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Abstract

Objects can exhibit different dynamics at different scales,
and this is often exploited by visual tracking algorithms. A
local dynamic model is typically used to extract image fea-
tures that are then used as input to a system for tracking
the entire object using a global dynamic model. Approxi-
mate local dynamics may be brittle—point trackers drift due
to image noise and adaptive background models adapt to
foreground objects that become stationary—but constraints
from the global model can make them more robust. We
propose a probabilistic framework for incorporating global
dynamics knowledge into the local feature extraction pro-
cesses. A global tracking algorithm can be formulated as
a generative model and used topredict feature values that
are incorporated into an observation process of the feature
extractor. We combine such models in a multichain graphi-
cal model framework. We show the utility of our framework
for improving feature tracking and thus shape and motion
estimates in a batch factorization algorithm. We also pro-
pose an approximate filtering algorithm appropriate for on-
line applications, and demonstrate its application to back-
ground subtraction.

1. Introduction
Raw image data is rarely used as input to object tracking
algorithms. It is usually preprocessed with low-level fea-
ture extractors, whose output is then treated as observations
by high-level algorithms. The most popular of these low-
level features are foreground silhouettes, produced by back-
ground subtraction, and feature-point locations, obtained by
point-tracking methods. These algorithms operate on small
image patches (a single pixel in some background subtrac-
tion frameworks), and often use strong assumptions about
local behavior.

Feature-point trackers assume that the image patch about
the point of interest has relatively stable appearance. Adap-
tive background subtraction modules typically assume that
the foreground object does not remain stationary for ex-
tended periods of time. When these assumptions do not

hold, feature extractors fail, leaving high-level algorithms
to pick up the pieces. The alternative, a monolithic sys-
tem jointly modeling local and global dynamics is also not
appealing. Monolithic systems are less efficient than two-
stage approaches, and the latter also have the advantage of
modularity, since object trackers and feature extractors may
be designed independently.

Both object tracking and feature extraction are often for-
mulated as inference in probabilistic generative models. We
would like to combine them in a framework that also has
a clear probabilistic interpretation, with feedback behavior
arising from the structure of the model. Preserving modu-
larity is also important, since we would like to base infer-
ence on existing feature-extraction and object-tracking al-
gorithms.

Our motivation in building such a framework is based
on the fact that while features areobservedvariables in
object-tracking models, they may be madelatentby explic-
itly modeling their dependency on the images. Feature val-
ues are already latent variables in feature-extraction models.
The models may then be combined by sharing these vari-
ables, in a manner similar to that used in Product of Hidden
Markov Models (PoHMMs) approach [1].

Our framework is based on the multichain probabilis-
tic model. The main difference between this approach and
PoHMMs is that individual chains share alatentrather than
an observed variable. This enables a flow of information
between states of the trackers, realizing the desired feed-
forward/feedback property. Since trackers are coupled only
through features, modularity is preserved with only minimal
modification to the algorithms.

We demonstrate the advantages of our framework by ap-
plying it to structure from motion recovery and adaptive
background subtraction problems.

2. Related Work
Reliability of feature extraction has long been a concern in
computer vision. In the absence of high-level information,
the best that can be done is to compute not only feature
but also an uncertainty about the measurement. For exam-
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Figure 1:Combining local and global dynamics for object tracking. (a) A generative model used in feature extraction algorithms. The
stateR = {Rk} evolves according to the local dynamic model,p(Rt+1|Rt) =

∏
k p(R

t+1
k |R

t
k). At time t, the observed image is based

on p(Ik|F k), where the feature set,F t = {F tk}, is generated from state according top(F t|Rt) =
∏
k p(F

t
k|Rtk). (b) Generative model

used for object tracking. The state,St, contains pose and appearance information about moving object(s), and evolves according to global
dynamic model,p(St+1|St). The feature set,F t, generated based on the appearance and pose is considered to be observed. (c) Combined
model with potentials corresponding to the conditional probabilities in the individual models (e.g.,φ(Rt, Rt−1) = p(Rt|Rt−1), etc.).(d)
A tree-shaped subgraph on which a single step of approximate inference is performed. The marginal distributions,p(St−1|I0..t−1) and
p(Rt−1|I0..t−1), have been computed at the previous iteration, and are not modified;It is observed.

ple, dissimilarity computations [11] and Kalman filtering
[10] have been used to estimate uncertainty of feature-point
tracking. Kalman-filter based approaches such as MHT
[2] and JPDAF [3] have been used to disambiguate feature
tracks based on individual motion models.

