar manner as are any Web resources. Resources, their poli-
cies and meta-policies (policies about how policies are in-
terpreted), the policy languages used, and their relationships
together formRein policy networks. Rein allows entities in
these policy networks to be located on local or remote Web
servers and to be accessible via Hypertext Transfer Proto-
col (HTTP). It also allows these entities to be defined in
terms of one other using their Uniform Resource Identi-
fiers (URI)1. Rein policy networks are described using Rein
ontologies and these distributed but linked descriptions are
collected off the Web by the Rein engine and are reasoned
over to provide policy decisions.

Another important aspect of the Rein framework is that
it supports delegation of authorization and trust that allow
policies to be less exhaustive and provide decentralized se-
curity control. Delegation of authorization is very impor-
tant to the Web because owners of Web resources may not
be able to project who should have access to their resources
or pre-establish all desirable requirements for access. This
kind of delegation allows permissions on a resource to be
propagated by a set of trusted entities without explicitly
changing the policy or requirements. In order to support
the openness of the Web, the Rein framework also includes

1http://www.ietf.org/rfc/rfc3986.txt

delegation of trust such that only trusted information on the
Web is accepted and reasoned about. Both kinds of del-
egation can be either key-based or URI-based and can be
used with different policy languages defined in RDF-S and
OWL.

Rein provides ontologies for describing policy and del-
egation networks, and provides mechanisms for reasoning
over them, both of which can be used to develop domain
and policy language specific access control frameworks
for Web resources. Except for resources that that need to
be secured, all other entities in Rein policy and delegation
networks are self describing i.e. all information required
to understand the entity is within the entity or linked from
the entity. The relation between a secure resource and its
policies is not described within the resource itself because
this would require the resource to be accessed to retrieve
its access control policy in order to decide whether access
should be allowed. However, the policies of a resource are
known to the Web server or Guard controlling access to the
resource. Figure 1 is an example of a Rein policy network.
In the figure,group.jpgis an image that has an OWL policy
defined over an RDF-S policy language. The next image,
seven.jpg, uses two policies - the OWL policy used by
group.jpgand an RDF policy over the same RDF-S policy
language. The third image,jamboree.gif, uses the same the
RDF policy asseven.jpg, andfirst-pic.jpg has a policy in
N3 rules [9, 10] defined over an RDF-S policy language
that has a meta-policy in N3 rules.

Some of the main contributions of Rein include :

• Rein is an open and extensible Web-based approach to
representing and reasoning over policies.

• Rein supports different mechanisms for delegation that
can be grounded out in domain-specific policy lan-
guages defined in RDF-S and OWL.

• It allows flexibility in how sophisticated or expres-
sive the policies can be. For example, a policy can
be as simple as a list of users and the resources they
can/cannot access whereas another policy can be a set
of rules that define access rights in terms of specific
attributes of users, resources, and the environment and
that use information and inferences from other Web re-
sources.

• Rein provides a unified way for reasoning over policy
and delegation networks to make access control deci-
sions.

• Except for resources that need to be secured, all other
entities in Rein policy and delegation networks are
self-describing.

policypolicy
policy-language

Rein property

http://gscout.example.org/troop42-policy.owl
[OWL]

http://gscout.example.org/pol-lang.rdf
[RDFS]

policy

http://gscout.example.org/troop-policy.rdf
[RDF]

policy-language

policy

policy http:/bscout-troop.example.org/troop-policy.n3
[N3 rules]

policy-language

Rein policy, policy
language, or meta policy

meta-policy

http://bscout-troop.example.org/bscout-pl.rdf
[RDFS]

http://bscout-troop.example.org/pl-meta.n3
[N3 rules]

http://gscout.example.org/
group.jpg

http://gscout.example.org/
seven.jpg

http://gscout.example.org/
jamboree.jpg

http:/bscout-
troop.example.org/first-pic.jpg

Resource to be secured

Figure 1. Example of a Rein Policy Network.
Rein policy networks are formed by inter-related re-
sources, policies, policy languages, and meta-policies
that can be hosted on different Web servers and that
can be extended and re-used as required.

• Rein supports a compartmentalized approach to policy
development as it permits the designing of policy lan-
guages, writing of meta-policies associated with pol-
icy languages, developing of policies, and enforcing
of policies to be modular tasks. This allows policy de-
velopers to make frequent changes at their high level
of understanding without requiring any other changes
to the system.

2 Overview of the Rein Policy Framework

Rein is an open policy framework that can be used in
heterogeneous policy domains that use different policy lan-
guages and domain knowledge. This domain knowledge
can include descriptions of the resources, users, environ-
ment, and context in RDF-S or OWL. The domain knowl-
edge can also be defined in XML Schema [14] or XML

DTD 2 such as Common Information Model (CIM XML)3

as long as the appropriate translation such as XSL Transfor-
mations (XSLT) [12] is provided for conversion into RDF-S
or OWL.

Rein consists of several ontologies for describing poli-
cies, meta-policies, requests, and delegations, and a reason-
ing engine that accepts access requests for resources in Rein
policy networks and decides whether or not the request is
valid.

2.1 Rein ontologies

There are three ontologies that are used to model infor-
mation in the Rein framework namely the policy network
ontology, the request ontology, and the delegation ontology
as illustrated in Figure 2.

