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Abstract

We introduce a discriminative hidden-state approach for

the recognition of human gestures. Gesture sequences of-

ten have a complex underlying structure, and models that

can incorporate hidden structures have proven to be ad-

vantageous for recognition tasks. Most existing approaches

to gesture recognition with hidden states employ a Hidden

Markov Model or suitable variant (e.g., a factored or cou-

pled state model) to model gesture streams; a significant

limitation of these models is the requirement of conditional

independence of observations. In addition, hidden states

in a generative model are selected to maximize the like-

lihood of generating all the examples of a given gesture

class, which is not necessarily optimal for discriminating

the gesture class against other gestures. Previous discrim-

inative approaches to gesture sequence recognition have

shown promising results, but have not incorporated hidden

states nor addressed the problem of predicting the label of

an entire sequence. In this paper, we derive a discriminative

sequence model with a hidden state structure, and demon-

strate its utility both in a detection and in a multi-way clas-

sification formulation. We evaluate our method on the task

of recognizing human arm and head gestures, and compare

the performance of our method to both generative hidden

state and discriminative fully-observable models.

1. Introduction

With the potential for many interactive applications, au-

tomatic gesture recognition has been actively investigated

in the computer vision and pattern recognition community.

Head and arm gestures are often subtle, can happen at vari-

ous timescales, and may exhibit long-range dependencies.

All these issues make gesture recognition a challenging

problem.

One of the most common approaches for gesture recog-

nition is to use Hidden Markov Models (HMM) [19, 23], a

powerful generative model that includes hidden state struc-

ture. More generally, factored or coupled state models

have been developed, resulting in multi-stream dynamic

Bayesian networks [20, 3]. However, these generative mod-

els assume that observations are conditionally independent.

This restriction makes it difficult or impossible to accom-

modate long-range dependencies among observations or

multiple overlapping features of the observations.

Conditional random fields (CRF) use an exponential dis-

tribution to model the entire sequence given the observation

sequence [10, 9, 21]. This avoids the independence assump-

tion between observations, and allows non-local dependen-

cies between state and observations. A Markov assumption

may still be enforced in the state sequence, allowing infer-

ence to be performed efficiently using dynamic program-

ming. CRFs assign a label for each observation (e.g., each

time point in a sequence), and they neither capture hidden

states nor directly provide a way to estimate the conditional

probability of a class label for an entire sequence.

We propose a model for gesture recognition which incor-

porates hidden state variables in a discriminative multi-class

random field model, extending previous models for spatial

CRFs into the temporal domain. By allowing a classifica-

tion model with hidden states, no a-priori segmentation into

substructures is needed, and labels at individual observa-

tions are optimally combined to form a class conditional

estimate.

Our hidden state conditional random field (HCRF)

model can be used either as a gesture class detector, where

a single class is discriminatively trained against all other

gestures, or as a multi-way gesture classifier, where dis-

criminative models for multiple gestures are simultaneously

trained. The latter approach has the potential to share use-

ful hidden state structures across the different classification

tasks, allowing higher recognition rates.

We have implemented HCRF-based methods for arm and

head gesture recognition and compared their performance

against both HMMs and fully observable CRF techniques.
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In the remainder of this paper we review related work, de-

scribe our HCRF model, and then present a comparative

evaluation of different models.

2. Related Work

There is extensive literature dedicated to gesture recog-

nition. Here we review the methods most relevant to our

work. For hand and arm gestures, a comprehensive sur-

vey was presented by Pavlovic et al. [16]. Generative mod-

els, like HMMs [19], and many extensions have been used

successfully to recognize arm gestures [3] and a number

of sign languages [2, 22]. Kapoor and Picard presented

a HMM-based, real time head nod and head shake detec-

tor [8]. Fugie et al. also used HMMs to perform head nod

recognition [6].

Apart from generative models, discriminative models

have been used to solve sequence labeling problems. In the

speech and natural language processing community, Max-

imum Entropy Markov models (MEMMs) [11] have been

used for tasks such as word recognition, part-of-speech tag-

ging, text segmentation and information extraction. The ad-

vantages of MEMMs are that they can model arbitrary fea-

tures of observation sequences and can therefore accommo-

date overlapping features.

CRFs were first introduced by Lafferty et al. [10] and

have been widely used since then in the natural language

processing community for tasks such as noun coreference

resolution [13], name entity recognition [12] and informa-

tion extraction [4].

Recently, there has been increasing interest in using

CRFs in the vision community. Sminchisescu et al. [21]

applied CRFs to classify human motion activities (i.e. walk-

ing, jumping, etc); their model can also discriminate subtle

motion styles like normal walk and wander walk. Kumar et

al. [9] used a CRF model for the task of image region label-

ing. Torralba et al. [24] introduced Boosted Random Fields,

a model that combines local and global image information

for contextual object recognition.

