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Abstract

Adaptive background modeling/subtraction techniques are
popular, in particular, because they are able to cope with
background variations that are due to lighting variations.
Unfortunately these models also tend to adapt to foreground
objects that become stationary for a period of time; as a re-
sult such objects are no longer considered for further pro-
cessing. In this paper, we propose the first (to our knowl-
edge) statistically consistent method for incorporating feed-
back from high-level motion model to modify adaptation be-
havior. Our approach is based on formulating the back-
ground maintenance problem as inference in a continuous
state Hidden Markov Model, and combining it with a sim-
ilarly formulated object tracker in a multichain graphical
model framework. We demonstrate that the approximate fil-
tering algorithm in such a framework outperforms the com-
mon feed-forward system while not imposing a significant
extra computational burden.

1. Introduction
Background subtraction is a first step in many object track-
ing applications. It is used to determine likely locations
of objects of interest (foreground objects) by comparing a
newly acquired frame with an internally maintained model
of the scene without objects of interest (background). In
this work, we consider one of the most popular classes of
background maintenance systems, so called adaptive mod-
els [8, 4, 10, 2]. Such models are able to adjust to scene
changes due to causes other than objects of interest (e.g.,
lighting variations).

Background models are usually designed to be task in-
dependent, and this often means that they can use very little
high-level information. While region-based reasoning may
be utilized at every individual frame [8, 10], temporal con-
sistency is usually exploited only on a per-pixel basis. This
limitation can cause the scene model to adapt to foreground
objects that remain stationary for extended periods of time.
After these objects “fade” into the background, their loca-
tions are no longer considered as regions of interest.

Several approaches to incorporating information about
foreground objects into background maintenance have been
proposed. They may be broadly separated into two cate-
gories: probabilistic frameworks thatjointly model scene
and foreground object evolution [5, 11], and systems con-
sisting of separate modules for scene modeling and high-
level inference (e.g., object tracking) [8, 4, 10]. Adjust-
ments to the background model in modular systems depend
on heuristic-based feedback from the higher-level modules.

In this paper, we propose the first, to our knowledge, ap-
proach that incorporates background modeling and object
tracking in a unified statistical framework, while still en-
abling efficient modular implementation. Our approach is
based on the observation that both background maintenance
and object tracking may be formulated as state estimation in
dynamic Bayesian networks representing generative models
(see section 3). Each generative model is approximate. The
background model models the underlying scene but is ag-
nostic about pixels generated by the moving objects. On
the other hand, the object tracker models foreground pixels
but not the rest of the image.

These models have different failure modes: the back-
ground model fails when foreground pixel values are close
enough to the expected background, and the tracker fails
when the background contains patterns similar to ones ex-
pected for the objects being tracked. We would like to
pool knowledge from both models to improve overall per-
formance.

Combining information from these models is not
straightforward, since each model uses a different state rep-
resentation. We address this issue by introducing a latent
appearance representation (pixel value and the associated
foreground-background label), shared between both mod-
els, and combining models at this representation level. The
interconnection allows information from one chain to influ-
ence the other one during the inference process, effectively
serving as a data association filter. The resulting graphical
model is loopy, which makes inference complicated in gen-
eral, but we propose an approximate filtering algorithm for
our framework based on sequentially applying Belief Prop-
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agation to acyclic subgraphs of the loopy model. This ap-
proach is based on our prior work on multichain models in
the articulated-body tracking domain [9], reviewed in sec-
tion 3 as applicable to the background maintenance.

We demonstrate that the foreground labels and back-
ground model estimated by the proposed multichain model
compare favorably with output of stand-alone background
subtraction system while not incurring significant computa-
tional cost.

2. Related Work
While many approaches to adaptive background modeling
have been proposed, it remains an active research area. Sev-
eral methods have been proposed that incorporate back-
ground estimation and object tracking in a single monolithic
system [5, 11], but most systems take a modular approach
that allows using a single background subtraction subsys-
tem in different applications.

Stand-alone background subtraction algorithms assign
background/foreground labels based on the history of the
local measurements in a particular location. Popular mod-
eling techniques may be separated into two broad classes,
parametric and nonparametric [1]. Nonparametric models
[10, 12] use previously observed frames directly, and con-
sider a pixel to belong to the foreground if its value is dif-
ferent from a sufficient number of stored values. Parametric
models maintain a representation of pixel value probability
distribution (such as a mixture of Gaussians in [8]) that is
recursively updated at every frame.

