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Abstract— Graph-based SLAM approaches have had success
recently despite suffering from ever-increasing computational
costs due to the need of optimizing over the entire robot
trajectory. To address this issue, in this paper, we advocate the
decoupling of marginalization (node removal) and sparsification
(edge reduction) to allow for short-term retention of dense
factors induced by marginalization while enabling us to spread
the computation of these two operations over time. In particular,
we analytically show that during marginalization, the correct
choice of linearization points in constructing dense marginal
factors is to use the relative (local), instead of global, state esti-
mates in the Markov blanket of the marginalized node, which
has lacked a general consensus in the literature. Furthermore,
during sparsification, we determine an online sparse topology
through sparsity-regularized convex optimization, which guides
us to construct consistent sparse factors to best approximate
the original dense factors across the Markov blanket. The
proposed approach is tested extensively on both 2D and 3D
public datasets and shown to perform competitively to the state-
of-the-art algorithms.

I. INTRODUCTION

In order for robots to persistently navigate and operate in
unknown environments, it is essential to perform accurate
localization and mapping in real time. To this end, graph-
based optimization methods have recently become popular
due to their increased accuracy as well as efficiency [1]–
[3]. These approaches store the entire history of robot
poses (and landmark positions in the case of feature-based
SLAM) as nodes in the graph, while measurements between
nodes are represented as edges (factors). At every time step,
a batch maximum-a-posteriori (MAP) estimate is sought
by formulating and solving an equivalent nonlinear least-
squares (NLS) problem. Unfortunately, the problem size is
unbounded due to the non-stop growth of the graph, which
necessitates systematical reduction of the graph so as not to
exceed what available resources permit.

In particular, two recent methods – Generic Linear Con-
straints (GLC) [4] and Nonlinear Factor Recovery (NFR) [5],
[6] – were introduced to reduce graph size by marginalizing
out a subset of nodes immediately followed by a sparsifi-
cation of the resulting dense graph. This coupled scheme is
unable to take advantage of all the information contained
in the dense factors induced by marginalization, as they are
immediately approximated through sparsification. Moreover,
due to the fact that all the computations of both marginaliza-
tion and sparsification are lumped together into one single

K. Eckenhoff and G. Huang are with the Department of Mechanical
Engineering, University of Delaware, Newark, DE 19716, USA. Email:
{keck,ghuang}@udel.edu

L. Paull is with the Computer Science and Artificial Intelligence Labora-
tory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Email: lpaull@csail.mit.edu

time step, this coupling may not be computationally feasible
for systems of limited processing power. Note also that
during sparsification, both approaches [4], [5] offer (tree-
based) sparse topologies, which may not be the best among
all possible structures.

To mitigate the aforementioned issues, in this paper, build-
ing upon our prior work [7], we decouple the two compu-
tationally intensive processes, marginalization of nodes and
sparsification of edges, by postponing sparsification to a later
time after marginalization. By doing so, we are able to relin-
earize all the remaining measurements after marginalization
and better utilize the accuracy of the dense factors inferred by
marginalization. Splitting these two processes also allows us
to spread the computational burden over time. Lastly, during
sparsification, a sparsity-regularized convex optimization is
formulated to determine online the sparse topology which
will then guide the construction of resulting sparse factors
that are to be used in future optimization. In particular, the
main contributions of this work are the following:

• We perform marginalization and sparsification over a
subgraph including only the factors incident to the cor-
responding marginalized nodes (i.e., the Markov blanket
of the marginalized nodes) [8], rather than the whole
graph as in our prior work [7]. During marginaliza-
tion, we formulate the maximum likelihood estimation
(MLE) problem in the frame of reference of one of the
nodes in the subgraph, which yields the local, relative
estimates that are optimal (up to linearization errors) and
thus consistent. Note that these local state estimates,
instead of the current global estimates as in [4], are
used as linearization points for evaluating the induced
marginal pdf (i.e., computing the corresponding mean
and covariance/information matrix). This distribution
provides prior information for the remaining nodes in
subsequent optimization in the form of inferred nonlin-
ear measurements in the global frame.