It has long been observed that incorporating some feed-
back from high-level algorithms into feature extraction in
many cases improves overall performance. Indeed, many
heuristic-based methods for providing such a feedback have
been incorporated into real-life systems. Knowledge about
global dynamics has been involved in feature extraction on
multiple levels. On the basic level, robust methods such as
Least Median Squares have been used to reject feature loca-
tions that are deemed to be outliers [7]. The complete inte-
gration of feature extraction and object motion is achieved
in monolithic systems [14, 5], which jointly model fore-
ground and background processes.

The framework proposed in this paper is most closely
related to intermediate integration approaches of [8] and
[6]. These methods update both global and local mod-
els based on the feature match deterministically selected
among those predicted by the global and local motion mod-
els. If no matches were produced, the corresponding feature
is dropped. In contrast to these methods, our approach al-
lows feature extractors to use the global motion model to
recover after multiple frames with no observations.

3. Formulation of Dual-chain Model

Feature extraction algorithms can often be seen as infer-
ence in a generative model with a structure similar to the
one in Figure 1(a). The feature set at timet, F t = {F tk}
(e.g. foreground/background labels and pixel values), is
generated based on the hidden stateRt (e.g., a background
model), and is in turn used to generate the observed im-
age It. Feature behavior is typically modeled as inde-

pendent, with state evolving according to local dynamics
p(Rt+1|Rt) =

∏
k p(R

t+1
k |Rtk). The features are then gen-

erated according top(F t|Rt) =
∏
k p(F

t
k|Rtk). The objec-

tive of the algorithm is to inferF ts that are then used as
input for object-tracking algorithms.

Similarly, probabilistic object tracking algorithms may
be formulated as inference in the model shown in Figure
1(b). The hidden state,St, evolves according to global dy-
namics,p(St+1|St). The feature set,F t, is generated at
every frame based on the rendering modelp(F t|St). This
model considers features to be directly observed, ignoring
the fact that in reality they are obtained from images by a
low-level feature-extraction process.

Both of the models described above are approximate.
The local dynamic model ignores dependency between fea-
tures, and the global dynamic model is usually too coarse
to be of use for feature matching. For example, by ignoring
dependency between features, the feature extraction algo-
rithm assumes that the joint distribution of the state and the
appearance conditioned on all previous observations:

p(F t,Rt|I0..t−1) = (1)

p(F t|Rt)
∫
dRt−1p(Rt|Rt−1)p(Rt−1|I0..t−1),

however the true distribution, which accounts for interfea-
ture dependencies, is

p(F t,Rt|I0..t−1) = (2)

q(F t, Rt; I0..t−1)

∫
dRt−1p(Rt|Rt−1)p(Rt−1|I0..t−1)

q(F t,Rt; I0..t−1) 6= p(F t|Rt).

As we showed in [13], for the case of articulated
tracking, this interfeature dependency may be accounted
for by introducing feature prediction available from the
global dynamic model. We can define an approximation
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t - Time index
It - Image observed at timet
St - State of the high-level (tracking) generative model, e.g. 2D position and velocity of the object and its

appearance
p(St|St−1) - High-level state evolution model
Rt - State of the low-level (feature extraction) generative model, e.g. per-pixel background models
p(Rt|Rt−1) - Low-level state evolution model
F t - Latent instantaneous description of the world used by both models, e.g. pixels intensity values with

corresponding foreground/background labels
p(F t|St) - The distribution used to generate latent features based on the high-level model state
p(F t|Rt) - The distribution used to generate latent features based on the low-level model state
p(It|F t) - Observation generation model

Table 1:Summary of random variables and conditional distributions used in this paper

to q(F t, Rt; I0..t−1) that combines information from both
systems via a product

q̂(F t, Rt;I0..t−1) ∝ (3)

p(F t|Rt)
∫
dStp(F t|St)p(St|I0..t−1).