Local measurements, such as depth [4] and spatial and
temporal gradients [7] have been used in addition to raw
intensity values to improve segmentation.

While methods have been proposed for using high-level
information to handle global changes (e.g., lights being
switched on and off) [3], we are not aware of statistically
consistent approaches to incorporating temporal informa-
tion from object tracking into background modeling.

3. Combining Background and Track-
ing Inference

Consider a background maintenance system, similar to that
described in [8]. As has been stated, at every timestep it has
two tasks: to assign each pixel in the image with a probabil-
ity of belonging to the background (foreground) class, and
to modify the internal representation of the scene based on
the current input. Its operation may be described as infer-
ence (filtering) in the dynamic Bayesian network shown in
Figure 1(a).

This network represents agenerativemodel of image
formation as follows: first the background model,M t,
is predicted based on the model at the previous timestep,

M t−1, and transition probabilityp(M t|M t−1). A binary
background label,Btj , is generated according to the prior
probability,P (Btj), for every pixelj. The latent pixel value,
Ltj , is generated according to the predicted model,M t, if
the pixel belongs to background (Btj = 1) and by a uni-
form distribution otherwise. The value ofLtj contaminated
by observation noise is then observed asItj . The poste-
rior background label probability for every pixel and the
updated model may be computed using standard inference
techniques. It may be shown that the model update rules in
such methods as [8] may be derived in this manner.

Note that while per-pixel models (M t
j ) are usually used,

this is not assumed. In the following discussion, we use
the notationIt = ∪jItj to represent the complete observed
image,Bt = ∪jBtj for the background probability image,
etc.

To simplify derivations, we use a slightly modified gen-
erative model shown in figure 1(b), whereF tj = (Ltj , B

t
j)

is the instantaneous pixel representation,p(F tj |M t) =
p(Ltj , B

t
j |M t) = p(Ltj |M j , Btj)p(B

t
j), and p(Itj |F tj ) =

p(Itj |Ltj).
As mentioned, this generative model represents the evo-

lution of the scene only approximately, since while it mod-
els background pixels, it makes an (incorrect) assumption
that the foreground pixels are generated by a uniform dis-
tribution. Thus temporal dependency between foreground
pixel locations and values is not modeled, and the indepen-
dence assumptions made in DBN do not hold. The infer-
ence algorithm assumes that joint distribution of the state
and the appearance conditioned on all previous observations
is

p(F t,M t|I0..t−1) = (1)

p(F t|M t)

∫
dM t−1p(M t|M t−1)p(M t−1|I0..t−1),

which is not generally true, since

p(F t,M t|I0..t−1) =q(F t,M t; I0..t−1) (2)∫
dM t−1p(M t|M t−1)p(M t−1|I0..t−1)

q(F t,M t; I0..t−1) 6= p(F t|M t).

Modeling the dependency betweenF t and prior observa-
tions, which that remains unrepresented by this generative
model, would allows for better estimation of both the back-
ground model and the background/foreground labels. When
a model of foreground object motion is available (e.g., when
the output of the background subtraction system is used for
object tracking), we would like to incorporate it into our
inference algorithm.

Object tracking systems are often described as filtering
in the generative model shown in figure 1(c). At timet,
T t describes the positions and appearances of moving ob-
jects. The state is evolved according to the motion model
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Figure 1: Combining background maintenance and object tracking models. (a) A generative model used for background
maintenance. At timet, pixel j belongs to the background ifBtj = 1. In this case its latent value,Ltj , is generated according
to p(Ltj |M t), whereM t

j are the sufficient statistics of the scene background distribution. Otherwise the latent value is
generated from a uniform distribution.Ltj contaminated by noise is observed asItj . Nodes enclosed in dashed rectangles
are duplicated for everyj. (b) The intermediate feature representation,F tj = (Ltj , B

t
j), p(F

t
j |M t) = p(Ltj |M j , Btj)p(B

t
j).

(c) Generative model used for object tracking. The stateT t contains both spatial and appearance information about moving
objects. If a pixel belongs to an object, thenBtj = 0, andLtj is set depending on the object appearance. OtherwiseBtj = 1 and
Ltj is generated by a uniform distribution. (d) Combined model with potentials corresponding to the conditional probabilities
in the individual models (e.g.,φ(M t,M t−1) = p(M t|M t−1), etc.). (e) A tree-shaped subgraph on which a single step of
approximate inference is performed. The marginal distributions,p(M t−1|I0..t−1) andp(T t−1|I0..t−1), have been computed
at the previous iteration, and are not modified;Itj are observed.

p(T t|T t−1). If a pixel belongs to an object, thenBtj = 0
andLtj is set depending on the object appearance. Other-
wiseBtj = 1 andLtj is generated by a uniform distribution.