The Rein policy network ontology is made up of three
properties that are used to link policy network entities that
are located on local or remote hosts via HTTP. Thepol-
icy property is used to associate resources with their access
control policies. Thepolicy-languageproperty is used by
a policy to refer to the policy language(s) it uses, and the
meta-policyproperty is used by a policy language to refer
to rules that can be used for further policy reasoning. A pol-
icy language is represented as an RDF-S or OWL ontology.
A meta-policy is a set of rules defined over concepts in a
policy language and domain ontologies and is used for ad-
ditional policy processing such as setting defaults and dy-
namic conflict resolution. A policy is defined in a policy
language and over domain knowledge. It can be a set of
RDF-S or OWL instances or a set of rules. A resource could
but need not have a description in a machine understandable
representation. If it does have a description, it can be used
as part of the domain knowledge and policies can be written
over this information. Every request for a resource is eval-
uated against all the policies that control it. If a policy uses
a policy language that has a meta-policy, then that meta-
policy applies to the policy. Policies, policy languages, and
meta-policies can be serialized either in RDF/XML [26] or
N3 [8] or described in a supported rule language.

The Requestclass is a way to query a Rein policy
and delegation network.Requestsare created by users or
by Web servers from the original user requests to verify
whether the access request for the resource is valid. The
Requestclass has four properties -requesterdefines the en-
tity making the request,resourceis the Web resource, ser-
vice, or action being requested,accessis a concept (class or
property) defined in the policy language for access control
(e.g. ReadPermission, can-write, isAble, forbidden, can-
not), andansdetermines whether the request is valid and is
set by the engine. Though theresourceproperty is a URI

2http://www.w3.org/TR/REC-xml/
3http://www.dmtf.org/standards/wbem/

meta-policy

Resource

policy

Request
(RDF/XML or

N3)

resource

access

Credential or URI defined in
domain specific ontology

requester

policy
language

Policy
(OWL/RDFS/N3

rules)

Policy Language
(OWL/RDFS)

Class defined
in Rein

property

Access Class or Property
defined in Policy Language

Meta Policy
(OWL/RDFS/N3

rules)

ans
Answer

isA

isA

Domain/Policy
language specific

Rein Policy Network Ontology

Rein Request Ontology

Rein Delegation Ontology

Uniform Resource
Identifier

(URI)

Permission instance
defined in

policy language
(N3 rules)

Statement or Rule
(RDF-S, OWL, N3

rules)
acc:endorsement Endorsement

log:semantics &
log:includes

Trusted
Statement

Signed Statement
or URI

InValid

Valid

acc:Key acc:Signature

acc:key acc:signature

delegator &
redelegator

delegator &
redelegator

Namespace:Concept

Figure 2. Rein Ontology. This ontology includes
the Rein Policy Network Ontology, which describes
the relationships between resources, policies, meta-
policies, and policy languages, the Request class,
which is used to perform queries over policy net-
works, and the Rein Delegation Ontology, which is
used to describe delegations of authority and trust.

of the resource being requested, therequesterproperty is a
set of properties or credentials (such as certificates) of the
requester because the identity of the requester might not al-
ways be meaningful in open environments such as the Web
[17]. The Rein reasoning engine can be modified to handle
additional properties for a request including environmental
conditions and attributes of the requested resource.

Delegations are described using several concepts in Rein
ontologies and some defined in theaccnamespace4. A pub-

4acc namespace is defined athttp://www.w3.org/2000/10/

lic key or URI can be given the permission to delegate a
permission to access a resource using thedelegatorprop-
erty. This property associates the key or URI with the per-
mission. The permission itself is defined by the policy lan-
guage and not within Rein. Similarly,redelegatoris a prop-
erty between a key or URI and a permission that gives the
entity associated with the key or URI the ability to delegate
the permission to delegate. Theacc:endorsement5 property
is used for cryptographic functionality. It is used to asso-
ciate a signature (acc:Signature) and the key (acc:Key) used
to generate it. After validating the signature, the Rein en-
gine generates a property,acc:supportedBy, that associates
the statement with the key used to sign it. These signed
statements include requests for Rein resources, delegations
of trust and authority, delegation rules, and signed creden-
tials such as name and attribute certificates. The proper-
ties used for delegating trust includelog:semantics6 and
log:includes. These are cwm builtins [8] that are used to
read the contents of a signed statement or URI and ex-
tract trusted information from it. Thelog:semanticsbuiltin
accesses a web resource, retrieves a representation of it,
parses that, and returns the graph. Currently, cwm will
retrieve and parse RDF/XML and N3. Thelog:includes
builtin checks whether one graph is a subset of the other.
Together,log:semanticsandlog:includesallow rules to ac-
cess the web, and to objectively check the contents of docu-
ments, without having to load them and believe everything
they say.

2.2 Rein engine

The Rein reasoning engine reasons over Rein policy and
delegation networks and is able to answer questions about
access rights of clients. It includes a reasoner for RDF-S,
OWL, and a reasoning engine for the supported rule lan-
guages (e.g. N3 rules and RuleML). It is used by the Guard
or Web server controlling access to a resource. It can also
be used by clients to generate proofs of why their request
should be allowed [19]. It accepts as input an instance of
Request, the policy controlling the resource, and relevant
delegations and signed statements. It is assumed that the
Guard has access to thepolicyproperty of the requested re-
source and that the policies are accessible via HTTP. The
engine processes aRequestby finding each policy associ-
ated with the resource and reasoning over its network in-
cluding its policies, meta-policies, and delegations, as well
as attached delegations and signed credentials. Once the en-
gine obtains the result, it checks whether the result includes

swap/test/crypto/acc.n3
5acc:concept implies that the concept is defined in the acc names-

pace at http://www.w3.org/2000/10/swap/test/crypto/
acc.n3 .

