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Abstract Several approaches to incorporating information about
foreground objects into background maintenance have been

Adaptive background modeling/subtraction techniques are proposed. They may be broadly separated into two cate-
popular, in particular, because they are able to cope with gories: probabilistic frameworks thaintly model scene
background variations that are due to lighting variations. and foreground object evolution [5, 11], and systems con-
Unfortunately these models also tend to adapt to foregroundsisting of separate modules for scene modeling and high-
objects that become stationary for a period of time; as a re- |evel inference (e.g., object tracking) [8, 4, 10]. Adjust-
sult such objects are no longer considered for further pro- ments to the background model in modular systems depend
cessing. In this paper, we propose the first (to our knowl- on heuristic-based feedback from the higher-level modules.
edge) statistically consistent method for incorporating feed- | this paper, we propose the first, to our knowledge, ap-
back from high-level motion model to modify adaptation be- .54k that incorporates background modeling and object
havior. Our approach is based on formulating the back- 5cking in a unified statistical framework, while still en-
ground maintenance problem as inference in a coONtiNUOUS gpjing efficient modular implementation. Our approach is
state Hidden Markov Model, and combining it with & Sim-  paqeq on the observation that both background maintenance
ilarly formulated object tracker in & multichain graphical 5.4 opject tracking may be formulated as state estimation in
model framework. We demonsrate that the approximate fil- 4o mic Bayesian networks representing generative models
tering algorithm in such a framework outperforms the COM- (geq section 3). Each generative model is approximate. The
mon feed-forward system while not imposing a significant background model models the underlying scene but is ag-

extra computational burden. nostic about pixels generated by the moving objects. On
. the other hand, the object tracker models foreground pixels
1. Introduction but not the rest of the image.

Background subtraction is a first step in many object track- ~ These models have different failure modes: the back-
ing applications. It is used to determine likely locations 9ground model fails when foreground pixel values are close
of objects of interest (foreground objects) by comparing a €nough to the expected background, and the tracker fails
newly acquired frame with an internally maintained model When the background contains patterns similar to ones ex-
of the scene without objects of interest (background). In Pected for the objects being tracked. We would like to
this work, we consider one of the most popular classes of P00l knowledge from both models to improve overall per-
background maintenance systems, so called adaptive modformance.
els [8, 4, 10, 2]. Such models are able to adjust to scene Combining information from these models is not
changes due to causes other than objects of interest (e.gstraightforward, since each model uses a different state rep-
lighting variations). resentation. We address this issue by introducing a latent
Background models are usually designed to be task in-appearance representation (pixel value and the associated
dependent, and this often means that they can use very littlforeground-background label), shared between both mod-
high-level information. While region-based reasoning may els, and combining models at this representation level. The
be utilized at every individual frame [8, 10], temporal con- interconnection allows information from one chain to influ-
sistency is usually exploited only on a per-pixel basis. This ence the other one during the inference process, effectively
limitation can cause the scene model to adapt to foregroundserving as a data association filter. The resulting graphical
objects that remain stationary for extended periods of time. model is loopy, which makes inference complicated in gen-
After these objects “fade” into the background, their loca- eral, but we propose an approximate filtering algorithm for
tions are no longer considered as regions of interest. our framework based on sequentially applying Belief Prop-



agation to acyclic subgraphs of the loopy model. This ap- M*~*, and transition probabilityp(M*|Mt~1). A binary
proach is based on our prior work on multichain models in background label3?, is generated according to the prior
the articulated-body tracking domain [9], reviewed in sec- probability, P(B}), for every pixel;j. The latent pixel value,
tion 3 as applicable to the background maintenance. L§, is generated according to the predicted modéf, if
We demonstrate that the foreground labels and back-the pixel belongs to backgroun(B; = 1) and by a uni-
ground model estimated by the proposed multichain modelform distribution otherwise. The value &f;, contaminated
compare favorably with output of stand-alone background by observation noise is then observed/as The poste-
subtraction system while not incurring significant computa- rior background label probability for every pixel and the

tional cost. updated model may be computed using standard inference
techniques. It may be shown that the model update rules in
2. Related Work such methods as [8] may be derived in this manner.

Note that while per-pixel modelg\lj) are usually used,

While many approaches to adaptive background modelingthis is not assumed. In the following discussion, we use
have been proposed, it remains an active research area. Sethe notation/* = U, I j‘ to represent the complete observed
eral methods have been proposed that incorporate backimage,B* = U; B! for the background probability image,
ground estimation and object tracking in a single monolithic etc.
system [5, 11], but most systems take a modular approach To simplify derivations, we use a slightly modified gen-
that allows using a single background subtraction subsys-erative model shown in figure 1(b), whek§ = (L%, Bf)
tem in different applications. is the instantaneous pixel representatigf;|M*) =