We can now define an approximation to
q(F t, St; I0..t−1) that combines information from both
systems via a product

q̂(F t,M ;I0..t−1) ∝ (3)

p(F t|M t)
∫
dT tp(F t|T t)p(T t|I0..t−1).

This captures the desired property that an individual
model should consider only those values of appearance
that are assigned significant prior probability by all mod-
els. That is, the background model should not be adapted to
pixels that the tracking system predicts to be generated by
the foreground objects, and visa versa, pixels that are pre-
dicted to belong to background should not be considered by
the tracker.

The resulting system may be represented by the model
shown in Figure 1(d). The potentials in this undi-
rected model are defined based on conditional distribu-
tions from constituent models (that isφ(M t,M t−1) =
p(M t|M t−1), φ(F t,M t) = p(F t|M t), etc.).

3.1. Inference in the Dual-Chain Model

Single-chain models are popular because there are efficient
inference algorithms for them. While the proposed dual-
chain model is loopy (Figure 1(d)) and exact inference is
complicated in such models, we take advantage of the fact
that we are interested only in marginal distributions for the
state nodes to propose an efficient algorithm forfiltering in
such a model.

Consider the model in Figure 1(e). At timet = 1, we are
concerned with nodes with times (superscripts)t ≤ 1. If the
initial statesM0 andT 0 are independent (as shown), then
the resulting subgraph is a tree, and we can use standard Be-
lief Propagation techniques [6] to compute exact marginal
distributions at state nodesM1 andT 1.

p(M1|I1) =
1

Z

∫
dM0φ(M1,M0)p(M0) (4)∫
dF 1

[
φ(F 1)φ(F 1,M1)∫

T1

[
φ(F 1, T 1)

∫
T 0φ(T 1, T 0)p(T 0)

]]
,

whereφ(F 1) = φ(I1, F 1) (the equivalent expression of
p(T 1|O1) is not shown).
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Sequence 1 (2478 frames) Sequence 2 (2096 frames)
Error Class 1 2 3 1 2 3

Stand-alone background subtraction830 2861 93 155 877 50
Dual-chain model 688 0 0 175 0 0

Figure 2: Quantitative evaluation of background subtraction performance on PETS 2001 image sequences. Three error classes
were differentiated. 1: no foreground components corresponding to apedestrian have been detected. 2: no foreground
components corresponding to avehiclehave been detected. 3: foreground component detected when no foreground object
is present. Note that the number of class 2 errors for the first sequence includes 1760 errors due to a vehicle that remained
stationary from frame 690 to the end of the sequence, and was incorporated into the background model at frame 719. The
total number of errors is greater than the number of frames since more than one vehicle was undetected at some frames (cf.
frame 2400 in Figure 3) See the text for more details.

Filtering at the next timestep (t = 2) is more complex
since the model now contains loops and the exact inference
would require representing the jointp(M1, T 1|I1):

p(M2|I1, I2) = (5)

1

Z

∫
dF 2

[
φ(F 2)φ(F 2,M2)

∫
dT 2

[
φ(F 2, T 2)∫

dM1dT 1φ(M2,M1)φ(T 2, T 1)p(M1, T 1|I1)

]]
.

In order to simplify computations, we approximate
the joint distribution, p(M1, T 1|I1) with a product,
q(M1)q(T 1). It is easily shown that the best such ap-
proximation (in the KL-divergence sense) is the product of
marginal distributions,p(M1|I1) andp(T 1|I1). Substitut-
ing p(M1|I1)p(T 1|I1) for p(M1, T 1|I1) in Equation 5, we
obtain an approximate inference equation:

p(M2|I1, I2) ≈ 1

Z

∫
dM1φ(M2,M1)p(M1|I1) (6)∫
dF 2

[
φ(F 2)φ(F 2,M2)∫

dT 2

[
φ(F 2, T 2)∫

dT 1φ(T 2, T 1)p(T 1|I1)

]]
.

The similarity between Equations (4) and (6) suggests
an approximate filtering algorithm that estimates marginal
distributions of the state variables by recursively applying
Belief Propagation to acyclic subgraphs of the form shown
in Figure 1(e), using the marginal state distribution obtained
at timet− 1 as priors at timet.

At each timestep, an approximate inference may be per-
formed using message passing in 3 steps.