Hidden-state conditional models have been applied suc-

cessfully in both the vision and speech community. In the

vision community, Quattoni [18] applied HCRFs to model

spatial dependencies for object recognition in unsegmented

cluttered images. In the speech community, it was applied

to phone classification [7] and the equivalence of HMM

models to a subset of CRF models was established. Here

we extend and demonstrate HCRF’s applicability to model

temporal sequences for gesture recognition.

3. HCRFs: A Review

We will review HCRFs as described in [18]. We wish

to learn a mapping of observations x to class labels y ∈
Y , where x is a vector of m local observations, x =

{x1, x2, . . . xm}, and each local observation xj is repre-

sented by a feature vector φ(xj) ∈ ℜd.

An HCRF models the conditional probability of a class

label given a set of observations by:

P (y | x, θ) =
∑

s

P (y, s | x, θ) =

∑

s eΨ(y,s,x;θ)

∑

y′∈Y,s∈Sm eΨ(y′,s,x;θ)

(1)

where s = {s1, s2, ..., sm}, each si ∈ S captures certain

underlying structure of each class and S is the set of hidden

states in the model. If we assume that s is observed and

that there is a single class label y then the conditional prob-

ability of s given x becomes a regular CRF. The potential

function Ψ(y, s,x; θ) ∈ ℜ, parameterized by θ, measures

the compatibility between a label, a set of observations and

a configuration of the hidden states.

Following previous work on CRFs [9, 10], we use the

following objective function in training the parameters:

L(θ) =

n
∑

i=1

log P (yi | xi, θ) −
1

2σ2
||θ||2 (2)

where n is the total number of training sequences. The first

term in Eq. 2 is the log-likelihood of the data; the second

term is the log of a Gaussian prior with variance σ2, i.e.,

P (θ) ∼ exp
(

1
2σ2 ||θ||

2
)

. We use gradient ascent to search

for the optimal parameter values, θ∗ = arg maxθ L(θ).
For our experiments we used a Quasi-Newton optimization

technique [1].

4. HCRFs for Gesture Recognition

HCRFs—discriminative models that contain hidden

states—are well-suited to the problem of gesture recogni-

tion. Quattoni [18] developed a discriminative hidden state

approach where the underlying graphical model captured

spatial dependencies between hidden object parts. In this

work, we modify the original HCRF approach to model

sequences where the underlying graphical model captures

temporal dependencies across frames, and to incorporate

long range dependencies.

Our goal is to distinguish between different gesture

classes. To achieve this goal, we learn a state distribution

among the different gesture classes in a discriminative man-

ner. Generative models can require a considerable number

of observations for certain gestures classes. In addition,

generative models may not learn a shared common structure

among gesture classes nor uncover the distinctive configu-

ration that sets one gesture class uniquely against others.

For example, the flip-back gesture used in the arm gesture

experiments (see Figure 1) consists of four parts: 1) lift-

ing one arm up, 2) lifting the other arm up, 3) crossing one

arm over the other and 4) returning both arms to their start-

ing position. We could use the fact that when we observe



the joints in a particular configuration (see FB illustration

in Figure 1) we can predict with certainty the flip-back ges-

ture. Therefore, we would expect that this gesture would

be easier to learn with a discriminative model. We would

also like a model that incorporates long range dependencies

(i.e., that the state at time t can depend on observations that

happened earlier or later in the sequence.) An HCRF can

learn a discriminative state distribution and can be easily

extended to incorporate long range dependencies.

To incorporate long range dependencies, we modify the

potential function Ψ in Equation 1 to include a window pa-

rameter ω that defines the amount of past and future his-

tory to be used when predicting the state at time t. Here,

Ψ(y, s,x; θ, ω) ∈ ℜ is defined as a potential function pa-

rameterized by θ and ω.

Ψ(y, s,x; θ, ω) =

n
∑

j=1

ϕ(x, j, ω) · θs[sj ] +

n
∑

j=1

θy[y, sj ]

+
∑

(j,k)∈E

θe[y, sj , sk] (3)

The graph E is a chain where each node corresponds to a

hidden state variable at time t; ϕ(x, j, ω) is a vector that can

include any feature of the observation sequence for a spe-

cific window size ω. (i.e. for window size ω, observations

from t − ω to t + ω are used to compute the features.)

The parameter vector θ is made up of three components:

θ = [θe θy θs]. We use the notation θs[sj ] to refer to the

parameters θs that correspond to state sj ∈ S. Similarly,

θy[y, sj ] stands for parameters that correspond to class y

and state sj and θe[y, sj, sk] refers to parameters that corre-

spond to class y and the pair of states sj and sk.