• We decouple sparsification from marginalization be-
cause not only can we keep the dense factors induced
by marginalization in our graph for as long as desired
(depending on the available computational resource) to
improve estimation accuracy, but also spread the com-
putational overhead over time. During sparsification,
we first update the dense distribution using the intra-
clique factors (i.e., the edges between remaining nodes
in the Markov blanket). Note that these constraints are
excluded from the dense factor calculations to allow
for relinearization of these measurements in subsequent
steps before sparsification takes place. We then formu-
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late an `1-regularized convex optimization on the infor-
mation matrix across the Markov blanket to find a sparse
approximation. The structure of the resulting optimal
sparse information matrix serves as the guidance for
constructing a set of sparse inferred measurements that
best capture the information contained in the Markov
blanket and thus are used to replace the dense factors.

II. RELATED WORK

To date, many algorithms are available to reduce the
computational cost of graph-based SLAM. For example,
incremental approaches such as iSAM [9] and iSAM2 [10]
reuse previous computations of square root information ma-
trix to improve efficiency. However, as graphs become denser
and/or larger, they still suffer from increasing computational
complexity. Other solutions process a subset of graph data
in order to reduce the problem size. For instance, sliding
window filters [11], [12] solve an optimization problem
over a constant-size time window of states using only the
measurements involved in that window. Keyframe-based
approaches [13], [14] solve over a (heuristically) selected
subgraph at each time step.

To reduce computational requirements for solving graph-
based SLAM, focus has shifted to reducing the size of the
graph. In particular, compact pose SLAM [15] adds only
non-redundant nodes and highly informative loop-closing
constraints to the graph. This method, however, simply
discards unused poses and nodes, constituting a loss of infor-
mation. Eade et al. [16] construct relative-pose measurements
to remove nodes from the graph, but fail to account for the
correlations between these new measurements. This arises
because the new constraints are built geometrically from
the discarded edges, which may cause the same information
(i.e., same edges) to be used multiple times. Marginal-
ization is a standard approach to remove nodes from a
graph while retaining information contained in the discarded
edges. Nerurkar et al. [17] marginalize out non-keyframes
from which cost functions involving keyframes are derived.
Since marginalization causes density in the graph, further
approximation is employed to reduce this fill-in.

Recent research efforts seek to couple marginalization
(node removal) and sparsification (edge reduction) in the
same step to reduce computational complexity. Vial et
al. [18] introduce a technique of consistent sparsification
based on the conservative minimization of the Kullback-
Leibler Divergence (KLD). However, this method does not
recover individual factors, and therefore cannot be directly
used in the sequential formulation. As briefly discussed in the
preceding section, the GLC [4] method applies marginaliza-
tion across the Markov blanket of the marginalized node but
with intra-clique measurements, which yields n-nary linear
constraints to approximate the blanket. However, these linear
factors are evaluated at the current global state estimates
as linearization points, which may result in inconsistent
measurements. In contrast, the NFR approach [5], [6] allows
for any type of inferred new factors (i.e., not only linear
ones as in [4]). The information matrix of these factors is
found by minimizing the (KLD) between the approximate

and orignal marginal distributions. Besides using the global
state estimates as linearization points in computing the mean
and information of the new factors, the authors have also
empirically tested the local state estimates as linearization
points, which, however, has not been rigorously justified.
Moreover, the sparse topologies such as tree-based structures
used by both approaches [4]–[6] may not be optimal for
other levels of sparsity. To address these issues, our proposed
approach decouples sparsification from marginalization to
better utilize the dense factors induced by marginalization
as well as the intra-clique factors in the Markov blanket.
We determine online a sparse structure based on sparsity-
regularized convex optimization which guides us in con-
structing new, convservative sparse factors. In addition, we
show that the proper way of choosing linearization points in
this process is to use local state estimates.

III. GRAPH-BASED SLAM
The full SLAM problem is often formulated using the

factor graph [2], where the edge (or constraint) between two
nodes takes the following generic form:

zij = hij(xi,xj) + nij (1)

where hij is a measurement function between the i-th and
j-th nodes (states), xi and xj , which maps the poses and/or
positions into a measurement, zij ; and nij is zero-mean
white Gaussian noise that corrupts the measurement, i.e.,
nij ∼ N (0,Λ−1

ij ). With this factor graph, we seek to solve
for MLE of all the nodes in the graph:1

x̂ = arg max
x

p(z|x) = arg max
x

∏
(i,j)∈supp(z)

p(zij |xi,xj) (2)

where z is the stacked vector of all measurements, x is the
set of all the nodes, and supp(z) is the set of node pairs
induced by z. In the above expression, we have employed
the common assumption that measurements are independent.
With Gaussian noise, the above MLE problem (2) is equiv-
alent to the following NLS problem:

x̂ = arg min
x

∑
(i,j)∈supp(z)

