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Abstract. Statistical shape and texture appearance models are power-
ful image representations, but previously had been restricted to 2D or 3D
shapes with smooth surfaces and lambertian reflectance. In this paper we
present a novel 3D appearance model using image-based rendering tech-
niques, which can represent complex lighting conditions, structures, and
surfaces. We construct a light field manifold capturing the multi-view
appearance of an object class and extend the direct search algorithm of
Cootes and Taylor to match new light fields or 2D images of an object
to a point on this manifold. When matching to a 2D image the recon-
structed light field can be used to render unseen views of the object. Our
technique differs from previous view-based active appearance models in
that model coefficients between views are explicitly linked, and that we
do not model any pose variation within the shape model at a single view.
It overcomes the limitations of polygonal based appearance models and
uses light fields that are acquired in real-time.

1 Introduction

Appearance models are a natural and powerful way of describing objects of the
same class. Multidimensional morphable models [13], active appearance models
[6], and their extensions have been applied to model a wide range of object
appearance. The majority of these approaches represent objects in 2D and model
view change by morphing between the different views of an object. Modelling a
wide range of viewpoints in a single 2D appearance model is possible, but requires
non-linear search [19]. Additionally, object self-occlusion introduces holes and
folds in the synthesized target view which are difficult to overcome.

Large pose variation is easily modelled using 3D; a polygonal 3D appearance
model was proposed by Blanz and Vetter [3]. With their approach the view is
an external parameter of the model and does not need to be modelled as shape
variation. However, this technique is based on a textured polygonal mesh which
has difficultly representing fine structure, complex lighting conditions and non-
lambertian surfaces. Due to the accuracy of the 3D surfaces needed with their
approach, the face scans of each prototype subject cannot be captured in real-
time and fine structure such as hair cannot be acquired.

In this paper we propose a 3D active appearance model using image-based
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Fig. 1. (a) A light field appearance manifold Lmodel. Each point on the manifold is a
4D light field representing the 3D shape and surface reflectance of an object. The light
field of an object is constructed by computing its projection onto the shape-texture
appearance manifold. A 2D input image is matched to a point on this manifold by
interpolating the shape and texture of neighboring prototype light fields. (b) A light
field can capture non-lambertian effects (e.g. glasses).

rendering [14, 11] rather than rendering with a polygonal mesh. We use a light
field representation, which does not require any depth information to render
novel views of the scene. With light field rendering, each model prototype consists
of a set of sample views of the plenoptic function [1]. Shape is defined for each
prototype and a combined texture-shape PCA space computed. The resulting
appearance manifold (see Figure 1(a)) can be matched to a light field or 2D image
of a novel object by searching over the combined texture-shape parameters on the
manifold. We extend the direct search matching algorithm of [6] to light fields.
Specifically, we construct a Jacobian matrix consisting of intensity gradient light
fields. A 2D image is matched by rendering the Jacobian at the estimated object
pose. Our approach can easily model complex scenes, lighting effects, and can
be captured in real-time using camera arrays [23, 22].

2 Previous Work
Statistical models based on linear manifolds of shape and/or texture variation
have been widely applied to the modelling, tracking, and recognition of objects [2,
8, 13, 17]. In these methods small amounts of pose change are typically modeled
implicitly as part of shape variation on the linear manifold. For representing
objects with large amounts of rotation, nonlinear models have been proposed, but
are complex to optimize [19]. An alternative approach to capturing pose variation
is to use an explicit multi-view representation which builds a PCA model at
several viewpoints. This approach has been used for pure intensity models [16]
as well as shape and texture models [7]. A model of inter-view variation can be



Light Field Appearance Manifolds 3

(a) (b)

Fig. 2. (a) Light field camera array [23]. (b) A 6x8 light field of the average head. The
light field prototypes were acquired using the 6 top rows of the camera array due to
field of view constraints.

recovered using the approach in [7], and missing views could be reconstructed.
However, in this approach pose change is encoded as shape variation, in contrast
to 3D approaches where pose is an external parameter. Additionally, views were
relatively sparse, and individual features were not matched across views.