6log:semantics implies that semantics is a concept defined in the log
namespace athttp://www.w3.org/2000/10/swap/log .

any relationship between theresource, requester, andac-
cess. For example, it checks whetherrequesterhas a prop-
erty accesswith the value ofresource, or whether there
exists an instance ofaccess, which has as property values
the resourceand therequester. As policy languages are
in RDF-S or OWL and as the engine understands the se-
mantics of RDF-S and OWL, it is able to look for possible
meaningful relationships between theresource, requester,
andaccess. If the engine is able to find an appropriate rela-
tionship, then the engine infers that theRequestis valid.

2.3 Implementation

The conceptual design of Rein allows it to be imple-
mented in several different ways using different program-
ming languages (e.g. python, Java, C++), reasoners (e.g.
Pellet [23], Jena [4], cwm [9]), and rule languages (e.g.
RuleML [3], N3 rules [9, 10], Flora [1, 28]). We have im-
plemented it in one possible way using python, cwm, and
N3 rules. The current implementation of Rein relies on
N3 semantics and cwm functionality to integrate and rea-
son over Rein policy and delegation networks. We chose
N3 rules for several reasons; (i) N3 rules allow policies to
access the web and objectively check the contents and in-
ferences of documents, without having to load them and
believe everything they say. This is especially important in
open untrusted environments such as the web because a cer-
tain web page may be trusted for a certain bit of information
but not all the information it contains. (ii) There are several
useful cwm builtins for cryptography, string functionality,
and math operators that are required for specifying policies.
(iii) The rule language has the expressivity we required and
is convenient to read and write.

We have defined the Rein ontologies in RDF-S. We have
developed a Rein reasoning engine in N3 rules and use cwm
as both a reasoning engine for the supported rule language
(N3 rules) and as a reasoner for the language of develop-
ment. The engine includes the Euler rules [24] for reason-
ing over RDF-S and a subset of OWL. The engine accepts
as input aRequestinstance, the relationship between the
requested resource and its policies, and the delegations (if
any). The input can be serialized either in RDF/XML or
N3. On receiving the input, the engine parses it to get the
attributes of the requester and the requested resource. The
engine uses cwm builtins to read in the associated policies,
policy languages, and meta-policies (if any). It then reasons
over the files defined in RDF-S or OWL using the Euler
rules whereas files defined in N3 and N3 rules are handled
by cwm. The results of the policy are passed to the meta-
policy and final result is output by stating whether theRe-
questis Valid or Invalid. This output can be serialized in
RDF/XML or N3 and is used by the Guard or Web server
to decide whether to allow or deny the request. However,

as the Rein engine can be used both by the Guard and the
client, the engine has another output. The engine can be run
in the–whymode, which causes it to output a proof in N3
for why aRequestis Valid.

Though a resource can have several policies acting on
it, we currently support only disjunction of policies - if the
request is valid in any one of the policies, it is considered
valid. We will look into supporting conjunction of policy
decisions as well as defining meta-policies over multiple
policies in the future.

A requirement in the Rein framework is that the Guard
or Web server needs to know which policies apply to which
resources. In our implementation this can be done in using
RDF-S, OWL, or N3 rules. If RDF-S or OWL is used, poli-
cies can be associated with resources using individual state-
ments for each resource or using restrictions. The use of N3
rules allows policies to be assigned to resources grouped by
common attributes.

The engine can be accessed directly by a Guard, a server,
or client through the cwm commandline interface or its Ap-
plication Program Interface (API) in python[2].

3 Delegation in Rein

In keeping with the motivation of Rein, delegation is also
not coupled to any policy language. Rein includes a high
level ontology for talking about delegations of authoriza-
tions and trust and allows domains to use their own pol-
icy language. The delegation mechanisms themselves are
in N3 rules. A policy decision about whether a request
should be granted is dependent on the (i) policy(ies), (ii)
meta-policy(ies), (iii) credentials of the requester, (iv) del-
egations of authority, and (v) delegations of trust. Rein
supports signed credentials in OWL, RDF-S, and N3 rules,
and delegations in N3 rules described over policy languages
in OWL, RDF-S, and N3 rules. Delegations can be self-
describing. They can perform authentication and check on-
line white and black lists including certificate and delega-
tion revocation lists making delegation management more
modular and easier.

3.1 Delegation of Authority

Delegation of authority in Rein is basically a way to dis-
tribute the policy of a Web resource and to allow more than
one entity to be responsible for propagating access to the
resource. Rein provides two properties for describing dele-
gations -delegatorandredelegator- but allows the permis-
sion being delegated to be policy language specific. Rein
distinguishes between the permission to delegate a permis-
sion and the permission to delegate the permission to del-
egate. For example, Judy, a professor, delegates to Alice,
her student, the permission to write a review for a paper and

also delegates the permission to further delegate the per-
mission to write the review. This implies that Alice can
either review the paper herself or delegate the permission to
someone else. An important property of these delegations
is that even though the delegations maybe syntactically cor-
rect, they may not be valid. A delegation is only valid if the
delegator has the permission to make the delegation; this
holds for both delegation of a permission and delegation of
the permission to delegate.