1

2
||zij − hij(xi,xj)||2Λij

(3)

where ||r||2Λ = r>Λr is the squared Mahalanobis distance
(energy norm). To solve this problem, iterative algorithms
such as Gauss-Newton are often used. In particular, at the
k-th iteration, we wish to first solve for the error state δx:

δx(k) = arg min
δx

∑
(i,j)∈supp(z)

1

2
||zij−hij(x̂

(k)
i , x̂

(k)
j )−H

(k)
ij δx||

2

Λij

(4)
where H

(k)
ij =

∂hij

∂x |x̂(k) is the measurement Jacobian eval-
uated at the current state estimate. The solution to this
problem is then used to update the state estimate: x̂(k+1) =
x̂(k) + δx(k). This process is repeated until convergence. It
is important to note that, because all nodes are stored in the
graph, the problem experiences unbounded growth of map
size. This implies that a low-latency estimator may quickly

1Note that if there is a prior available, this SLAM problem becomes a
batch MAP estimation problem [12].
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Fig. 1. A toy example to illustrate the node/edge partitions based on
the Markov blanket of x1 that is to be marginalized. Thus, the nodes are
partitioned as: xm = x1, xb =

[
xT
0 ,xT

2 ,xT
3

]T and xr = x4. The
constraints incident to x1 are zm = {z01, z12, z13} shown in red dotted
lines, the intra-clique constraints are zc = {z0, z03, z23} in green dashed,
and the remaining ones are zr = {z04, z34} in blue solid.

become prohibitive. We thus seek to reduce the graph size
by systematically removing nodes and sparsifying edges.

IV. NODE REMOVAL VIA MARGINALIZATION
OVER MARKOV BLANKET

In this section, we explain in detail how to remove nodes
in a consistent manner by performing marginalization over
the associated Markov blanket. In particular, we analytically
show that the best choice of linearization points in this
process is the local state estimates (that are attained by pro-
cessing the local measurements only in the Markov blanket),
which appears to be largely overlooked in the literature.

Suppose that we seek to marginalize out the node(s)
denoted by xm in order to reduce the size of the graph.
Marginalization over all nodes is prohibitively expensive, and
so we instead perform this operation over a much smaller
subgraph. Specifically, we first construct the Markov blanket
of the marginalized node xm, which is the smallest set
of nodes that renders xm conditionally independent of all
other nodes in the graph [8]. The Markov blanket is an
undirected graph consisting of all immediate neighboring
nodes denoted by xb. We further denote by xr the remaining
nodes in the graph other than xm and xb. Thus, we have:
x =

[
xTm xTb xTr

]T
. We accordingly partition the mea-

surement set z into: z = {zb, zr} = {zm, zc, zr}, where
zb = {zm, zc} includes the all measurement constraints in
the Markov blanket, and is further partitioned as the edges
(constraints) zm incident to xm, and the intra-cliques factors
zc; and zr represents all the remaining constraints. Fig. 1
visualizes the partitionings of nodes and edges.

Once the Markov blanket is built, we perform marginal-
ization of xm over zm only, thus resulting in significant
computational savings due to the smaller size of the Markov
blanket than that of the entire graph. This process generates
a prior distribution across the nodes in the Markov blanket,
xb, for future optimization. In a Gaussian scenario (which
typically is the case for SLAM), this pdf takes the form:

p(xb|zm) =

∫
xm

p(xb,xm|zm)dxm ≈ N (x̂b,Λ
−1
t ) (5)

Note that this distribution encapsulates all the information
contained in zm about the nodes of the Markov blanket, thus
providing all necessary prior information about xb for future
optimization – that is, this marginalization process results in

no information loss for the given measurements except for
linearization errors.