1. Predict the current background model and po-
sitions of the foreground objects based on
the previous estimates by computing messages
µMt−1→Mt =

∫
dM t−1φ(M t,M t−1)p(M t−1|I0..t−1)

andµT t−1→T t =
∫
dT t−1φ(T t, T t−1)p(T t−1|I0..t−1).

2. Estimate the foreground/background labels based on
the background model or the foreground object esti-
mates and image information: compute messages
µMt→F t =

∫
dM tφ(F t,M t)µMt−1→Mt ,

µT t→F t =
∫
dT tφ(F t, T t)µT t−1→T t ,

µF t→Mt =
∫
dF tµSt

j 6=i→F
tφ(It, F t),

andµF t→T t =
∫
dF tµSt

j 6=i→F
tφ(It, F t).

3. Update the background model using foreground labels
predicted by the object tracker and foreground object
state using labels produced by the background model
(p(M t|I0..t) ∝ µMt−1→MtµF t→Mt and p(T t|I0..t) ∝
µT t−1→T tµF t→T t).

If inference on constituent Markov chains were per-
formed individually, as is the case with common feed-
forward systems where background subtraction results are
used as input to an object tracking system, it would still
involve steps analogous to 1 and 3 (and partially 2); conse-
quently, combining models introduces very little additional
complexity to the inference process.

4. Implementation and Results
Since the objective of this paper is to compare the per-
formance of the background maintenance system with and
without tracking feedback, we chose to implement a very
simple adaptive module, although a more advanced sys-
tem can certainly be used. The background distribution
was modeled with a single (per-pixel) Gaussian with fixed
variance and variable mean. Model dynamics and observa-
tion noise were also represented with Gaussian distributions
with fixed variances. We used an object (blob) tracker with
first-order linear dynamics similar to one described in [8].

Based on these modules, we implemented and compared
the outputs and runtimes of the dual-chain algorithm de-
scribed in the previous section and of the feed-forward sys-
tem where a stand-alone background subtraction module
provided input to an object tracker.

Both systems were evaluated on two
datasets provided for the PETS 2001 workshop
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(ftp://pets.rdg.ac.uk/PETS2001/ ). These
datasets contain observations of an outdoor traffic scene,
where foreground objects include pedestrians and vehicles.
Algorithms were evaluated as follows: at every frame we
have computed a raw foreground map by thresholding the
background probability value at every pixel. After applying
a set of morphological dilation operations connected
components of a size greater than a certain threshold were
extracted.

Three classes of errors were detected: (1) less than 50%
of a pedestrian covered by extracted components; (2) less
than 50% of a vehicle covered by extracted components;
and (3) a foreground component was detected in a location
where no moving objects were present. The quantitative
comparison results are summarized in Figure 2. The high
number of class 1 errors is due to a relatively high thresh-
old on a connected component size. Sample frames from
the first sequence with corresponding estimated background
images and foreground components are shown in Figure 3.

In our experiments, the difference between running times
of dual-chain algorithm and feed-forward system was less
than 4%. Unoptimized code on a 2.8GHz workstation was
able to achieve 9.6fps for sequential processing and 9.3fps
for dual-chain processing on768 × 576 images (this time
includes reading images from the hard drive).

5. Conclusions

We have proposed a method for combining probabilistic
background maintenance and object tracking systems that
significantly improves segmentation accuracy without sac-
rificing performance. Our approach was motivated by the
simple observation that both of these models marginalize
over an intermediate feature representation between state
and observation. By making the feature representation ex-
plicit in our approach, we obtained a straightforward means
of mediating between the constituent models.

Exact inference on the resulting structure is complicated
due to the introduction of loops in the graphical struc-
ture representing the combined models. However, as a
consequence of the fact that we are interested in filtering
(tracking), rather than smoothing, an approximate inference
method based on sequential inference on acyclic subgraphs
provides a suitable alternative to exact inference. As op-
posed to monolithic systems that jointly model background
and foreground, our approach allows background mainte-
nance and tracking systems to be designed independently.

Our method has been demonstrated to compare favorably
to the pure feed-forward approach when applied to outdoor
traffic scenes, especially when faced with foreground ob-
jects that remained stationary for extended periods of time.
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Figure 3: Qualitative comparison of background subtraction performance on one of PETS2001 image sequence. Second
column holds input frames. Estimated background model and the computed foreground components are presented in the
third and fourth columns for stand-alone background subtraction and in fifth and sixth columns for dual-chain model. Note
that while input images are in color, all computations were performed in grayscale. See text for more details.
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