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Abstract.
Visibility constraints can aid the segmentation of foreground objects in a scene observed with multiple range imagers. Points

may be labeled as foreground if they can be determined to occlude some space in the scene that we expect to be empty. Visibility
constraints from a second range view can provide evidence of such occlusions. We present an efficient algorithm to estimate
foreground points in each range view using explicit epipolar search. In cases where the background pattern is stationary, we
show how visibility constraints from other views can generate virtual background values at points with no valid depth in the
primary view. We demonstrate the performance of both algorithms for detecting people in indoor office environments.

1. Introduction

Object segmentation is an important preliminary
step for many high-level vision tasks, includ-
ing person detection and tracking. State-of-the-art
systems (Wren et al., 1995, Brumitt et al., 2000,
Beymer and Konolige, 1999, Grimson et al., 1998)
use foreground/background classification fol-
lowed by pixel clustering and analysis. A com-
mon approach to foreground detection is to
maintain a background model and label all pix-
els that differ significantly from this model
as foreground. Several segmentation methods
have been proposed which use background mod-
els based on color/intensity (Wren et al., 1995,
Toyama et al., 1999, Stauffer and Grimson, 1999),
stereo range (Beymer and Konolige, 1999) or
both (Krumm et al., 2000, Harville et al., 2001).

Ideally, these systems should be robust to
rapid illumination variation, such as from out-
door weather or indoor video projection sys-
tems. Generally, non-adaptive color-based mod-
els suffer from varying illumination. Adaptive
color models (Stauffer and Grimson, 1999) are
more stable under lighting changes, but can er-
roneously incorporate objects that stop moving
into the background model. Range-based back-
ground models can be illumination invariant, but
are usually sparse when obtained from optical
stereo. Sparse range data causes an inherent am-
biguity in classifying valid range values in the
locations where the model is invalid. If all such
locations are labeled as foreground, then pix-
els where the range data becomes available due
to illumination change (e.g. shadows or over-
head projection on the otherwise uniform walls)
will be detected as foreground (Figure 1(d)). The

opposite approach, where only locations where
both model and the input range values are valid
are considered, may lead to underdetection of
the foreground objects (Figure 1(g)). To avoid
such ambiguity and the resulting illumination de-
pendence, stereo range background models have
been either used in conjunction with color mod-
els (Harville et al., 2001), or are built using ob-
servations from widely varying illumination and
imaging conditions (Darrell et al., 2001).

We overcome the problems with sparse range
backgrounds by using visibility constraints ob-
tained from multiple range views of the scene.
We define foreground as a set of points occlud-
ing the free space that is expected to be visible
by the camera, in contrast to background-based
approaches that describe it as deviation from the
expected observation (the model). The occlusion
relationships may be computed for every collec-
tion of concurrent scene views, leading us to an
instantaneous foreground segmentation algorithm
(Section 4); or, if the “background” scene is ex-
pected to remain static, they may be precomputed
once, resulting in a virtual background generation
algorithm (Section 5). We further formulate an
approach to clustering detected foreground points
based on visibility constraints(Section 4.1).

Our method relies on access to multiple widely
spaced range views of the scene, that may be
available in surveillance or smart environment
applications. Access to range views simplifies
detection of the free space, as all of the space
between the observed 3-D location and the im-
ager’s center of projection can be presumed to be
empty. The occlusion relationships are computed
by exploring the observed point’s optical ray in
the other range views (e.g. by scanning a point’s
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Figure 1. Background Subtraction ambiguities. Given a sparse (invalid disparity values are shown in white) background model
(e) of a scene (a), a new range image with a foreground person (f), and a new range image with no foreground object but a
changed illumination condition (b), we see that a conservative segmentation (c,g) misses many foreground points on the object.
However the alternative approach (d,h), has many false positives when the illumination changes, and erroneously includes
background points in the foreground. To achieve illumination invariance one must adopt a conservative approach and obtain
very dense range background models.

epipolar lines). We believe ours is the first method
for range image segmentation using image-based
(non-voxel) free space computation.

We begin with a review of the previous work
on 2-D and 3-D foreground segmentation and ob-
ject modeling. We then give an overview of the
notation used in the rest of the paper. Section
4 describes our instantaneous foreground seg-
mentation algorithm, and proposes a visibility
constraint-based clustering algorithm that relies
on both proximity of pixels in the image plane and
the estimated extent of the objects along the cor-
responding optical rays. In Section 5 we propose
a method for creating dense virtual backgrounds
for stationary scenes. Finally, we demonstrate the
results using our algorithm for detecting people in
an indoor office environment.