A. Prior Distribution of xb after Marginalization
In order to determine the normal distribution (5) (i.e., the

mean and covariance), we should solve the MAP estimation
problem with respect to xb using measurements zm, i.e.,
max p(xb|zm). However, since in general there is no prior
for xb and xm, we formulate and solve the following local
MLE over the Markov blanket [see (3)]:

{x̂b, x̂m} = arg max
xb,xm

p(zm|xb,xm) =

arg min
xb,xm

∑
(i,j)∈supp(zm)

1

2
||zij − hij(xi,xj)||2Λij

(6)

Note that the solution of the above problem renders the
optimal value x̂b that has been calculated using only the
measurements attached to xm (i.e., zm). To obtain the
information (or covariance) matrix of (5), we first notice that
the information (Hessian) matrix of ( 6) is computed by:

Λ =
∑

(i,j)∈supp(zm)

H>ijΛijHij =:

[
Λmm Λ>bm
Λbm Λbb

]
(7)

where the measurement Jacobians Hij are evaluated at the
local MLE estimates (see Lemma 4.1). The above informa-
tion matrix is decomposed according to the dimensions of
xm and xb. Now, the target marginal information matrix Λt

can be found via the Schur complement:

Λt = Λbb −ΛbmΛ−1
mmΛ>bm (8)

Once the prior pdf of xb (5) is determined, the MLE
problem (2) is approximated by the following NLS problem:

x̂ = arg min
x

1

2
||x̂b − xb||2Λt

+
∑

(i,j)∈supp(zr,zc)

1

2
||zij − hij(xi,xj)||2Λij

(9)
The prior distribution can therefore be thought of as a linear
inferred factor which approximately captures the information
contained in the discarded measurements zm about the
remaining states.

Lemma 4.1: If the mean x̂b, measurement Jacobians
Hij (7), and thus the target information matrix Λt (8),
are evaluated at the local MLE estimates (6), then the
marginalized-NLS problem (9) best approximates the orig-
inal non-marginalized MLE problem (3). If the global es-
timates (or indeed any other linearization point) is used,
then (9) becomes suboptimal.

Proof: We show this from a cost function perspective.
Based on the node and edge partitions (e.g., see Fig. 1),
we decompose the cost function, c(x), of the original non-
marginalized MLE problem (3) into the costs associated with
the factors attached to the marginalized nodes, and all other
factors, respectively, i.e.,

c(x) = cm(xm,xb) + cr(xb,xr) (10)

Thus, we have:

min
x

c(x) = min
xb,xr

(
min
xm

c(xm,xb,xr)

)
=

min
xb,xr

(
cr(xb,xr) + min

xm

cm(xm,xb)

)
(11)
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When first solving the minimization of cm(xm,xb) [see (6)],
due to the nonlinearity of measurements, the second-order
Taylor-series approximation to cm(xm,xb) is employed:

cm(xm,xb) ' cm(x̂m, x̂b) + (12)

gT
[
xm − x̂m
xb − x̂b

]
+

1

2

[
xm − x̂m
xb − x̂b

]T
Λ

[
xm − x̂m
xb − x̂b

]
where the gradient vector g =

[
gmm
gmb

]
and the Hessian

matrix Λ =

[
Λmm Λ>bm
Λbm Λbb

]
are partitioned in conformity

with the dimensions of xm and xb, and are evaluated at the
linearization points x̂m and x̂b [see (7)]. We note that since
the cost function (12) is quadratic with respect to xm, its
value can be obtained in terms of xb:

xm = x̂m −Λ−1
mm

(
gmm + Λ>bm(xb − x̂b)

)
(13)

And substitution in (12) yields the minimum value of cm:

min
xm

cm(xm,xb) ' (14)

ζ + gTt (xb − x̂b) +
1

2
(xb − x̂b)

TΛt(xb − x̂b)

where ζ is a constant independent of xb and xm, and

gt =gmb −ΛbmΛ−1
mmgmm (15)

Λt =Λbb −ΛbmΛ−1
mmΛ>bm (16)

With (14) and (11), the minimization of the cost function
c(x), i.e., the original MLE problem (3), is (approximately)
equivalent to the minimization of the following cost function:

c′r(xb,xr) = gTt (xb − x̂b) +
1

2
(xb − x̂b)

TΛt(xb − x̂b)

+
∑

(i,j)∈supp(zr,zc)

1

2
||zij − hij(xi,xj)||2Λij

(17)

If the linearization point used in computing the gradient and
Hessian is the local minimum across the Markov blanket
[i.e., the (sub-) optimal solution of the local MLE prob-
lem (6)], then the gradient term vanishes (gt = 0), and
thus the minimization of (17) becomes equivalent to the NLS
problem (9). If the global linearization point is used, then in
general gt 6= 0, and thus the returned cost should be (17).
This completes the proof.