This is equivalent to a dual-chain model shown in Fig-
ure 1(c). Sharing of the feature nodes between two individ-
ual models allows them to influence each other. For exam-
ple in the case of background subtraction, the background
model would not be adapted to pixels that the tracking sys-
tem predicts to be generated by the foreground objects. And
visa versa, pixels that are predicted to belong to the back-
ground would not be considered by the tracker. In the case
of feature-point tracking, the prediction based on the global
dynamic would serve as a data association filter, (e.g. re-
duce the possibility of individual point drift).

4. Inference Methods in Dual-Chain
Model

The dual-chain model proposed in the previous section is
loopy, and inference may in general be complicated. Single-
chain inference algorithms developed for object and feature
tracking cannot be directly used in our framework, since it
introduces dependencies unrepresented in individual mod-
els. Fortunately, they can be easily adapted, due to the fact
that individual models become decoupled if the features are
known. The general strategy is for each model to incorpo-
rate the features predicted by the other model and the ob-
served images. Both online (filtering) and batch (smooth-
ing) algorithms can be thus adapted.

4.1. Approximate Filtering
While exact filtering in the dual-chain model requires
modeling the joint distribution,p(St, Rt|I0..t−1), in [13]
we have shown an approximate filtering algorithm which

uses only marginal state distributionsp(St|I0..t−1) and
p(Rt|I0..t−1).

Consider the model in Figure 1(c). If the initial statesS0

andR0 are independent (as shown), then posterior distri-
butionsp(S1|I1) andp(R1|I1) can be (exactly) computed
using Belief Propagation [9] on a tree-shaped subgraph:

p(S1|I1) =
1

Z

∫
dS0φ(S1, S0)p(S0)

∫
dF 1

[
φ(F 1) (4)

φ(F 1, S1)

∫
R1

[
φ(F 1, R1)

∫
R0φ(R1, R0)p(R0)

]]
,

whereφ(F 1) ≡ φ(I1, F 1). The equivalent expression of
p(R1|I1) is not shown.

Filtering at the next timestep (t = 2) is more complex
since the model now contains loops and the exact inference
would require representing the jointp(S1, R1|I1):

p(S2|I1, I2) =
1

Z

∫
dF 2

[
φ(F 2)φ(F 2, S2)

∫
dR2

[
φ(F 2, R2)

(5)∫
dS1dR1φ(S2, S1)φ(R2, R1)p(S1, R1|I1)

]]

In order to simplify computations, we approximate
the joint distribution, p(S1, R1|I1) with a product,
q(S1)q(R1). It is easily shown that the best such ap-
proximation (in the KL-divergence sense) is the product of
marginal distributions,p(S1|I1) andp(R1|I1). Substitut-
ing p(S1|I1)p(R1|I1) for p(S1, R1|I1) in Equation 5, we
obtain an approximate inference equation:

p(S2|I2) ≈ 1

Z

∫
dS1φ(S2, S1)

∫
dF 2

[
φ(F 2)φ(F 2, S2) (6)

p(S1|I1)

∫
dR2

[
φ(F 2, R2)

∫
dR1φ(R2, R1)p(R1|I1)

]]
.

The similarity between Equations (4) and (6) suggests
an approximate filtering algorithm that estimates marginal
distributions of the state variables by recursively applying
Belief Propagation to acyclic subgraphs of the form shown
in Figure 1(d), using the marginal state distribution obtained
at timet− 1 as priors at timet.
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Algorithm 1 Recursive Belief Propagation Algorithm for
Filtering in a Dual-Chain Model

for all t ≥ 0 do
PREDICT the current state of the object and states of
individual features, compute messages:
µSt−1→St =

∫
dSt−1φ(St, St−1)p(St−1|I0..t−1) and

µRt−1→Rt =
∫
dRt−1φ(Rt, Rt−1)p(Rt−1|I0..t−1).

ESTIMATE feature distributions based on predicted
states and current observations, compute messages:
µSt→F t =

∫
dStφ(F t, St)µSt−1→St ,

µRt→F t =
∫
dRtφ(F t, Rt)µRt−1→Rt ,

µF t→St =
∫
dF tµRt→F tφ(It, F t), and

µF t→Rt =
∫
dF tµtS → F tφ(It, F t).