Shape models with 3D features have the advantage that viewpoint change can
be explicitly optimized while matching or rendering the model. Blanz and Vetter
[3] showed how a morphable model could be created from 3D range scans of hu-
man heads. This approach represented objects as simply textured 3D shapes, and
relied on high-resolution range scanners to construct a model; non-lambertian
and dynamic effects are difficult to capture using this framework. With some
manual intervention, 3D models can be learned directly from monocular video
[9, 18]; an automatic method for computing a 3D morphable model from video
was shown in [4]. These methods all used textured polygonal mesh models for
representing and rendering shape.

Multi-view 2D [7] and textured polygonal 3D [3, 9, 18] appearance mod-
els cannot model objets with complex surface reflectance. Image-based models
have become popular in computer graphics recently and can capture these phe-
nomenon; with an image-based model, 3D object appearance is captured in a set
of sampled views or ray bundles. Light field [14] and lumigraph [11] rendering
techniques create new images by resampling the set of stored rays that repre-
sent an object. Most recently the unstructured lumigraph [5] was proposed, and
generalized the light field/lumigraph representation to handle arbitrary camera
placement and geometric proxies.

Recently, Gross et. al. [12] have proposed eigen light fields, a PCA-based
appearance model built using light fields. They extend the approach of Turk and
Pentland [21] to light fields and define a robust pose-invariant face recognition
algorithm using the resulting model. A method to morph two lightfields was
presented in [24]; this algorithm extended the classic Beier and Neely algorithm
to work directly on the sampled lightfield representation and to account for
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self-occlusion across views. Features were manually defined, and only a morph
between two (synthetically rendered) light fields was shown in their work.

In this paper we develop the concept of a light field active appearance model,
in which 3 or more light fields are ”vectorized” (in the sense of [2]) and placed
in correspondence. We construct a light field morphable model of facial appear-
ance from real images, and show how that model can be automatically matched
to single static intensity images with non-lambertian effects (e.g. glasses). Our
model differs from the multi-view appearance model of [7] in that we build
a 4D representation of appearance with light fields. With our method, model
coefficients between views are explicitly linked and we do not model any pose
variation within the shape model at a single view. We are therefore able to model
self-occlusion and complex lighting effects better than a multi-view AAM. We
support this claim in our experimental results section.

3 Light Field Shape and Texture
In this section we provide a formal description of the shape and texture of a set
of light field prototypes that define the appearance manifold of an object class.
Let L(u, v, s, t) be a light field consisting of a set of sample views of the scene,
parameterized by view indices (u, v) and scene radiance indices (s, t), and let
L1, ..., Ln be a set of prototype light fields with shape X1, ..., Xn.

In general, for any image-based rendering technique, Xi is a set of 3D feature
points which outline the shape of the imaged object. With a light field, no 3D
shape information is needed to render a novel view of the object. It is therefore
sufficient to represent the shape of each light field as the set of 2D feature points,
which are the projections of the 3D features into each view. More formally, we
define the shape, X, of a light field L as

X = {x(u,v)

∣∣(u, v) ∈ L} (1)

where x(u,v) is the shape in a view (u, v) of L. If the camera array is strongly
calibrated its sufficient to find correspondences in two views and re-project to the
remaining views. With only weak calibration and the assumption of a densely
sampled array, feature points may be specified in select views of the light field
and tracked into all other views.

Once shape is defined for each prototype light field, Procrustes analysis [10]
is performed to place the shape of each object into a common coordinate frame.
Effectively, Procrustes analysis applies a rigid body transformation to the shape
of each light field such that each object is aligned to the same 3D pose. From
the set of normalized shapes Xi of each prototype, the reference shape Xref is
computed as

Xref = MαX̄ (2)

where X̄ is the mean shape of the aligned shapes and Mα is a matrix which scales
and translates the mean shape such that it is expressed in pixel coordinates (i.e.
with respect to the height and width of each discrete view of a light field). The
matrix Mα constrains the shape in each view of the reference light field to be
within the height and width of the view.
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As in [2], the texture of a prototype light field is its ”shape free” equivalent.
It is found by warping each light field to the reference shape Xref . As will be
shown in the next section, this allows for the definition of a texture vector space
that is decoupled from shape variation. Specifically, the texture of a light field
L is defined as

G(u, v, s, t) = L(D(u, v, s, t)) = L ◦D(u, v, s, t) (3)

where D is the mapping,
D : R4 −→ R4 (4)

that specifies for each ray in L a corresponding ray in the reference light field
Lref and is computed using the shape of L and Xref . Equation (3) may be
thought of as a light field warping operation, a concept introduced by Zhang et.
al. [24]. As in [6], the texture of each prototype, Gi, is normalized to be under
the same global illumination.