B. Relative MLE Formulation
The measurements of the Markov blanket typically pro-

vides only relative information about the nodes, and thus
the local MLE problem (6) will be under-constrained if the
global state estimates are sought. In order to fully constrain
the problem, as in our prior work [7], we reparametrize
to solve for relative state estimates. This is achieved by
(arbitrarily) choosing a node in the Markov blanket and then
shifting the MLE problem (6) into its frame of reference.

To ease the ensuing derivations, we consider the toy ex-
ample in Fig. 1, where the Markov blanket of x1 consists of
nodes x0, x2, and x3, and reformulate the MLE problem (6)
with respect to the local frame of reference of node x0:

{0x̂i}3i=1 = arg max
{0xi}3i=1

p(zm|0x1,
0x2,

0x3) (18)

Fig. 2. The relative, local MLE formulation for the toy example of Fig. 1.
By shifting the frame of reference into that of x0, the problem becomes
fully constrained, allowing for the local MLE solution.

where 0xi denotes the node xi expressed in the frame of
node x0. The topology of this relative problem is shown in
Fig. 2. When performing marginalization of x1, the prior pdf,

N
([

0x̂2
0x̂3

]
, 0Λ−1

t

)
, can be determined similar to (6)-(8). In

subsequent optimization, this distribution will contribute to

the first term in (9) by 1
2

∣∣∣∣∣∣∣∣[0x̂2
0x̂3

]
−
[
x2 	 x0

x3 	 x0

]∣∣∣∣∣∣∣∣2
0Λt

, where

xi	xj refers to that xi is transformed from the global frame
to the local frame of xj (i.e., jxi).

C. Remarks
Note that because an accurate global linearization point

may not be available, GLC [4] also shifts the frame of
reference of the Markov blanket to that of an arbitrary node.
However, since the inferred factors are constructed using the
shifted global estimates of the nodes, based on Lemma 4.1,
this may not be the best approximation of the original MLE
problem, thus leading to suboptimal results. NFR uses local
linearization points, but finds them in the global frame by
fixing the estimate of a node. Note also that as evident
from (6), the subgraph chosen for marginalization need only
include the factors incident to the marginalized node – that
is, zm only, without the intra-clique factors zc. However,
GLC [4] and NFR [6] choose to include these factors during
marginalization for better sparsity, dismissing the ability to
relinearize these measurements in subsequent optimization.

In addition, while we here focus on the case of full-
state measurements, the same methodology is applicable
to partial-state measurements such as bearing-only observa-
tions. This requires a different parametrization to achieve
minimal representation of the local MLE (e.g., see [19]).

Lastly, although we have shown in our proof that gradient
terms are ignored if (9) is used on the global linearization
points, the full cost has been utilized in [12].

V. EDGE SPARSIFICATION

Marginalization, while reducing the number of nodes in a
graph, actually has an adverse effect on computation due
to the addition of dense factors that destroy sparsity in
the system. We must be able to sparsify our graph if our
algorithm is to be tractable for large-scale problems. In this
section we propose a method to explicitly solve for a sparse
topology that will guide us to build new sparse factors to
replace the dense measurements, rather than choosing a tree-
based structure as in [4], [5].

A. Determination of Sparse Topology
Our proposed method selects a sparse information matrix,

Ω, to approximate the local, marginal one, LΛt =: Σ−1, by
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Fig. 3. Illustration of `1-regularized KLD minimization as a means for
finding a sparse topology. First, the dense information is sparsified, yielding
a matrix with much less connectivity. The structure of this information
serves as a guide for building the topology of the desired sparse subgraph.

formulating the following `1-regularized KLD minimization
(see [7]). Note that hereafter the left superscript “L” denotes
the local, shifted frame of reference (see Section IV-B).

min
Ω
〈Ω,Σ〉 − log det(Ω) + λ||Ω||1 s.t. Ω � 0 (19)

where 〈∗, ∗〉 denotes the matrix inner product, and λ is
a parameter which is used to control the sparsity of Ω.
Optimization is performed subject to the constraint that
the solution is positive semidefinite. Note that in our prior
work [7], a similar `1-regularized minimization was em-
ployed, while being constrained by conservativeness of the
desired sparse information matrix Ω (i.e. Ω � LΛt). We do
not enforce the consistency constraint here, because we only
exploit the structure of the resulting information matrix Ω to
build the inferred, new factors, instead of the actual values
of Ω, as in [7], for future optimization. Instead, consistency
will be enforced when finding the actual sparse factors (see
Section V-B). To solve (19), we employ an Alternating
Direction Method of Multipliers (ADMM) method [20].