The inner product ϕ(x, j, ω) · θs[sj ] can be interpreted

as a measure of the compatibility between the observation

sequence and the state at time j at window size ω. Each pa-

rameter θy[y, sj] can be interpreted as a measure of the com-

patibility between a hidden state k and a gesture y. Finally,

each parameter θe[y, sj, sk] measures the compatibility be-

tween pairs of consecutive states j and k and the gesture

y.

Given a new test sequence x, and parameter values θ∗

learned from training examples, we will take the label for

the sequence to be:

argmax
y∈Y

P (y | x, ω, θ∗). (4)

Since E is a chain, there are exact methods for inference

and parameter estimation as both the objective function and

its gradient can be written in terms of marginal distributions

over the hidden state variables. These distributions can be

computed using belief propagation [17].

5. Experiments

We conducted two sets of experiments comparing HMM,

CRF, and HCRF models on head gesture and arm gesture

datasets. The evaluation metric that we used for all the ex-

periments was the percentage of sequences for which we

predicted the correct gesture label.

5.1. Datasets

Head Gesture Dataset: To collect a head gesture

dataset, pose tracking was performed using an adaptive

view-based appearance model which captured the user-

specific appearance under different poses [14]. We used

the fast Fourier transform of the 3D angular velocities as

features for gesture recognition.

The head gesture dataset consisted of interactions be-

tween human participants and an embodied agent [15]. A

total of 16 participants interacted with a robot, with each

interaction lasting between 2 to 5 minutes. Human partici-

pants were video recorded while interacting with the robot

to obtain ground truth. A total of 152 head nods, 11 head

shakes and 159 junk sequences were extracted based on

ground truth labels. The junk class had sequences that did

not contain any head nods or head shakes during the inter-

actions with the robot. Half of the sequences were used for

training and the rest were used for testing. For the exper-

iments, we separated the data such that the testing dataset

had no participants from the training set.

Arm Gesture Dataset: We defined six arm gestures for

the experiments (see Figure 1). In the Expand Horizontally

(EH) arm gesture, the user starts with both arms close to the

hips, moves both arms laterally apart and retracts back to the

resting position. In the Expand Vertically (EV) arm gesture,

the arms move vertically apart and return to the resting posi-

tion. In the Shrink Vertically (SV) gesture, both arms begin

from the hips, move vertically together and back to the hips.

In the Point and Back (PB) gesture, the user points with one

hand and beckons with the other. In the Double Back (DB)

gesture, both arms beckon towards the user. Lastly, in the

Flip Back (FB) gesture, the user simulates holding a book

with one hand while the other hand makes a flipping mo-

tion, to mimic flipping the pages of the book.

Users were asked to perform these gestures in front of

a stereo camera. From each image frame, a 3D cylindrical

body model, consisting of a head, torso, arms and forearms

was estimated using a stereo-tracking algorithm [5]. Figure

5 shows a gesture sequence with the estimated body model

superimposed on the user. From these body models, both

the joint angles and the relative co-ordinates of the joints

of the arms are used as observations for our experiments

and were manually segmented into six arm gesture classes.

Thirteen users were asked to perform these six gestures; an

average of 90 gestures per class were collected.



Figure 1. Illustrations of the six gesture classes for the experiments. Below each image is the abbreviation for the gesture class. These

gesture classes are: FB - Flip Back, SV - Shrink Vertically, EV - Expand Vertically, DB - Double Back, PB - Point and Back, EH - Expand

Horizontally. The green arrows are the motion trajectory of the fingertip and the numbers next to the arrows symbolize the order of these

arrows.

5.2. Models

Figures 2, 3 and 4 show graphical representations of the

HMM model, the CRF model, and the HCRF (multi-class)

model used in our experiments.

HMM Model - As a first baseline, we trained a HMM

model per class. Each model had four states and used a

single Gaussian observation model. During evaluation, test

sequences were passed through each of these models, and

the model with the highest likelihood was selected as the

recognized gesture.

CRF Model - As a second baseline, we trained a sin-

gle CRF chain model where every gesture class had a corre-

sponding state. In this case, the CRF predicts labels for each

frame in a sequence, not the entire sequence. During evalu-

ation, we found the Viterbi path under the CRF model, and

assigned the sequence label based on the most frequently

occurring gesture label per frame. We ran additional exper-

iments that incorporated different long range dependencies

(i.e. using different window sizes ω, as described in Section

4).

HCRF (one-vs-all) Model - For each gesture class, we

trained a separate HCRF model to discriminate the gesture

class from other classes. Each HCRF was trained using six

hidden states. For a given test sequence, we compared the

probabilities for each single HCRF, and the highest scoring

HCRF model is selected as the recognized gesture.