Delegations can be made to a key or a document iden-
titied by a URI or a group of keys or several documents
identified by URIs. Forkey-based delegations, Rein sup-
ports an approach similar to Simple Public Key Infrastruc-
ture (SPKI)7 where keys are associated directly with per-
missions and the requester needs to own one of these keys in
order to get access. The requester proves ownership of the
key by signing theRequest. There is a possibility of replay
attack where someone can intercept the signedRequestand
use it to gain access. However, we believe using techniques
such as time stamps and a secure channel will mitigate this
problem. In order to model key-based delegations Rein pro-
vides two properties for defining delegation propertiesdel-
egator and redelegatorand a property for describing sig-
natures namelyendorsementthat associates a signature and
the key used to generate the signature. When a delegation
is made to a key, requests and further delegations from that
key are expected to be signed. The Rein engine checks the
signature of the request, delegations, and attached signed
credentials. A delegation is considered valid if the signa-
ture is valid and the key that made the delegation has the
permission to delegate. A signed request is valid if its sig-
nature is valid and there is a valid delegation chain from the
resource to the key used to sign the request.

In URI-based delegations, a document identified by the
URI is delegated the permission to delegate or redelegate.
It is assumed that this document can be modified by a set
of trusted people. This is an indirect delegation to those
people. Rein uses thedelegatorandredelegatorproperties
in a similar fashion as key-based delegations to associate a
URI with a permission. Delegations made to a URI cause
the Rein engine to read in the contents of the URI and rea-
son over related delegations and redelegations it includes. A
delegation on a URI is valid if there is valid delegation chain
to that URI. An unsigned request is valid is there is a valid
delegation to it from a URI or if the requester is permitted
by the policy.

Delegation Example 1 : Key-based Delegation A boy
scout troop has a set of photos online that are managed by
a policy administrator. The policy administrator defines a
policy that permits certain keys to access certain pictures.
The policy administrator is going on leave and permits

7http://world.std.com/ cme/html/spki.html

<rdf:RDF xmlns="http://bscout.example.org/bscout-pl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <rdf:Property rdf:about="http://bscout.example.org/bscout-pl#readPermission">
 <rdfs:domain
 rdf:resource="http://bscout.example.org/bscout-troop#Member"/>
 <rdfs:range
 rdf:resource="http://bscout.example.org/bscout-troop#Photo"/>
 </rdf:Property>
</rdf:RDF>

Simple ACL-based policy language in RDF-S

@keywords is, of, a.
@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix bscout: <http://bscout.example.org/bscout-pl#> .
@prefix rein: <http://dig.csail.mit.edu/2005/09/rein/network#> .
@prefix: <http://bscout.example.org/policy1#> .

associating acl-files containing keys with photos
<http://bscout.example.org/images/group.jpg> acl <key-list1.txt>.
<http://bscout.example.org/images/award.jpg> acl <key-list2.txt>.

Only keys in the acl files associated with photos
can delegate access to those photos
permission is defined within bscout-pl ontology
@forAll PHOTO, FILE, OWNER.
{ PHOTO acl FILE.
 FILE.log:semantics log:includes { OWNER a acc:Key }.
} => { OWNER rein:delegator { ?X bscout:readPermission PHOTO } }.

Portion of policy in N3 rules

""" @prefix bscout: <http://bscout.example.org/bscout-pl#> .
 @prefix acc: <http://www.w3.org/2000/10/swap/test/crypto/acc.n3#> .
 @prefix rein: <http://dig.csail.mit.edu/2005/09/rein/network#> .
 @prefix : <http://bscout.example.org/bscout-pl#> .

 \"""\""" a acc:Key;
 bscout:readPermission <http://bscout.example.org/images/award.jpg>;
 rein:delegator {
 [bscout:readPermission <http://bscout.example.org/images/award.jpg>].
 };
 acc:authorityName "Alice" .
""" acc:endorsement [
 acc:key """.....""";
 acc:signature """ """] .

Alice's delegation and redelegation to Bob's key

 """ <rdf:RDF xmlns="http://bscout-troop.example.org/bob-req#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:acc="http://www.w3.org/2000/10/swap/test/crypto/acc.n3#"
 xmlns:rein="http://dig.csail.mit.edu/2005/09/rein/network#">

<rein:Request rdf:about="#req">
 <rein:access
 rdf:resource="http://bscout.example.org/bscout-pl#readPermission"/>
 <rein:resource rdf:resource="http://bscout.example.org/images/group.jpg"/>
</rein:Request>
</rdf:RDF>
""" acc:endorsement [
 acc:Key """ """"
 acc:signature """ """"].

Portion of Bob's signed request in RDF-S

Figure 3. Key-based Delegation. This figure includes an RDF-S policy language for describing permissions about
photos, a portion of the policy that describes delegation to a set of keys, the signed delegation from Alice to Bob’s key,
and a portion of Bob’s signed request. The policy uses the delegator property to assign delegation permissions to a
set of keys (including Alice’s). Alice’s delegation gives Bob’s key the permission to access the picture as well as the
permission to delegate this permission. However, as Alice does not have the permission to redelegate, any delegation
from Bob will be invalid.

a set of keys to be responsible for defining access to
different pictures. The owner of one of these delegated
keys, Alice, makes a delegation to a key belonging to
Bob. She permits Bob’s key to access a picturehttp:
//bscout.example.org/images/award.jpg
and to further delegate this permission. However, as
Alice does not have the permission to redelegate, any
delegation by Bob will be invalid. Bob wants to access the
picture. He creates aRequestwith resourceset tohttp:
//bscout.example.org/images/award.jpg
and accessset to http://bscout.example.org/
bscout-pl#ReadPermission . He signs this request
with his key and sends the signed request and the delegation
from Alice to the Guard of the photos. The Guards sends
this information to the Rein engine. The Rein engine
reasons over the policy of the photo, the delegation made
to Alice in the policy, the delegation made from Alice and
Bob, and Bob’s signed request. The Rein engine decides
that the Request is valid. Figure 3 includes a portion of this
example. The figure shows the policy language in RDF-S
that is used for describing permissions about photos, a

portion of the policy that describes delegation to a set of
keys, part of Bob’s request, and the signed delegation from
Alice to Bob’s key.