UPDATE object state using features predicted by fea-
ture extractor, and state of the feature extractor using
features predicted by object model:
p(St|I0..t) ∝ µSt−1→StµF t→St and
p(Rt|I0..t) ∝ µRt−1→RtµF t→Rt .

end for

The messages exchanged between nodes during Belief
Propagation are computed as described in Algorithm 1.
Note that computations required for the prediction and up-
date steps, as well as for part of the feature estimation step,
are the same as those of individual object tracking and fea-
ture extraction algorithms.

4.2. Batch Optimization
While filtering is appropriate for online tasks, some
object-tracking problems are formulated as global opti-
mization in single-chain models such as one in Figure
1(b). For example, in structure from motion estima-
tion we may be interested in computing the shape of
the object based onall observed data, that is computing
arg maxS0..T p(F 1..T |S0..T ). Once again, the algorithms
developed for single-chain models need to be modified to
be of use in the dual-chain setting.

We base our optimization approach on a coordinate as-
cent algorithm that alternates between optimizing one set of
states (eitherR0..T or S0..T ) while keeping the other one
fixed. The dual-chain structure, with latent feature nodes
separating states, lends itself to this algorithm. Fixing one
set of states reduces the problem to a single-chain optimiza-
tion that can be performed with available algorithms. The
summary of out method is presented in Algorithm 2.

5. Experiments
We demonstrate an adaptive background algorithm based
on the dual-chain filtering, and structure from motion esti-
mation based on the dual-chain batch optimization.

Adaptive background models are popular since they are

Algorithm 2 Coordinate Ascent for Batch Optimization in
a Dual-Chain Model

APPLY feature-extraction algorithm to all available ob-
servations
while not convergeddo

APPLY the global optimization algorithm to object
model while keeping feature states (R0..T ) fixed.
COMPUTE feature predictions from the object model
for each time-step
APPLY feature-extraction algorithm to all available ob-
servations, keeping object states (S0..T ) fixed and in-
corporating feature predictions from the object model

end while

able to adjust to scene changes due to causes other than ob-
jects of interest (e.g., lighting variations). Unfortunately,
they also adapt to foreground objects that remain station-
ary for extended periods of time. After these objects “fade”
into the background, their locations are no longer labeled as
foreground.

Common adaptive background algorithms similar to [12]
can be represented as inference in a generative model that
can then be incorporated into a dual-chain framework. This
model maintains the background scene at timet as a set of
independent per-pixel models{Rtk}. A binary background
label,Btk, is generated for every pixel according to the prior
probability,P (Btk). The latent pixel value,Ltk, is generated
according to the predicted model,Rt, if the pixel belongs
to background (Btk = 1) and by a uniform distribution oth-
erwise. The value ofLtj contaminated by observation noise
is then observed asItk. By denotingF tk = (Btk, L

t
k), we

obtain the form shown in Figure 1(a).

The “fade-away” effect is caused, in part, by the use of
constantP (Btk), that governs the rate at which the back-
ground model is adapted to new observations. This prob-
lem may be alleviated by, in particular, modifyingP (Btk)
based on feedback from an object (blob) tracking system.
We achieve this by combining this background model with
an object tracker (with the form shown in Figure 1(b)) in the
dual-chain framework.

In our experiments, we have used an object (blob) tracker
with first-order linear dynamics similar to the one described
in [12]. In this case high-levelSt contained 2D positions
and velocities and appearances of the moving objects. The
background scene distribution was modeled with a single
(per-pixel) Gaussian with fixed variance and variable mean.
Model dynamics and observation noise were also repre-
sented with Gaussian distributions with fixed variances.
Based on these modules, we implemented and compared the
performance of the dual-chain algorithm and of the stand-
alone background subtraction modules with different values
of P (Btk = 1).
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The systems were evaluated on datasets provided for the
PETS 2001 workshop1. Algorithms were evaluated as fol-
lows: at every frame, we have computed a raw foreground
map by thresholding the background probability value at
every pixel, and extracted a set of connected components.

We were interested in three common classes of errors:
(1) less than 50% of a pedestrian covered by extracted com-
ponents; (2) less than 50% of a vehicle covered by extracted
components; and (3) a foreground component was detected
in a location where no moving objects were present. The
quantitative comparison results are summarized in Figure 2.
Sample frames from the first sequence with corresponding
estimated background images and foreground components
are shown in Figure 3.