4 Light Field Appearance Manifolds

As illustrated in the previous section, once a reference is defined, each prototype
light field may be described in terms of its shape and texture. The linear com-
bination of texture and shape form an appearance manifold: given a set of light
fields of the same object class, the linear combination of their texture warped
by a linear combination of their shape describes a new object whose shape and
texture are spanned by that of the prototype light fields. Compact and efficient
linear models of shape and texture variation may be obtained using PCA, as
shown in [6]. Given the set of prototype light fields L1, ..., Ln, each having shape
Xi and texture Gi, PCA is applied independently to the normalized shape and
texture vectors, Xi and Gi to give

X = X̄ + Psbs

G = Ḡ + Pgbg
(5)

Using Equation (5), the shape and texture of each model light field is described
by its corresponding shape and texture parameters bs and bg. As there may
exist a correlation between texture and shape, a more compact model of shape
and texture variation is obtained by performing a PCA on the concatenated
shape and texture parameter vectors of each prototype light field. This results
in a combined texture-shape PCA space:

X = X̄ + Qsc
G = Ḡ + Qgc

(6)

where as in [6],
Qs = PsW−1

s Pcs

Qg = PgPcg
(7)

and Ws is a matrix which comensurates the variation in shape and texture
when performing the combined texture-shape PCA. In our experiments we use
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Ws = rI where r =
√

σ2
s/σ2

g . Here σ2
s and σ2

g represent the total variance of the
normalized shape and texture.

Equation (6) maps each model light field to a vector c in the combined
texture-shape PCA space. To generalize the model to allow for arbitrary 3D
pose and global illumination, Equation (6) may be re-defined as follows,

Xm = St(X̄ + Qsc)
Gm = Tu(Ḡ + Qgc)

(8)

where St is a function that applies a rigid body transformation to the model
shape according to a pose parameter vector t, Tu is a function which scales
and shifts the model texture using an illumination parameter vector u, and the
parameter vectors t and u are as defined in [6]. Note, the reference light field has
parameters c = 0, t = α and u = 0, where α is a pose vector that is equivalent
to the matrix Mα in Equation (2).

The light field appearance manifold is defined as,

Lmodel = Gm ◦Dm (9)

where Lmodel is a model light field that maps to a point on the appearance
manifold and Dm is a 4D deformation field which maps each ray in the reference
light field to a ray in the model light field and is computed using the shape
of the model light field, Xm, and the shape of the reference light field, Xref .
Note, Equation (9) suggests that an optical flow technique may also be used to
represent shape as in [13] to build a light field active appearance model. We have
implemented both approaches, and below report results using the feature-based
shape representation of Section 3.

5 Model Matching

In this section, we show how to generalize the matching technique of [6] to light
fields. We first illustrate how to match a light field and then discuss the more
interesting task of fitting a model light field to a single 2D image.

Matching to a Light Field. A novel light field, Ls, is matched to a point c̃ on
the texture-shape appearance manifold by minimizing the following non-linear
objective function:

E(p) = |Gm −Gs|2 (10)

where pT = (cT |tT |uT ) are the parameters of the model, Gm is the model
texture and Gs is the normalized texture of Ls assuming it has shape Xm. Gs

is computed by warping Ls from Xm to the reference shape Xref . The model
shape and texture are computed at p using Equation (8).

The direct search gradient descent algorithm of [6] is easily extendible to a
light field active appearance model. In [6] a linear relationship for the change in
image intensity with respect to the change in model parameters was derived via
a first order Taylor expansion of the residual function r(p) = Gm − Gs = δg.
In particular, given a point p on the manifold, the parameter gradient that
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minimizes the objective function (10) was computed as, δp = −Rδg, where the
matrix R is the pseudo-inverse of the Jacobian, J = ∂r

∂p , derived from the Taylor
expansion of the residual function.