4 Delegation of Trust

Along with delegating authority, delegation of trust is
important on the Web in order to distribute responsibility
for authenticating credentials and to decide what informa-
tion on the Web is trustworthy while making a policy deci-
sion. Keys or URIs are only trusted with respect to a cer-
tain credential or attribute of the requester or with respect
to particular information. Trust is not transitive i.e. if a URI
is trusted with information about members of a troop and
the URI trusts a key, signed statements from the key are not
automatically trusted.

In order to delegate trust to a key, Rein uses cwm builtins
log:semanticsand log:includes, and the ReinsupportedBy
property. In case a key is delegated the responsibility of
vouching for credentials, the requester is responsible for ob-
taining the correct signed credential and attaching it to the

<rdf:RDF xmlns="http://bscout.example.org/bscout-pl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <rdfs:Class rdf:about="#PermittedToView"/>

 <rdf:Property rdf:resource="#photo">
 <rdfs:range
 rdf:resource="http://dig.csail.mit.edu/rein/examples/troop.rdf#Photo"/>
 </rdf:Property>

 <rdf:Property rdf:resource="#user">
 <rdfs:range
 rdf:resource="http://dig.csail.mit.edu/rein/examples/troop.rdf#Member"/>
 </rdf:Property>

</rdf:RDF>
 Policy language

@keywords is, of, a.
@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix bscout: <http://bscout.example.org/bscout-pl#> .
@prefix rein: <http://dig.csail.mit.edu/2005/09/rein/network#> .
@prefix : <http://bscout.example.org/policy1#> .

associating acl-files containing keys with photos
<http://bscout.example.org/images/group.jpg> acl <key-list1.txt>.
<http://bscout.example.org/images/award.jpg> acl <key-list2.txt>.

giving a set of keys the permission to delegate
@forAll PHOTO, FILE, ACL.
{ PHOTO acl FILE.
 FILE.log:semantics log:includes { ACL a acc:Key }.
} => { ACL rein:delegator { [] a bscout:PermittedToView; photo PHOTO. }
 ACL rein:redelegator { [] a bscout:PermittedToView; photo PHOTO. } }.

Partial Policy in N3 rules

 """@prefix : <http://bscout.example.org/bscout-pl#> .
 @prefix acc: <http://www.w3.org/2000/10/swap/test/crypto/acc.n3#> .
 @prefix session: <http://redfoot.net/2005/session#>.
 @prefix t: <http://dig.csail.mit.edu/2005/09/rein/examples/troop#> .
 @prefix rein: <http://dig.csail.mit.edu/2005/09/rein/network#> .
 @prefix bscout: <http://bscout.example.org/bscout-pl#> .

@forAll F, WHO, REQ, WHO, TXT, PG.

{ REQ a rein:Request.
 REQ rein:resource <http://bscout.example.org/images/award.jpg>.
 REQ rein:access bscout:PermittedToView.
 REQ rein:requester WHO.
 WHO session:secret ?S.
 ?S crypto:md5 TXT.

 <http://dig.csail.mit.edu/2005/09/rein/examples/troop42.rdf> log:semantics F.
 F log:includes
 { [] t:member [is foaf:maker of PG] }.
 PG. log:semantics log:includes
 { PG foaf:maker [session:hexdigest TXT] }.

} => { [] a bscout:PermittedToView;
 bscout:photo <http://bscout.example.org/images/award.jpg>; user WHO.
 X rein:delegator { [] a bscout:PermittedToView;
 bscout:photo <http://bscout.example.org/images/award.jpg>; user ?X. };
""" acc:endorsement [
 acc:key """....""";
 acc:signature """ ..."""] .

Alice's signed delegation rule that uses trusted information from a URI

<rdf:RDF xmlns="http://bscout.example.org/bob-req#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:session="http://redfoot.net/2005/session#"
 xmlns:rein="http://dig.csail.mit.edu/2005/09/rein/network#">

<rein:Request rdf:about="#req">
 <rein:requester rdf:parseType="Resource">
 <session:secret>bob123passwd</session:secret>
 </rein:requester>
 <rein:access rdf:resource="http://bscout.example.org/bscout-pl#PermittedToView"/>
 <rein:resource rdf:resource="http://bscout.example.org/images/award.jpg"/>
</rein:Request>
</rdf:RDF>

Bob's request in RDF-S

Figure 4. Key-based Delegation Rule. This figure includes an RDF-S for describing permissions about photos, a
portion of the policy that describes delegation to a set of keys (including Alice’s), the signed rule-based delegation from
Alice, and Bob’s request. Alice’s delegation gives members of the troop the permission to access the picture. Alice’s
delegation also uses information from a URI in order to authenticate Bob’s credentials.