2. Related Work

A common approach to foreground object seg-
mentation is to model the expected distribution of
colors in each background pixel as either a sin-
gle (Wren et al., 1995, Matusik et al., 2000) or a
mixture of (Stauffer and Grimson, 1999) of Gaus-
sians, or using a Kalman filter (Ridder et al., 1995).
The pixel is then labeled as foreground if its value
has small probability given the model. The sin-
gle Gaussian approach performs well if lighting

conditions are unchanged or vary slowly. While
it allows for fast segmentation, it is not robust
to significant illumination changes. The mix-
ture of Gaussians and Kalman filter approaches
can handle some illumination variations, but re-
cover slowly after fast local changes (e.g. from
overhead projection). The color-based segmenta-
tion approaches can also undersegment the scene
when the foreground objects have color similar to
learned background.

Range-based segmentation methods e.g. (Bey-
mer and Konolige, 1999) are much more ro-
bust to lighting changes, but are unreliable in
the absence of dense background models (Fig-
ure 1). Most stereo systems unfortunately pro-
duce sparse range values in the low texture re-
gions. To overcome this, (Krumm et al., 2000,
Harville et al., 2001) use combined color and
range mixture model (allowing invalid range).
Several approaches for clustering foreground pix-
els using range have been proposed, such as
grouping neighboring points that have similar
disparities (Krumm et al., 2000).

Our epipolar line search is a similar computa-
tion to algorithms proposed for the rendering of
image-based visual hulls (Matusik et al., 2000).
The key difference is that our method takes as
input unsegmented noisy range data and eval-
uates 3-D visibility per ray, while the visual
hull method presumes segmented color images
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as input and simply identifies non-empty pix-
els along the epipolar lines in other views. Also
related are space carving and coloring methods
(Kutulakos and Seitz, 2000, Slabaugh et al., 2001),
which split the space intovoxelsand use color
consistency across multiple cameras to locate
opaque voxels and to detect free space. These
methods are quite general, and work with an ar-
bitrary set of monocular views. They also require
the construction of a volumetric representation
of the scene for reconstruction or segmentation.
We are interested in algorithms that perform seg-
mentation solely in the image domain, without
computing a volumetric reconstruction.

3. Notations

While in the algorithms described below we as-
sume stereo disparity input, they may be adapted
to use any appropriate range inputs from any
depth sensor.

An ideal (rectified) stereo rig may be com-
pletely described by the baselineB, focal length
f and the image coordinates of the principal point
(cx, cy). The following equations describe a re-
lation between point(x, y) in the disparity image
ID and the corresponding 3-D location(X, Y, Z).





x = x− cx = f
X

Z

y = y − cy = f
Y

Z

d = ID(x, y) = f
B

Z

(1)

As has been shown in (Demirdjian and Dar-
rell, 2001) , we can express the transformation
between camera associated disparity coordinates
(x, y, d) and camera-centered Euclidean coordi-
nates(X,Y, Z) as a linear projective space trans-
formation,

P/E ' TE
Dp/D (2)

p

C

B

b
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P

P

bI
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1

Figure 2. Visibility-based segmentation. Observation ofB
in C2 allows us to infer thatP in C1 is foreground. Point
B visible in I2 (projecting toC2 disparity pointb) lies
behind pointP relative toC2, and thus provides evidence
for existence offree spacebehindP (projecting tob) by
demonstrating thatP is transparent.

where

TE
D = TC(f,B, cx, cy) =




B 0 0 −cxB
0 B 0 −cyB
0 0 0 fB
0 0 1 0




P/E =




PX

PY

PZ

1


 ,p/D =




px

py

pd = ID(px, py)
1




(3)

The disparity pointp is considered valid if
ID(px, py) contains a valid value.

In the rest of the paper we will refer to the
arrangement illustrated in the Figure 2. There are
N (N = 2 in the figure) fully calibrated stereo
rigs Ci, i = 1..N , with associated disparity-to-
Euclidean camera coordinate transformsTEi

Di =
TC(f i, Bi, ci

x, ci
y), image planesIi, and disparity

imagesIi
D. The Euclidean coordinate transforma-

tions between each pair of viewsi, j (TEi

Ej) are
also assumed to be known.

4. Instantaneous Foreground Segmentation

If the background scene is dynamic or no previous
observations are available, then the only informa-
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tion about the scene is a set of range images si-
multaneously obtained from different viewpoints.
In this case we can assume that all space visible
by the cameras is empty, and compute the visi-
bility constraints directly from the instantaneous
data. We compute the occlusion relationships for
each range view separately, using other views as
complementary information.