In a 2D active appearance model the columns of the Jacobian are intensity
gradient images which model how image intensity changes with respect to each
model parameter and vice versa. Analogously, the Jacobian of a light field active
appearance model represents the change in light field intensity with respect to
the change in model parameters, each of columns representing light field intensity
gradients that describe the intensity change across all the views of a light field.
Consequently, the algorithm for minimizing Equation (10) follows directly from
[6]. As in a 2D AAM, the Jacobian is learned via numerical differentiation.

Matching to an Image. A more interesting extension of the AAM framework
arises when performing direct search to match a light field AAM to a single
2D image; with a light field the Jacobian matrix is rendered based on pose. A
novel image Is is matched to a point on the light field appearance manifold by
minimizing the objective,

E(p, ε) = |F (Gm, ε)− gs|2 (11)

where ε is the camera pose of Is, F is a function that renders the pose ε of the
model texture [14, 5] and gs is the texture of Is assuming it has shape xm. gs is
computed by warping Is from xm to the reference shape xref . Both 2D shapes
are obtained by rendering Xm and Xref into view ε using,

x = Fx(X, ε) (12)

where Fx is a variant of the light field rendering function F : it renders shape in
view ε via a linear interpolation of of the 2D shape features defined in each view
of X.

Overall, the objective function in Equation (11) compares the novel 2D image
to the corresponding view in Lmodel. Minimizing this objective function fits a
model light field, Lmodel, that best approximates I in view ε. An efficient way to
optimize Equation (11) is by defining a two step iteration process, in which the
pose ε is optimized independently of the model parameters p. The pose ε may
be computed via an exhaustive search of the average light field, Lref , in which
cross-correlation is used to initialize ε to a nearby discrete view of the model light
field. The pose parameter t is used to further refine this pose estimate during
matching.

Once ε is approximated, direct search may be employed to match I to a point
on the texture-shape appearance manifold. As previously discussed, each column
of the Jacobian, J of a light field active appearance model is a light field intensity
gradient. To approximate the intensity gradient in view ε of the target image
I, light field rendering is applied to each column of J. This yields a ”rendered”
Jacobian matrix, Jε, specified as,

Ji
ε = F (Ji, ε), i = 1, ...,m (13)
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where Ji represents column i of the matrix J and m is the number of columns in
J. Note similar to the model and image textures of Equation (10) the columns
of Jε have shape xref defined above.

Using Jε, optimizing Equation (11) is analogous to matching I to a 2D AAM.
Thus, as in Equation (10), the direct search gradient descent algorithm of [6] is
used to minimize Equation (11), with one exception. In [6] the normalized mean
of the texture vectors is used to project gs into the same global illumination of
the model texture. With a light field AAM the normalized mean texture is a
light field, and thus cannot be directly applied to normalize gs in Equation (11).
Instead, we normalize both gm = F (Gm, ε) and gs to have zero mean and unit
variance. We found this normalization scheme to work well in our experiments.

6 Experiments

We built a light field morphable model of the human head by capturing light
fields of 50 subjects using a real-time light field camera array [23]. We collected
48 views (6 x 8) of each individual and manually segmented the head from each
light field. Our head database consists of 37 males and 13 females of various
races. Of these people, 7 are bearded and 17 are wearing glasses. The images
in each view of the prototype light fields have resolution 320 x 240. Within
each image, the head spans a region of approximately 80 x 120 pixels. The field
of view captured by the camera array is approximately 25 degrees horizontally
and 20 degrees vertically. To perform feature tracking, as described in Section
3, we used a multi-resolution Lukas-Kanade optical flow algorithm [15], with 4
pyramid levels and Laplacian smoothing 1.

For comparison, we built a view-based AAM using the views of the light
field camera array [7]. In both the definition of the view-based and light field
active appearance models the parameter perturbations displayed in Table 1 were
used to numerically compute the Jacobian matrix. To avoid over-fitting to noise,
texture-shape PCA vectors having low variance were discarded from each model,
the remaining PCA vectors modelling 90% of the total model variance.

We implemented the view-based and light field active appearance models in
MATLAB. To perform light field rendering we use the unstructured lumigraph
algorithm described in [5]. In our experiments, our matching algorithm typically
converged between 4 and 15 iterations when matching to an image and between
4 and 10 iterations when matching to a light field. Each iteration took a few
seconds in un-optimized MATLAB. We believe that using a real-time light field
renderer [5] would result in matching times similar to those reported for a 2D
AAM [20].