Request. The Rein framework reads the attached signed cre-
dentials, verifies the signatures, extracts only the credential
portions, and reasons over them to decide whether the re-
quest is valid. If a URI is trusted with certain information,
the Rein framework useslog:semanticsto read in its con-
tents andlog:includesto extract the trusted part of the page.

Delegation Example 2 : Key-based delegation rule with
delegation of trust to a URI We extend Example 1 to
include delegation rules. The policy administrator gives Al-
ice the permission to delegate the permission to view the
picture as well as the permission to redelegate the permis-
sion to delegate. Inside of specifically giving Bob’s key the
permission to access the picture, Alice defines a rule giv-
ing this permission to a set of entities based on certain at-
tributes. In this case the attributes need to be validated and
Alice’s delegation of trust allows a URI to be trusted with
this information. Alice decides to validate the requester’s
password using a URI that defines the members of the scout

troop. The URI is the troop page and it lists current mem-
bers and their foaf pages. Alice assumes that the requester is
a member of the troop if the secret password provided with
theRequestcan be verified against the foaf:hexdigest of the
foaf page of one of the members of the troop. Bob’s request
does not need to be signed but it must include his password.
Figure 4 illustrates this example. We use a different policy
language to demonstrate the range of policy languages that
Rein can support.

Delegation Example 3 : URI based delegation with dele-
gation of trust to a key We restate our earlier example us-
ing a delegation of authority to a URIhttp://bscout.
example.org/alice-policy.n3 and the delegation
of trust to a key. We use the same policy language as exam-
ple 2 (Please refer to figure 4). The policy administrator
gives a certain URI the permission to delegate access to a
set of photos taken at the jamboree. This URI has a rule
that gives any member of the troop the permission to access

@keywords is, of, a.

@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix bscout: <http://bscout.example.org/bscout-pl#> .
@prefix rein: <http://dig.csail.mit.edu/2005/09/rein/network#> .
@prefix : <http://bscout.example.org/policy1#> .

This URI can delegate permission to
pictures taken at Jamborees
@forAll F, PHOTO, LOC.
{ <http://dig.csail.mit.edu/2005/09/rein/examples/troop42.rdf> log:semantics F.
 F log:includes

{ PHOTO a t:Photo; t:location LOC.
 LOC a t:Jamboree }.

} => { <http://scout.example.org/delegation.n3> rein:delegator { [] a bscout:
PermittedToView; bscout:photo PHOTO }.

Partial Policy in N3 rules

@keywords is, a, of.

@prefix bscout: <http://bscout.example.org/bscout-pl#> .
@prefix t: <http://dig.csail.mit.edu/2005/09/rein/examples/troop#> .
@prefix rein: <http://dig.csail.mit.edu/2005/09/rein/network#> .
@prefix : <http://bscout.example.org/alice-policy#> .

@forAll F, WHO, REQ, KEY. CAROLKEY.
{ REQUEST acc:supportedBy KEY.
 REQUEST log:includes {
 REQ a rein:Request.
 REQ rein:resource <http://bscout.example.org/images/award.jpg>.
 REQ rein:access bscout:PermittedToView.
 }
 <carols-key.txt> log:includes {CAROLKEY a acc:Key }.
 CRED acc:supportedBy CAROLKEY.
 CRED log:includes { KEY a t:member }.
} => { [] a bscout:PermittedToView;
 bscout:photo <http://bscout.example.org/images/award.jpg>; bscout:user Key. }

<http://scout.example.org/delegation.n3>

"""<rdf:RDF xmlns="http://bscout.example.org/bob-req#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:rein="http://dig.csail.mit.edu/2005/09/rein/network#">

<rein:Request rdf:about="#req">
 <rein:access
 rdf:resource="http://bscout.example.org/bscout-pl#PermittedToView"/>
 <rein:resource
 rdf:resource="http://bscout.example.org/images/award.jpg"/>
</rein:Request>
</rdf:RDF>
""" acc:endorsement [
 acc:Key """ """
 acc:signature """ """
].

Portion of Bob's signed request

"""
@keywords is, a, of.

@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix acc: <http://www.w3.org/2000/10/swap/test/crypto/acc.n3#> .
@prefix t: <http://dig.csail.mit.edu/2005/09/rein/examples/troop#> .
@prefix rein: <http://dig.csail.mit.edu/2005/09/rein/network#> .
@prefix : <http://example.org/credential#> .

 \""".... \""" a acc:Key;
 a t:member;
 acc:authorityName "Carol" .
""" acc:endorsement [
 acc:key """...""";
 acc:signature """ ... """] .

Credential signed by Carol's key

Figure 5. URI-based Delegation. This is an example of a delegation to a URI and a delegation of trust to a key. If
a URI is made adelegatorby a policy, the Rein engine reads in the contents of URI and uses any delegations in it. The
URI delegates trust to a key, namely Carol’s key. Carol creates a signed statement that Bob’s key is a member of the
troop. Bob sends his signed request along with Carol’s signed statement to the Rein engine and his request is allowed.

a certain photo as long as Carol believes that they are mem-
bers. This is a delegation of trust to Carol’s key. It implies
that the request must be signed with a key and a creden-
tial signed with Carol’s key stating that the owner of key
used to sign the request is a member of the troop must be
attached to the request. Figure 5 shows the delegation to the
URI by the policy, the rule defined on the URI, the signed
request from Bob, and the credential signed by Carol’s key.
In this example, Carol explicitly states that Bob’s key is a
member. However, it is also possible to have rules in signed
credentials whose inferences are assumed to be signed by
the authority’s key.