When the ADMM solver converges, the solution will be a
sparse approximation of the target information matrix. Based
on the fact that measurements between nodes introduce non-
zero elements to corresponding entries of the information
matrix, we conservatively search Ω for off-diagonal sub-
blocks with Frobenius norms above some threshold. If this
criterion is met, an inferred measurement is added between
the corresponding nodes. In addition, local prior measure-
ments (connected to the origin node of the shifted frame of
reference) are added onto each node of the graph to ensure
that the diagonal elements can be captured. In this way, the
structure of the approximate information matrix Ω serves as
a connectivity guide for our inferred subgraph (see Fig. 3).

It is obvious from the optimization problem (19) that
the sparsity of the resulting topology is heavily dependent
on the choice of sparsity parameter λ. In particular, we
observe that off-diagonal block zeros tend not to appear if
the highest magnitude entry in the corresponding covariance
off-diagonal block is higher than the sparsity parameter. We
therefore choose as a penalty parameter λ = α||Σij ||∞
where α is a parameter used to control the sparsity of the
solution, and ||Σij ||∞ is the average infinity norm of the off-

diagonal blocks in the true covariance. To limit the effect of
large Markov blanket sizes, we choose λ = α||Σij ||∞n

β ,
where n is the size of the Markov blanket in the local frame
of reference, and β is a parameter used to control how much
the problem size is penalized.

B. Construct Consistent Sparse Factors

Once the topology of our desired sparse subgraph is deter-
mined, we now construct sparse factors that not only obey the
found topology but also best capture the original local target
information LΛt. Specifically, suppose the inferred factors
assume the following form:

z̆ij = h̆ij(xi,xj) + n̆ij (20)

where h̆(·) is a measurement function that we are free to
choose, and is often chosen to be the relative-pose model.
In the above expression, n̆ij ∼ N (0, Λ̆−1

ij ) is the Gaussian
noise, whose information matrix Λ̆ij needs to be determined.

Based on (20), we first construct the expected values of
these inferred measurements and the corresponding Jaco-
bians using the local relative state estimates, Lx̂, as the
linearization points (see Section IV-B), i.e.,

ˆ̆zij = h̆ij(
Lx̂i,

Lx̂j), and H̆ij =
∂h̆ij
∂x
|x=Lx̂ (21)

To determine Λ̆ij for each of the new inferred measure-
ments, it is desirable that all the new measurements do not
contain extra information than the original dense factors, i.e,
they should be conservative (consistent). To this end, similar
to [6], we formulate an optimization problem minimizing the
KLD between the true and approximated distribution, while
enforcing a consistency constraint:

min
Λ̆

〈H̆T Λ̆H̆,Σ〉 − log det(H̆T Λ̆H̆) (22)

s.t. Λ̆ � 0, Λ̆ ∈ X , and H̆>Λ̆H̆ � Σ−1 (23)

where

H̆ =

[
· · · , H̆T

ij︸︷︷︸
κ−th block

, · · ·
]T

, Λ̆ = Diag

· · · , Λ̆ij︸︷︷︸
κ−th block

, · · ·


are respectively the Jacobian and information matrices of
the stacked measurements, and X is the set of block-
diagonal matrices which ensures uncorrelated measurements.
This solution is obtained by employing the interior point
method [21]. To solve (22)-(23), the consistency constraint
can be incorporated into the KLD minimization solver [6]
by adding an associated log barrier function: φ(Λ̆)ρ =
−ρlogdet(Σ−1 − H̆>ΛH̆), where ρ is a penalty that is
iteratively reduced to zero. Defining Ψ = Σ−1 − H̆>Λ̆H̆,
this barrier’s gradient and Hessian are given by [22]:

G = ρH̆(Σ−1 − H̆>Λ̆H̆)−1H̆> (24)

Υkl = ρH̆Ψ−1H̆>JklH̆Ψ−1H̆> (25)

where G is the gradient of this constraint, Υkl is the second
partial derivative of the barrier function with respect to the
(k, l) entry of Λ̆, and Jkl is the matrix that contains a one
in the (k, l) position and zeroes everywhere else.
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The solution to this problem will then contain no more
information than the true distribution about the local, rel-
ative states, thereby preventing our method from being
overconfident when performing sparsification. Note that,
unlike [6] we do not project our information onto a lower-
dimensional subspace, as the local, relative information ma-
trix in our formulation is by construction full-rank. That is,
the reparametrization automatically performs this projection.
Once Λ̆ is found, the noise information matrix of each
inferred measurement can be extracted from the solution’s
block diagonals.