Let us consider a range imageIi
D. Let a valid

point inDi, p,

p/Di '




px

py

pd

1




be the image of the pointP, P/Ei ' TEi

Di p/Di .
Points Ci and P define an optical ray in the
cameraCi. As the point P was imaged, we
can conclude that all points on the line segment
(Ci,P) are transparent, and thatP is not. Ii

D
does not provide us with any information about
pointsP that lie on the optical ray[Ci,P) beyond
P, and are occluded by it. In order to determine
whetherp belongs to foreground, i.e. some ofPs
are transparent, we will use the rest of available
views.

Let Ij
D be a range image taken with a camera

Cj , such thatCj, Ci, andP are not collinear. Let
pointP project toDj pointb:

b/Dj =




bx

by

bd

1


 ' TDj

Ej TEj

EiP/Ei .

Points(bx, by) corresponding to allPs make up
a ray of the line epipolar to point(px, py) in
Ii. If the observed valueIj

D(bx, by) is valid, and
Ij
D(bx, by) < bd, then the pointB, observed by

Cj ,

B/Ej ' TEj

Dj




bx

by

Ij
D(bx, by)

1




lies beyondP on the projective ray[Cj,B).
From this observation we can conclude thatP
is transparent. Each such observationIj

D(bx, by)
can be considered to be theevidencefor point

C 1

C
2

(a) (b)

Figure 3. Scene used in the synthetic tests contains 4 objects
– two foreground cubes and two ”poles” that provide back-
ground information. (a) is the plan view of the scene, and (b)
is the scene rendered in 3D

p belonging to foreground in viewIi
D under our

definition. We present fast algorithm for gener-
ating pointsb/Dj corresponding to a particular
p/Di in Section 6.

In the current implementation of the algo-
rithm, we use the number of foundevidencepixels
as a measure of certainty that pointp belongs
to foreground. If more than one complementary
camera is available, then the results from all of
them may be combined to provide more robust
output. We compute a map of the number of
observed occluded free-space points:

θ(b) =

{
1 Ij

D(bx, by)is valid andλIj
D(bx, by) < bd

0 otherwise

OFS(p) =
∑

b,

for all P

θ(b)

(4)

The factorλ > 1 is introduced to deal with
noise inherent in disparity computation. Since
we expect the stereo-based range to be less ro-
bust for locations that are far from the camera,
we can classifyp as foreground ifOFS(p) >
TOFS(pd), whereTOFS(d) ∼ 1/d.

In order to segment the primary view, we
search epipolar lines of every valid pixel in all
complementary views. So ifv is the number of
valid pixels in the range image, andn is the total
number of pixels in each range image, then the
complexity of instantaneous foreground segmen-
tation algorithm isO(v

√
nN), whereN is the

number of available views.
Figure 4 demonstrates the results of applying

our algorithm to synthetic non-noisy data. The al-
gorithm was presented with two range views (a)
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Figure 4. Example of segmentation with visibility constraints on scene in Figure 3. Given disparity views (a) and (e), the
algorithm produces OFS maps: (b) and (f). The algorithm also outputs the disparity maps (IDB) of the first visible free-space
points behind each of the foreground point: (c) and (g). And the range clustering algorithm (Section 4.1) uses this information
to produce the connected components: (d) and (h).

and (e) of the scene in Figure 3, and produced the
OFS maps (b) and (f) correspondingly.

4.1. 3-D CONNECTEDCOMPONENTS

The method described in the previous section pro-
vides us with a measure of how much free space is
occluded by each pixel in a given view. It can also
be used to approximate the extent of the observed
object(s) along each optical ray. We can use this
information to cluster the foreground points us-
ing both proximity in image plane and the depth
extent.

A naive approach would be to cluster the
points in a single view based on proximity in ei-
ther disparity or Euclidean space, and assume that
each such cluster corresponds to a separate object.
Such assumptions are correct in cases such as one
in Figure 5(a), but lead to oversegmentation in the
example in Figure 5(b), where parts of the same
object have different depths.

We use the regular connected components
analysis supplemented with depth extent informa-
tion as a clustering technique. For each optical
ray (each pixel in the image plane) we can define
a optical line segmentthat contains an object, if
any. One end of this line segment is the observed
3D point (P) corresponding to the disparity point
(x y ID(x, y))T , and the other iŝP, the first
free space point behindP that can be detected
from the complementary views. Depending on the
camera configuration and the texture availability,

optical line segment[P, P̂] may be a more or less
tight bound on the true extend of the object along
the optical ray containing it.