HCRF (multi-class) Model - We trained a single HCRF

using twelve hidden states. Test sequences were run with

this model and the gesture class with the highest probability

was selected as the recognized gesture. We also conducted

experiments that incorporated different long range depen-

dencies in the same way as described in the CRF experi-

ments.

For the HMM model, the number of Gaussian mixtures

and states were set by minimizing the error on training data,

and for hidden state models the number of hidden states was

Models Accuracy (%)

HMM ω = 0 65.33

CRF ω = 0 66.53

CRF ω = 1 68.24

HCRF (multi-class) ω = 0 71.88

HCRF (multi-class) ω = 1 85.25

Table 1. Comparisons of recognition performance (percentage ac-

curacy) for head gestures.

set in a similar fashion.

6. Results and Discussion

For the training process, the CRF models for the arm and

head gesture dataset took about 200 iterations to train. The

HCRF models for the arm and head gesture dataset required

300 and 400 iterations for training respectively.

Table 1 summarizes the results for the head gesture ex-

periments. The multi-class HCRF model performs better

than the HMM and CRF models at a window size of zero.

The CRF has slightly better performance than the HMMs

for the head gesture task, and this performance improved

with increased window sizes. The HCRF multi-class model

made a significant improvement when the window size was

increased, which indicates that incorporating long range de-

pendencies was useful.

Table 2 summarizes results for the arm gesture recogni-

tion experiments. In these experiments the CRF performed

better than HMMs at window size zero. At window size

one, however, the CRF performance was poorer; this may

be due to overfitting when training the CRF model parame-

ters. Both multi-class and one-vs-all HCRFs perform better

than HMMs and CRFs. The most significant improvement

in performance was obtained when we used a multi-class

HCRF, suggesting that it is important to jointly learn the

best discriminative structure.



Figure 5. Sample image sequence with the estimated body pose superimposed on the user in each frame.

Figure 2. HMM model

Figure 3. CRF Model

Figure 4. HCRF Model

Figure 6 shows the distribution of states for different ges-

ture classes learned by the best performing model (multi-

class HCRF). This graph was obtained by computing the

Viterbi path for each sequence (i.e. the most likely assign-

Models Accuracy (%)

HMM ω = 0 84.22

CRF ω = 0 86.03

CRF ω = 1 81.75

HCRF (one-vs-all) ω = 0 87.49

HCRF (multi-class) ω = 0 91.64

HCRF (multi-class) ω = 1 93.81

Table 2. Comparisons of recognition performance (percentage ac-

curacy) for body poses estimated from image sequences.
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Figure 6. Graph showing the distribution of the hidden states for

each gesture class. The numbers in each pie represent the hidden

state label, and the area enclosed by the number represents the

proportion.

ment for the hidden state variables) and counting the num-

ber of times that a given state occurred among those se-

quences. As we can see, the model has found a unique

distribution of hidden states for each gesture, and there is

a significant amount of state sharing among different ges-

ture classes. The state assignment for each image frame

of various gesture classes is illustrated in Figure 7. Here,

we see that body poses that are visually more unique for a

gesture class are assigned very distinct hidden states, while

body poses common between different gesture classes are

assigned the same states. For example, frames of the FB



Models Accuracy (%)

HCRF ω = 0 86.44

HCRF ω = 1 96.81

HCRF ω = 2 97.75

Table 3. Experiment on 3 arm gesture classes using the multi-class

HCRF with different window sizes. The 3 different gesture classes

are: EV-Expand Vertically, SV Shrink Vertically and FB - Flip

Back. The gesture recognition accuracy increases as more long

range dependencies are incorporated.

gesture are uniquely assigned a state of one while the SV

and DB gesture class have visibly similar frames that share

the hidden state four.

The arm gesture results with varying window sizes are

shown in Table 3. From these results, it is clear that incor-

porating some amount of contextual dependency is impor-

tant, since the HCRF performance improved with increas-

ing window size.

7. Conclusion

In this work we presented a discriminative hidden-state

approach for gesture recognition. Our proposed model

combines the two main advantages of current approaches to

gesture recognition: the ability of CRFs to use long range

dependencies, and the ability of HMMs to model latent

structure. By regarding the sequence label as a random vari-

able we can train a single joint model for all the gestures and

share hidden states between them. Our results have shown

that HCRFs outperform both CRFs and HMMs for certain

gesture recognition tasks. For arm gestures, the multi-class

HCRF model outperforms HMMs and CRFs even when

long range dependencies are not used, demonstrating the

advantages of joint discriminative learning.
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