C. Decouple Sparsification from Marginalization
In order to ensure the sparsity of the graph so as to

reduce computational cost, while taking advantage of the
better information provided by the dense factors induced
by marginalization, we propose to decouple the edge spar-
sification from the node marginalization, i.e., postponing
sparsification to a later time after marginalization. This
decoupling allows for further control of the graph structure:
• Since the dense factors inferred during marginalization

encapsulate all the information contained in the dis-
carded measurements about the remaining nodes (see
Section IV) and will be kept in the graph until the next
sparsification takes place, we can reuse this information
every time step before it gets sparsified.

• Since the intra-clique factors in the Markov blanket are
excluded from the initial marginalization, we can relin-
earize these nonlinear measurements every time before
sparsification, thus improving estimation accuracy.

• Staggering the marginalization and sparsification pro-
cesses allows us to distribute their computation over
time between steps. That is, we determine the dense
factors during marginalization and then delay sparsifi-
cation until computational power permits.

Specifically, after marginalization and when sparsification
is needed, similar to the procedure in Section IV-B, we
first perform the local relative optimization using all the
factors in the Markov blanket (including intra-clique) to
obtain the updated marginal distribution for sparsification,
N (Lx̂⊕|LΛt⊕

−1
). Subsequently, we conduct edge sparsifi-

cation as described in Section V-B to find new sparse factors
which will replace the dense and intra-clique factors in the
full graph during future optimization.

VI. EXPERIMENTAL RESULTS

We evaluated our method, dubbed Decoupled Marginal-
ization and Sparsification (DMS), on both 2D and 3D, real-
world and simulated datasets, through comparisons to NFR
that uses local state estimates as linearization points [6] and
GLC [4]. The datasets considered are MIT Killian Court
(2D real),2 Manhattan3500 (2D synthetic), Sphere400 (3D
synthetic) and Sphere2500 (3D synthetic).3 Table I describes
the specifications of these datasets. In the proposed DMS, we

2This dataset can be found at: http://kaspar.informatik.
uni-freiburg.de/˜slamEvaluation/datasets.php

3These three datasets are available online at: http://people.
csail.mit.edu/kaess/isam

TABLE I
DATASETS AND SPECIFICATIONS

Dataset Type # Node Removal # Factors Benchmark

MIT Killian SE(2) 1294/1941 2191 Batch
Manhattan SE(2) 1165/3500 5598 Truth
Sphere400 SE(3) 132/400 779 Batch
Sphere2500 SE(3) 832/2500 4949 Truth

TABLE II
ESTIMATION ACCURACY COMPARISON IN DENSE FORMULATION

Dataset/Method Pos. RMSE (m) Ori. RMSE (rad)

Killian/Dense-DMS 0.15805 0.00155306
Killian/Dense-GLC 0.518736 0.00904069
Manhattan/Dense-DMS 1.18873 0.0538883
Manhattan/Dense-GLC 1.10766 0.0504965
Sphere400/Dense-DMS 0.135886 0.00211764
Sphere400/Dense-GLC 0.243297 0.00878151
Sphere2500/Dense-DMS 0.896463 0.0263427
Sphere2500/Dense-GLC 1.04921 0.0326938

employed the iSAM solver [9] to perform batch optimization
every time a new factor was added into the graph as well as
after node removal. Note that in the DMS, dense factors were
kept in the graph until the next node was marginalized, to
prevent multiple dense factors from being stored, although
a better removal strategy can be developed in the future.
For GLC, the open-source implementation available in the
iSAM v1.7 library was used. To have fair comparisons, we
implemented NFR also within iSAM, rather than the g2o
framework as provided by the authors. The performance
metrics used was root mean squared errors (RMSE), instead
of KLD as in [5], [6], since estimation accuracy often is
the performance criterion of utmost importance for a given
application.