Replacing feed-forward tracking algorithm with a dual-
chain framework did not result in large performance
penalty. In our experiments, the difference between running
times of dual-chain algorithm and feed-forward system was
less than 4%. Semioptimized code on a 2.8GHz worksta-
tion was able to achieve 9.6fps for sequential processing
and 9.3fps for dual-chain processing on768 × 576 images
(this time included reading images from the hard drive).

We have evaluated the global optimization algorithm
(section 4.2) by applying it to the problem of extracting
structure from motion. For the object-level optimization
algorithm we use the factor-analysis based factorization
methods of [4] (both with and without temporal coher-
ence). Dual-chain variants were obtained by combining
them with a Kalman-filter based feature-point tracker. In
order to quantitatively compare the performance of these
algorithms, we have created a synthetic dataset that emu-
lates the behavior of common feature trackers on real data.
Forty points randomly distributed on a unit cylinder were
observed for 60 frames by a camera moving with constant
angular velocity. To emulate occlusions and misdetections,
every point changed state from visible to invisible in each
frame with probabilityP (loose). To emulate template drift,
consistent bias was introduced into each visible point for 5
frames with probabilityP (drift).

Shapes recovered forP (loose) = 0.1, P (drift) = 0.3
are shown in Figure 4. As can be seen, the shapes computed
by the single-chain variants contain more points. This is due
to the fact that each point on the cylinder has produced sev-
eral partial tracks separated by occlusions. The inability of
a feature tracker to recognize partial tracks as belonging to a
single feature complicates shape recovery. Since dual-chain
methods are able to use the global model for data associa-
tion, their shape estimates are much more accurate.

A quantitative evaluation of this experiment is shown in
Figure 5. Note that the number of occlusions (related to
P (loose)) had the greatest impact on the shape estimation.

1Available fromftp://pets.rdg.ac.uk/PETS2001/

Neither of the single-chain approaches was able to deal with
multiple partial tracks observed for one feature point. They
failed to correctly recover the shape (signified by large re-
projection errors), even for small values ofP (loose).

The results of applying factor analysis with temporal co-
herence and its dual-chain variant to a fifty-frame video se-
quence2 of a rotating box are shown in Figure 6. Shape
recovered by stand-alone factor analysis contains many spu-
rious points, but the dual-chain framework succeeded in ap-
proximately estimating the correct shape.

6. Conclusions
We have proposed a method for combining probabilistic
feature extraction and object tracking systems, and demon-
strated significantly improved tracking results. The ap-
proach was motivated by the simple observation that both
of these models marginalize over an intermediate feature
representation between state and observation. By making
the feature representation explicit in our approach, we ob-
tained a straightforward means of mediating between the
constituent models.

Inference algorithms that have been designed for single-
chain feature extraction and object-tracking modules are not
directly applicable in this framework. Inference on the dual-
chain model is further complicated due to the introduction
of loops in the graphical structure representing the com-
bined models. However, we have proposed two methods
for adapting algorithms designed for constituent modules to
operate in a combined system. An approximate inference
method based on sequential inference on acyclic subgraphs
provides a suitable alternative to exact inference appropriate
for online tracking (filtering). An coordinate-ascent based
algorithm has been designed for the batch inference case,
and applied to structure-from-motion estimation. In both
cases, our method has been demonstrated to compare favor-
ably to the pure feed-forward approaches.
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same point.
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Figure 5:Quantitative of structure from motion recovery algorithms on synthetic sequence with varying amounts of drift and occlusion.
Top row—total reprojection error as a function of drift with no occlusion, .i.eP (loose) = 0 (left) with 12% chance of occlusion, i.e
P (loose) = 0.12 (right). Bottom row—total reprojection error as a function of occlusion forP (drift) = 0 (left) andP (drift) = 0.2
(right). Dual-chain algorithms were able to approximately reconstruct shape in all cases. Single-chain methods failed for even small values
of P (loose).
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Figure 6:Comparing shape points computed by the stand-alone factor-analysis with temporal coherence and its dual-chain variant. (a, b)
First and last frames of the video sequence. (c) View from above onto the top part of the shape produced by factor-analysis (d) View from
above onto the top part of the shape produced by dual-chain algorithm. Note that the shape produced by factor analysis contained more
than half of spurious points.
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