We can thus describe the segment as the im-
age plane coordinatesx, y, the “front” disparity
ID(x, y) and the “back” disparityIDB(x, y) <
ID(x, y). The connected components are then
computed such that two pointsp1 andp2 belong
to the same component if and only if there exists
a 4-connected path in the image plane such that
all points in the path belong to the foreground (as
described in the previous section),andtheir depth
ranges ([IDB(x, y), ID(x, y)]) intersect. Thus if
free space can be detected between the objects,
they will never be undersegmented.

When the algorithm is applied to the synthetic
data of Figure 4(a, b), we obtain “back” dispar-
ity images (c) and (g), and the foreground pixels
in (d) and (h) are correctly segmented into two
clusters, corresponding to each of the foreground
cubes.

5. Virtual Background Generation

The foreground classification method described
in the previous section requires a rather large
computational expense at run-time to correctly
segment all objects in complicated backgrounds,
and will label free-standing static objects (e.g.
support columns) as foreground, necessitating ex-
tra postprocessing steps to discard them.
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Figure 5. Range-based Connected components. (a) the componentsS1, andS2 belong to separate objects, as their range clus-
ters (lightly shaded regions) do not intersect. (b) A single range connected component found. (c) The algorithm undersegments
the scene, since all the optical line segments of visible points make up a single connected component, but the same scene may
be correctly segmented (d) if an extra view (I3) is available.

In cases where the background scene is ex-
pected to be static, we can use observations in the
absence of the foreground objects to precompute
the expectedvisible space for each of the views.
We describe the expected visible free space as an
upper limit on depth (lower limit on disparity),
and classify points with depth less than this limit
as foreground. While this foreground definition is
analogous to one used with regular range back-
ground modeling techniques, it allows us to use
both directly observed and computed limits.

An approximation to this limit may be com-
puted as a minimum of the range values at a
pixel observed over time and with varying gain
(Darrell et al., 2001), resulting in the statistically
trained modelIB. This technique is not guar-
anteed to obtain valid values for all location in
the image (e.g. uniformly colored walls would
not normally produce valid range for any light-
ing). If no range data is available at the pixel,
we can estimate this limit from visibility con-
straints obtained from “complementary” cameras,
using a technique similar to that shown in pre-
vious section. For each point inIi with invalid
range we search the corresponding optical ray to
detect all free space points along it that are visi-
ble by other camerasCjs, and select the one with
the greatest depth (lowest disparity) as thevirtual
background.

We can inverse the order of computation in or-
der to simplify the algorithm. Instead of searching
along the optical rays ofCi, we use algorithm
described in Section 6 to compute all free space
points visible byCj , i 6= j.

For each valid range pointb,

b/Dj '




bx

by

Ij
D(bx, by)

1




all points on the optical ray betweenB,

B/Ej ' TEj

Djb/Dj

and Cj are transparent and may be assumed to
belong to free space. Thus any pointB ∈ (B,Cj)
is a candidate virtual background for the corre-
sponding point inIi, (px, py), such that

p/Di =




px

py

pd

1


 ' TDi

Ei TEi

EjB/Ej (5)

After a set of candidates for a single (discrete)
image location ({p̃k = (p̃x p̃y p̃dk

)T }) is com-
puted, we select the virtual background value at
the location(p̃x, p̃y) as

Ii
V (p̃x, p̃y) = min

k
p̃dk

(6)

We combine the directly observed background
IB and computed virtual backgroundIV into our
background modelIV B by using directly ob-
served values where available, and virtual values
in the rest of locations,

IV B(x, y) =

{
IB(x, y) IB(x, y) is valid

IV (x, y) otherwise
(7)
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6. Fast Computation of Visibility Constraints

In this section we detail our method for dis-
cretizing disparity-space projections of optical
rays. Since this is the most time consuming part
of the algorithms described in the previous sec-
tions, it is imperative that the point generation
be extremely fast. We use Bresenham’s algorithm
(Bresenham, 1965) to discretize theCi’s optical
ray ofP relative toDj .

For each valid disparity pointp in Di,

p/Di =




px

py

Ii
D(px, py)

1


 ,

the corresponding optical ray in the cameraCi is
[Ci,P), where

P/Ei ' TEi

Dip/Di .

If we define the transformation fromEi to Dj ,

ΓΓΓ = TDj

Ej TEj

Ei =




γx

ΓΓΓ4×3
γy

γd

γw


 . (8)

The image of the ray[Ci,P) in Dj is
[ΓΓΓ(Ci

/Ei),ΓΓΓ(P/Ei))
SinceCi is the origin ofEi, i.e

Ci
/Ei '




0
0
0
1


 ,

the ray inDj is [γγγ,b), where

b/Dj =




bx

by

bd

1


 ' ΓΓΓTEi

Dip/Di .