A. Dense Formulation without Sparsification
We first validated the proposed node removal via marginal-

ization by considering the case without edge sparsification. In
particular, we compared the proposed DMS to GLC, but not
NFR, because, as reported in [6] the cliquey-dense formu-
lation which is equivalent to GLC with global linearization
points, tends to diverge if using local linearization points. As
presented in Section IV, the proposed Dense-DMS calculates
the dense factors with local linearization points and without
including intra-clique factors. Table II shows the RMSEs
over all the nodes, while Fig. 4 depicts the individual errors
for each. Clearly, the proposed DMS generally outperforms
its GLC counterpart, which is primarily attributed to that the
high-accuracy dense factors induced by our marginalization.
This motivates us to keep these factors in the graph as long
as possible.

B. Sparse Formulation with Sparsification
We next tested the complete algorithms (i.e., including

edge sparsification). Note that as NFR [6] offers various
sparse topologies, in this test we implemented the best
subgraph topology, which is achieved by adding the next
highest (1−γ)(n−1) factors to the maximum spanning tree
of size γ(n− 1), where n is the size of the Markov blanket
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Fig. 4. Estimation errors for the dense formulations of DMS and GLC. It is clear that the proposed DMS tends to greatly outperform its GLC counterpart.

and γ > 1 is a proportionality factor. For the proposed
DMS and its consistent version termed as DMS-C, we used
the resource-aware sparsity parameter, α||Σij ||∞n

β , with
β = 0.5. This was chosen heuristically, and future work
will further investigate the sparsity parameter choice. Note
that since the accuracy of these methods heavily depends
on the number of factors remaining in the graph, we tested
DMS and NFR on various sparsity parameters, α and γ, and
reported the runs which provided similar (but not identical)
overall levels of sparsity. This implies that the comparisons
presented here are not completely fair.

The RMSE results for the compared methods are shown in
Table III and Fig. 5 plots the errors for each of the remaining
nodes in the graph. Evidently, the proposed DMS approaches
generally performed significantly better than GLC and at-
tained slightly better accuracy (though by a small margin)
than NFR. It is not surprising that GLC never provides the
most accurate estimates, in part because it is being compared
to the denser formulations, as well as it uses the global
state estimates as linearization points in marginalization.
These results validate the online sparse structure that is used
in the proposed DMS, determined by `1-regularized KLD
minimization, and can be effectively utilized to reduce graph
density.

VII. CONCLUSIONS

In this paper, we have introduced a decoupled, consis-
tent marginalization and sparsification (DMS) approach for
reducing the computational cost of graph-based SLAM to
enable long-term operation. This decoupling allows for better
use of accurate dense factors induced by marginalization
and for spreading the computation of marginalization and
sparsification between these two steps. In particular, we

TABLE III
ESTIMATION ACCURACY COMPARISON IN THE SPARSE FORMULATION

Dataset/Method Pos. RMSE (m) Ori. RMSE (rad) Factors

Killian/DMS 0.356361 0.00371119 1006
Killian/DMS-C 0.175106 0.00261568 1006
Killian/NFR 0.588046 0.00550779 997
Killian/GLC 0.917708 0.0117945 804
Manhattan/DMS 1.12313 0.0507679 4813
Manhattan/DMS-C 1.11201 0.0492048 4812
Manhattan/NFR 1.2478 0.0536323 4777
Manhattan/GLC 1.26928 0.0564418 4023
Sphere400/DMS 0.089349 0.00315908 780
Sphere400/DMS-C 0.114866 0.00322524 780
Sphere400/NFR 0.122146 0.00504577 774
Sphere400/GLC 0.288034 0.010465 649
Sphere2500/DMS 0.904645 0.0266831 5635
Sphere2500/DMS-C 0.904429 0.0266819 5635
Sphere2500/NFR 0.901396 0.0266631 5635
Sphere2500/GLC 1.01976 0.0319511 4112

have shown that during node removal via marginalization,
the proper choice of linearization points in constructing
marginal, dense factors is to use the relative, local, instead
of global, state estimates in the Markov blanket. Moreover,
we have proposed to determine online a sparse topology
through sparsity-regularized convex optimization. Based on
this topology, consistent sparse factors are constructed to best
approximate the original dense factors in the blanket. The
proposed approach has been validated on both 2D and 3D
public datasets and shown to outperform GLC [4], while
providing competetive results to NFR [5], [6].
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Fig. 5. Estimation errors for the sparse formulations of DMS, NFR, and GLC. Note that the proposed DMS uses the sparse topology induced online
by the `1-regularized KLD minimization, and NFR employs the subgraph topology. Note also that in some of these plots, all the compared approaches
perform very closely, which makes the corresponding lines difficult to distinguish.
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