5 Delegation Use Case

In order to explain the extremely general policy and del-
egation framework of Rein, we describe a use case that we
believe will be a common scenario on the Web. We believe

that delegation and authentication rules will be accessible to
the users but that it will be the responsibility of the users to
put them together in order to prove that they fulfill the pol-
icy associated with a resource thereby giving them access
to the resource.

An example of this kind is the process of obtaining a
discount at a car rental agency. Car rental agencies usu-
ally have discounts for various things such as AAA mem-
bership, corporate negotiations, coupons, and promotions.
When a client asks for a discount, the car rental agency can-
not (and usually does not) ask for all possible credentials
such as AAA memberships, proof of affiliation with com-
panies that they have negotiated a discount with, coupons
in newspapers, etc. In this case, certain parts of the policy
are known through the client’s web of relationships. The
client’s company will inform her/him of possible discounts
with car rental companies, AAA will inform her/him about
their discounts, particular newspapers will advertise the car

rental agency’s coupons. The client’s company will have
its own way of authenticating the client and his credentials
(e.g. through a digital ID card) and AAA will have its own
way (e.g. by possessing a AAA card). The client will ob-
tain a proof of why she/he should get a discount by putting
together different rules and policies from different domains
(company, AAA, the car rental agency) and provide it to the
car rental agency. We believe that this will be the case on
the Web - some portions of policies will be known and some
will unknown or private. A client will have to collect infor-
mation from trusted sources to develop a proof using Rein
for why she/he should have access to a certain resource or
get a certain discount. In order to support this scenario, a
general policy framework such as Rein is required that is
able to work with different kinds of policy languages and
delegation mechanisms.

6 Related Work

Proof Carrying Authorization (PCA) proposes that the
underlying framework of a distributed authorization system
be a higher-order logic and that different domains in this
system use different application-specific logics that are sub-
sets of the higher-order logic [6]. They also propose that
clients develop proofs of access using these application spe-
cific logics and send them to servers to validate. Rein draws
inspiration from PCA but modifies it to leverage the dis-
tributed nature and linkability of the Web and the power of
Semantic Web technologies.

Extensible Access Control Markup Language (XACML)
[21] is a policy language in XML for expressing policies.
It can be used to describe policies and rules in terms of
boolean combinations of attribute-value pairs based on the
subject, resource, and environment. It also provides conflict
resolution through its combining algorithms. The Platform
for Privacy Preferences (P3P) is a standard developed by
the World Wide Web Consortium (W3C) that enables web-
sites to describe their privacy policies and allows browsers
to reason over these policies to decide whether they match
the user’s preferences [13]. KAoS is a policy language de-
veloped in OWL [25]. It is similar to Rei [17] and can
be used to develop positive and negative authorization and
obligation policies over actions. KAoS policies are OWL
descriptions of actions that are permitted (or not) or ob-
ligated (or not). This limits the expressive power, so that
there are policies that can described in N3 rules that KAoS
cannot. Using OWL, however, allows the classification of
policy statements, enabling conflicts to be discovered from
the rules themselves.

We consider XACML, P3P, KAoS, and Rei to be spe-
cific policy languages that can be used within Rein policy
networks to describe policies. If their semantics can be rep-
resented in RDF-S, OWL, or N3 rules, it will be possible to

integrate them seamlessly into the current Rein implemen-
tation.

RuleML [3] is a proposed standard for a rule language,
based on declarative logic programs. SWRL is a closely re-
lated rule language standard for describing Horn like rules
in first order logic, intended to be combined with OWL-DL
[16]. SWRL’s syntax for Horn rules is essentially a sub-
set of RuleML’s. Unlike SWRL, which is based on classi-
cal logic, full RuleML can represent non-monotonicity and
conflict handling because it is based on logic programs that
have negation as failure and, in the courteous extension, pri-
orities. Rule Interchange Format (RIF) is a W3C activity
aimed at developed a standard rule language for the Web
[27]. As part of our future work, we will look into represent-
ing policies in RuleML, SWRL, and RIF and using these
rule languages to provide functionality similar to Rein.

PeerTrust provides a mechanism for gaining access to
secure information/services on the web by using semantic
annotations, policies and automated trust negotiation [15].
It defines digital credentials as online equivalents of paper
credentials that make trust establishment possible. These
credentials are signed assertions by the issuer about the
properties of one or more entities. In PeerTrust, trust is
established incrementally through an iterative process that
involves gradually disclosing credentials and requests for
credentials. PeerTrust’s policy language for expressing ac-
cess control policies is based on definite Horn clauses. An
entity has its own access control rules for the resources it
controls and may use rules from other entities in its proofs.
Rules may also be signed for authenticity but the verifi-
cation of signature is not handled by the PeerTrust frame-
work. PeerTrust is a very interesting approach that expects
both parties to exchange credentials in order to trust each
other and assumes that policies are private. But PeerTrust
introduces its own policy language whereas Rein is a policy
framework that tries to support different policy languages.
Also PeerTrust trusts all information within verified signed
statements but in Rein selected subgraphs within signed
statements can be trusted. Rein is a basically representation
framework for policies and does not include protocol for
policy exchange or enforcement like PeerTrust. We would,
however, like to support an iterative disclosure approach
such as PeerTrust within the Rein framework in the future.