After the two points on the ray are computed,
we can represent any point on this ray,

b =




bx

by

bd




in parametric form asb = (bx by bd)T + tu.
Where

u′ =




bxγw − γx

byγw − γy

bdγw − γd




u = ± u′

max{|u′x|, |u′y|}

(9)

with sign selected so thatu points “away” from
γγγ when applied atb. In this case the positive val-
ues of t correspond to the direction away from
the center of projection, and should be used for
foreground segmentation (Section 4), while the
negativets should be used in generating virtual
backgrounds (Section 5).

We can then use Liang-Barsky line clipping
algorithm (Foley et al., 1993) to select the region
of the ray that should be explored. It is deter-
mined by the extend of available portion ofIj

D
(the range image), and the requirements that the
pointP should be in front of both image planesIi

andIj . As the result of clipping we obtain values
tMIN andtMAX , such that iftMIN ≤ t ≤ tMAX ,
thenb = (bx by bd)T + tu is valid.

After b, u, tMIN andtMAX are computed, the
straight forward application of Bresenham’s algo-
rithm generates all valid pointsb = b + tu, t ∈
I, tMIN ≤ t ≤ tMAX . These point can then
processed as described in Sections 4 and 5.

Note that while ray processing is the most
time consuming operation of the presented algo-
rithms, each ray is independent of all other rays,
and the algorithm can take advantage of parallel
processing capabilities if they are available.

7. Experimental Results

We have tested our algorithms on both synthetic
and live data. The live images were obtained us-
ing SRI Small Vision System hardware/software
combination (Konolige, 1997). The cameras with
7.5mm lenses were placed to cover approxi-
mately3m× 3m area, with optical axes approxi-
mately perpendicular.

The results of applying our algorithms to sam-
ple images are presented in Figures 7, 8, 9. The
images of the scene without foreground objects
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(including computed virtual background image)
for the live image tests are shown in Figure 6

For each example with intensity image (a),
stereo disparity image (b) and complementary
disparity image (e), we compute theOFS map (c)
using algorithm described in Section 4, withλ =
1.1. The algorithm achieved processing speed of
15fps on 1.5GHz Pentium 4, on half-resolution
input images from our two camera installation
(not including time used for stereo processing).
The detected foreground pixels are then clustered
using technique from Section 4.1, producing the
“back” disparity map (f) and connected compo-
nents (g). We finally apply the method presented
in Section 5, using the background model in Fig-
ure 6(d), obtained from observations 6(b) and
6(c), to produce the virtual background segmen-
tation (d). The segmentation obtained using class-
ing foreground detection with the observed back-
ground model (6(b)), is provided for comparison
in (h).

As can be seen in e.g. 7(c), the Instantaneous
Foreground algorithm detected free space behind
the lamp-post and labeled it as foreground, even
though it was present in the empty scene (Figure
6(b)). The image was segmented correctly by the
Virtual Background Segmentation (7(d)).

8. Conclusions

We have presented two novel range-based seg-
mentation algorithms, that take advantage of
availability of multiple, widely spaced stereo
views. The semi real-time foreground segmenta-
tion algorithm relies on the visibility information
obtained from other views to locate points that
occludefree space. Since the algorithm does not
maintain an explicit background model and uses
only immediately available reliable range infor-
mation, it is able to handle variable lighting con-
ditions, but can incorrectly label parts of the back-
ground scene as foreground. We further extended
the algorithm to use visibility constraints to im-
prove clustering of the object points. The virtual
backgrounds algorithm uses the visibility infor-
mation to create dense range background images
which can then be used with common real-time
conservative background subtraction methods.
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Figure 6. The images of the empty scene (invalid disparities are shown in white): (a) intensity, (b) disparity, (c) disparity view
from the complementary camera, (d) generated virtual background image.
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Figure 7. Foreground segmentation with a single foreground object: (a) intensity image, (b) disparity image, (c) OFS map, (d)
virtual background segmentation (e) complementary disparity image, (f) estimated “back” disparity for detected foreground
points, (g) Color-coded depth-extent connected components, (h) real background segmentation.
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Figure 8. Foreground segmentation with two foreground objects: (a) intensity image, (b) disparity image, (c) OFS map, (d)
virtual background segmentation (e) complementary disparity image, (f) estimated “back” disparity for detected foreground
points, (g) Color-coded depth-extent connected components, (h) real background segmentation.
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Figure 9. Foreground segmentation with two foreground objects with overlapping projections: (a) intensity image, (b) disparity
image, (c) OFS map, (d) virtual background segmentation (e) complementary disparity image, (f) estimated “back” disparity
for detected foreground points, (g) Color-coded depth-extent connected components, (h) real background segmentation.
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