Stand-alone background subtraction algorithms assignp(L¢, BS|M") = p(L:|M7, BY)p(BS), and p(I}|F}) =
background/foreground labels based on the history of thep(Ij|L§).
local measurements in a particular location. Popular mod- As mentioned, this generative model represents the evo-
eling techniques may be separated into two broad classedution of the scene only approximately, since while it mod-
parametric and nonparametric [1]. Nonparametric models€ls background pixels, it makes an (incorrect) assumption
[10, 12] use previously observed frames directly, and con- that t_he foreground pixels are generated by a uniform dis-
sider a pixel to belong to the foreground if its value is dif- tr_lbutlon. Thus temporal d_ependency between for_eground
ferent from a sufficient number of stored values. Parametricp'xel locations and values is not modeled, and the indepen-

R : . - “dence assumptions made in DBN do not hold. The infer-
models maintain a representation of pixel value probability oo 1gorithm assumes that joint distribution of the state

distribution (such as a mixture of Gaussians in [8]) that is 4nq the appearance conditioned on all previous observations
recursively updated at every frame. is

Local measurements, such as depth [4] and spatial and ot
temporal gradients [7] have been used in addition to raw PE M) = 1)
intensity values to improve segmentation. p(Ft|Mt)/th—lp(Mt‘Mtfl)p(Mt—l|IO..t71)7

While methods have been proposed for using high-level
information to handle global changes (e.g., lights being which is not generally true, since
switched on and off) [3], we are not aware of statistically

consistent approaches to incorporating temporal informa- p(F*, MU0 =q(F*, MY 177 @
tion from object tracking into background modeling. /thflp(Mt|Mtfl)p(Mt—l|IO.4t—1)
3. Combining Background and Track- a(F", M5 10 o p(F1 M),

ing Inference , ,
Modeling the dependency betweEhand prior observa-

Consider a background maintenance system, similar to thations, which that remains unrepresented by this generative
described in [8]. As has been stated, at every timestep it hasmodel, would allows for better estimation of both the back-
two tasks: to assign each pixel in the image with a probabil- ground model and the background/foreground labels. When
ity of belonging to the background (foreground) class, and a model of foreground object motion is available (e.g., when
to modify the internal representation of the scene based onthe output of the background subtraction system is used for
the current input. Its operation may be described as infer-object tracking), we would like to incorporate it into our
ence (filtering) in the dynamic Bayesian network shown in inference algorithm.

Figure 1(a). Object tracking systems are often described as filtering
This network represents generativemodel of image  in the generative model shown in figure 1(c). At time
formation as follows: first the background model/?, T describes the positions and appearances of moving ob-

is predicted based on the model at the previous timestepjects. The state is evolved according to the motion model



Figure 1: Combining background maintenance and object tracking models. (a) A generative model used for background
maintenance. At time, pixel ; belongs to the backgroundB§ = 1. In this case its latent valué,;, is generated according
to p(L}|M*), where M are the sufficient statistics of the scene background distribution. Otherwise the latent value is
generated from a uniform distributiod@- contaminated by noise is observedlés Nodes enclosed in dashed rectangles
are duplicated for every. (b) The intermediate feature representatibf,= (L, BY), p(F|M") = p(L}|M7, B)p(Bj).

(c) Generative model used for object tracking. The sfdteontains both spatial and appearance information about moving
objects. If a pixel belongs to an object, thB;?l =0, andL§ is set depending on the object appearance. OthetB;is-e land

L} is generated by a uniform distribution. (d) Combined model with potentials corresponding to the conditional probabilities
in the individual models (e.gg(M¢, Mt~1) = p(Mt|M?~1), etc.). (e) A tree-shaped subgraph on which a single step of
approximate inference is performed. The marginal distributip®*—!|7°-*=1) andp(7%~1|1°-¢~1), have been computed

at the previous iteration, and are not modifiéﬁare observed.

p(T*|T*=). If a pixel belongs to an object, thel = 0 3.1. Inference in the Dual-Chain Model
and L§- is set depending on the object appearance. Other-

: . : ingle-chain models ar lar here are efficien
WISGB§- =1 andL§- is generated by a uniform distribution. Single-cha odels are popular because there are efficient

. o inference algorithms for them. While the proposed dual-
Vl/e , can_ now define an approximation {0 chain model is loopy (Figure 1(d)) and exact inference is
q(F*, 5% 17"77) that combines information from both  complicated in such models, we take advantage of the fact

systems via a product that we are interested only in marginal distributions for the
state nodes to propose an efficient algorithmfiltering in
GF, M%) o (3) such a model.
PR bt 0 1 Consider the model in Figure 1(e). Attime= 1, we are
p(F"|M )/dT p(E*|T")p(T"|1 )- concerned with nodes with times (superscripts) 1. If the

initial statespM© andT° are independent (as shown), then
the resulting subgraph is a tree, and we can use standard Be-

This captures the desired property that an individual | . : .
) lief Propagation techniques [6] to compute exact marginal
model should consider only those values of appearance

T 1 1
that are assigned significant prior probability by all mod- distributions at state noded " and7".
els. That s, the background model should not be adapted to

pixels that the tracking system predicts to be generated by 141 1 0 1,0 o
the foreground objects, and visa versa, pixels that are pre- pAMCITT) = Z/dM SM, MO)p(MT) “)
dicted to belong to background should not be considered by | L Lo
the tracker [ art oot ar

The resulting system may be represented by the model / [¢(F1 Tl)/‘ Py (TU)H
shown in Figure 1(d). The potentials in this undi- 1 ’ 4P ’
rected model are defined based on conditional distribu-
tions from constituent models (that is(M¢, M*~1) = where ¢(F') = ¢(I', F') (the equivalent expression of
p(MY M=), ¢(Ft, M?) = p(F*t|M?), etc.). p(T"|04) is not shown).