7 Summary and Future Work

Rein is an open web-based policy and delegation frame-
work, which supports heterogeneous domains that use dif-
ferent policy languages and domain knowledge. Rein pro-
vides ontologies for describing policy networks, delega-
tions, keys, and signatures and provides mechanisms for
reasoning over them, both of which can be used to develop
domain and policy language specific frameworks for pro-

viding access control to Web resources.
Though only valid delegators and redelegators can make

valid delegations, there is no way of controlling to whom a
delegator can delegate to. This is something we would like
to address.

Another problem is that Rein does not take possible at-
tacks such as denial of service into consideration and im-
ports all required rules.

Though cwm provides a way to trust certain pieces of
information for certain purposes, it does not provide sand-
boxing for reasoning over untrusted rules. We believe some
kind of mechanism will be required so that the computing
resources available to untrusted rules are restricted.

The current querying mechanism usingRequestsis very
and only checks whether a requester has a certain access
type on a resource. We would like to extend that to allow
different kinds of queries such as who is permitted to
perform a printing kind of service, what kind of resources
can John access etc.

Acknowledgements

This work is sponsored by the National Science Foundation
Awards 0427275 and 0524481.

References

[1] Flora-2: An Object-Oriented Knowledge Base Language.
http://flora.sourceforge.net.

[2] The Official Python Programming Language Website.
http://www.python.org/.

[3] The Rule Markup Initiative. http://www.ruleml.org/.
[4] Jena : A semantic web framework for java.

http://jena.sourceforge.net/, 2005.
[5] Web Services Policy Framework (WS-Policy). http://www-

106.ibm.com/developerworks/library/specification/ws-
polfram/, March 2006.

[6] A. W. Appel and E. W. Felten. Proof-Carrying Authentica-
tion. In 6th ACM Conference on Computer and Communi-
cations Security, 1999.

[7] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
Web Ontology Language Reference, W3C Recommenda-
tion. http://www.w3.org/TR/owl-ref/, February 2004.

[8] T. Berners-Lee. Notation 3 (N3) A readable RDF Syntax.
http://www.w3.org/DesignIssues/Notation3.html, 1998.

[9] T. Berners-Lee. Cwm : General-purpose
Data Processor for the Semantic Web.
http://www.w3.org/2000/10/swap/doc/cwm, 2000.

[10] T. Berners-Lee, D. Connolly, E. Prud’homeaux, and
Y. Scharf. Experience with N3 rules. InW3C Workshop
on Rule Languages for Interoperability, April 2005.

[11] D. Brickley and R.V.Guha. RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema, W3C Recommendation.
http://www.w3.org/TR/rdf-schema/, February 2002.

[12] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C
Recommendation. http://www.w3.org/TR/xslt, November
1999.

[13] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-
Marshall, and J. Reagle. The Platform for Privacy Prefer-
ences 1.0 (P3P1.0) Specification. W3C Recommendation.
http://www.w3.org/TR/P3P/, April 2002.

[14] D. Fallside and P. Walmsley. XML Schema Part
0: Primer Second Edition. W3C Recommendation.
http://www.w3.org/TR/xmlschema-0/, October 2004.

[15] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and
M. Winslett. No Registration Needed: How to Use Declara-
tive Policies and Negotiation to Access Sensitive Resources
on the Semantic Web. In1st European Semantic Web Sym-
posium, May. 2004, Heraklion, Greece, 2004.

[16] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: Semantic Web
Rule Language Combining OWL and RuleML.
http://www.daml.org/rules/proposal/, 2004.

[17] L. Kagal. A Policy-Based Approach to Governing Au-
tonomous Behavior in Distributed Environments. Disser-
tation, September 2004.

[18] L. Kagal, T. Finin, and A. Joshi. A Policy Based Approach
to Security for the Semantic Web. InSecond Int. Semantic
Web Conference (ISWC2003), Sanibel Island FL, October
2003.

[19] V. Kolovski, Y. Katz, J. Hendler, D. Weitzner, and
T. Berners-Lee. Towards a Policy-Aware Web. InSemantic
Web and Policy Workshop at the 4th International Semantic
Web Conference, 2005.

[20] Liberty Alliance: Digital Identify Defined.
http://www.projectliberty.org/, 2006.

[21] H. Lockhart, B. Parducci, and A. Anderson. OASIS
eXtensible Access Control Markup Language (XACML).
http://www.oasis-open.org/committees/tc-home.php, Febru-
ary 2005.

[22] P. Mishra, H. Lockhart, S. Anderson, J. Hodges,
and E. Maler. OASIS Security Services (Security
Assertions Markup Language) . http://www.oasis-
open.org/committees/tchome.php?wgabbrev=security,
2006.

[23] B. Parsia and E. Sirin. Pellet : An OWL DL Reasoner. InIn-
ternational Semantic Web Conference, Poster Session, 2004.

[24] J. D. Roo. Euler proof mechanism.
http://www.agfa.com/w3c/euler/, 2005.

[25] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate,
J. Dalton, and S. Aitken. Policy and Contract Manage-
ment for Semantic Web Services. InAAAI Spring Sym-
posium, First International Semantic Web Services Sympo-
sium, 2004.

[26] W3C. RDF/XML Syntax Specification (Revised).
http://www.w3.org/TR/rdf-syntax-grammar/, 2004.

[27] W3C RIF Working Group. Rule interchange format.
http://www.w3.org/2005/rules/Overview.html, 2006.

[28] G. Yang and M. Kifer. Implementing an Efficient DOOD
System Using a Tabling Logic Engine. InIntl. Conference
on Computational Logic, July 2000.