7 Results

In this section we provide a comparison between a light field and a 2D view-based
active appearance model. We then present various model matching experiments
using our head light field appearance manifold.
1 We acknowledge Tony Ezzat for the Lukas-Kanade optical flow implementation.
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Variables Perturbations

x, y ±5% and ±10% of the height and width of the reference shape
θ ±5, ±15 degrees

scale ±5%, ±15%
c1−k ±0.25, ±0.5 standard deviations

Table 1. Perturbation scheme used in both the view-based and light field AAMs. [20]

Input View-Based Light Field
AAM AAM

Fig. 3. Comparison of a light field active appearance model to a view-based AAM. The
left column shows the input, the middle column the best fit with a 2D AAM, and the
right column the light field fit. The 2D and light field appearance models both exhibit
qualitatively good fits when the surface is approximately smooth and lambertian. When
glasses are present, however, the 2D method fails and the light field appearance model
succeeds.

Comparison to a view-based AAM. To compare our method to a view-based
AAM we built a single-view 2D AAM and compared it against a light field AAM.
Each model was constructed using all fifty subjects, and was matched to a side
view of two people. The resulting fits are displayed in Figure 3. In this figure
one person is wearing glasses which self-occlude the subject in extreme views of
the camera array. These self-occlusions are difficult to model using a view-based
AAM, where inter-pose variation is modelled as shape. Also note that the view-
dependent texturing effects in the persons glasses are preserved by the light field
AAM, but are lost by the view-based AAM even though the person remains in
the model.

Model matching. To demonstrate the ability to fit a light field AAM to a
single 2D image or light field, we match a novel person to the constructed head
manifold using ”leave-one-out” experimentation. Figure 4 illustrates fitting light
fields of two people taken out of the model. To conserve space, only select views
of each light field are displayed. Both fits are shown superimposed onto the
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Ground Truth Fit Ground Truth Fit

Fig. 4. Matching a light field AAM to a light field of a novel subject.

corresponding input light field. Each light field is also provided for ground truth
comparison. As seen from the figure, the input light fields are well matched and
a convincing reconstruction of each person is generated. Specifically, the shape
and texture of both individuals is well captured across views.

Figure 5 illustrates our model’s ability to generate convincing light field re-
constructions from 2D images. This figure provides two example matches to 2D
images with known pose. For each match, the person was removed from the
model and imaged at a randomly selected pose not present in the light field
AAM. The fit, rendered at the selected pose of each person, is displayed below
each input image. The fitted light fields are also displayed. Note our method
built a light field with 48 views from a single 2D image.

Figure 6 displays a fit to the head model using an unknown view of a person,
in which pose was automatically estimated as described in Section 5. The model
was also matched to a frontal view to verify that the reconstructed light fields are
independent of input pose. As before this person is removed from the model and
the views are not present in the light field AAM. The extreme views of the model
light field fits are overlaid onto a captured light field of the subject. This light
field is also shown as ground truth. Comparing each fit one finds that although
the characteristics of the matched views are favored, the reconstructed light fields
are strikingly similar. Also, note the view-dependent texturing effects present in
the subjects glasses, captured by the model. Comparing the matches of the above
figure, one finds that our algorithm performs well in matching novel light fields
and 2D images to the head manifold. Namely, the skin color, facial hair, and
overall shape and expression of each novel subject are well approximated.

8 Conclusion and Future Work

We introduced a novel active appearance modeling method based on an image-
based rendering technique. Light field active appearance models overcome many
of the limitations presented by current 2D and 3D appearance models. They
easily model complex scenes, non-lambertian surfaces, and view variation. We
demonstrated the construction of a light field manifold of the human head using
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Fig. 5. Matching a light field AAM to 2D images of novel subjects. Each person is
matched at a known pose. The reconstructed light field, is rendered over the input
view and is displayed aside each match. The light field appearance model generates
convincing light field reconstructions from 2D images. In particular, the overall shape
and texture of each subject are well approximated across each view.

50 subjects and showed how to match the model to a light field or single 2D
image of a person outside of the model. In future work we hope to construct
a camera array with a wider field of view that utilizes a non-planar camera
configuration. We expect our approach to scale directly to the construction of
dynamic light-field appearance manifolds, since our capture apparatus works in
real-time.
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