Sequence 1 (2478 frameg) Sequence 2 (2096 frames)
Error Class 1 2 3 1 2 3
Stand-alone background subtractign830 | 2861 93 155 | 877 50
Dual-chain model 688 0 0 175 O 0

Figure 2: Quantitative evaluation of background subtraction performance on PETS 2001 image sequences. Three error classes
were differentiated. 1: no foreground components correspondingptrastrian have been detected. 2: no foreground
components corresponding tozahicle have been detected. 3: foreground component detected when no foreground object

is present. Note that the number of class 2 errors for the first sequence includes 1760 errors due to a vehicle that remained
stationary from frame 690 to the end of the sequence, and was incorporated into the background model at frame 719. The
total number of errors is greater than the number of frames since more than one vehicle was undetected at some frames (cf.
frame 2400 in Figure 3) See the text for more details.

Filtering at the next timesteg (= 2) is more complex 2. Estimate the foreground/background labels based on
since the model now contains loops and the exact inference  the background model or the foreground object esti-
would require representing the joiptAs*', 74| 11): mates and image information: compute messages

p(MQ\Il,IQ) _ (5) Kyt —Ft = f th(?(Ft»Mt)MMt—laMh
Hrt—Ft = deth(Ftht)HTt—lﬁTt,
7 [ ar oot ety [ ar®| o 1) gt = [ dF g peo(I', ),

. andupe gt = [dF'pge, _ pep(I', F").
[ arartar M1)¢(T2,T1>p<MHT1|F)H. . .
. 3. Update the background model using foreground labels
predicted by the object tracker and foreground object
In order to simplify computations, we approximate state using labels produced by the background model
the joint distribution, p(A*,T"|I') with a product, (P(ME|TOY) o ppge—1ppefime—are AN p(THI%)
q(MYHq(Th). It is easily shown that the best such ap-

. . . h . Hpt—1_, t/,LFt_yTt).
proximation (in the KL-divergence sense) is the product of ‘ ’

marginal distributionsp(M*|I*) andp(T*|I'). Substitut- If inference on constituent Markov chains were per-
ing p(M* 1) p(T| 1Y) for p(M*L, T |I') in Equation 5, we  formed individually, as is the case with common feed-
obtain an approximate inference equation: forward systems where background subtraction results are
1 used as input to an object tracking system, it would still
p(M?|I', 1) ~ 7 /dM1¢(M27 MYp(M*'|T")  (6) involve steps analogous to 1 and 3 (and partially 2); conse-
o guently, combining models introduces very little additional
/ dF? [¢(F2)¢(F2, M?) complexity to the inference process.
/dT2 {¢(F27T2) 4. Implementation and Results

Since the objective of this paper is to compare the per-
formance of the background maintenance system with and
without tracking feedback, we chose to implement a very
The similarity between Equations (4) and (6) suggests Simple adaptive module, although a more advanced sys-
an approximate filtering algorithm that estimates marginal tem can certainly be used. The background distribution
distributions of the state variables by recursively applying Was modeled with a single (per-pixel) Gaussian with fixed
Belief Propagation to acyc“c Subgraphs of the form shown variance and variable mean. Model dynamiCS and observa-
in Figure 1(e), using the marginal state distribution obtained tion noise were also represented with Gaussian distributions

Jarot ]|

attimet — 1 as priors at time. with fixed variances. We used an object (blob) tracker with
At each timestep, an approximate inference may be per_first—order linear dynamics similar to one described in [8].
formed using message passing in 3 steps. Based on these modules, we implemented and compared

the outputs and runtimes of the dual-chain algorithm de-
1. Predict the current background model and po- scribed in the previous section and of the feed-forward sys-
sitions of the foreground objects based on tem where a stand-alone background subtraction module
the previous estimates by computing messagesprovided input to an object tracker.
Poart—1 e = [dMTre(M M Y)p(METH 10 Both  systems were evaluated on two
andupi—1 e = [dT7 (T, T p(TH 1011, datasets provided for the PETS 2001 workshop



(ftp://pets.rdg.ac.uk/PETS2001/ ). These
datasets contain observations of an outdoor traffic scene,
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Figure 3: Qualitative comparison of background subtraction performance on one of PETS2001 image sequence. Second
column holds input frames. Estimated background model and the computed foreground components are presented in the
third and fourth columns for stand-alone background subtraction and in fifth and sixth columns for dual-chain model. Note
that while input images are in color, all computations were performed in grayscale. See text for more details.



