
Toward Object-based Place Recognition in Dense RGB-D Maps

Ross Finman1, Liam Paull1, and John J. Leonard1

Abstract— Longterm localization and mapping requires the
ability to detect when places are being revisited to “close
loops” and mitigate odometry drift. The appearance-based
approaches solve this problem by using visual descriptors to
associate camera imagery. This method has proven remarkably
successful, yet performance will always degrade with drastic
changes in viewpoint or illumination. In this paper, we propose
to leverage the recent results in dense RGB-D mapping to
perform place recognition in the space of objects. We detect
objects from the dense 3-D data using a novel feature descriptor
generated using primitive kernels. These objects are then
connected in a sparse graph which can be quickly searched for
place matches. The developed algorithm allows for multi-floor
or multi-session building-scale dense mapping and is invariant
to viewpoint and illumination. We validate the approach on
a number of real datasets collected with a handheld RGB-D
camera.

I. INTRODUCTION

As robots become more capable of exploring their en-
vironments, they collect more data over longer stretches
about their surroundings. With this new capability comes
the need to determine if the robot has returned to the same
place, which can be challenging due to the accumulation
of odometry error with time. Place recognition is used
in simultaneous localization and mapping (SLAM) systems
to identify loop closures to correct for map drift. Much
previous work has been done with matching lidar scans [1]
or camera data [2], [3]. However, recently there have been
many algorithmic advances in dense RGB-D SLAM [4]–[7]
that combine raw data into rich 3-D maps. We argue here
that this data domain has the higher potential for robustly
detecting loop closures particularly in the context of variable
viewpoints and lighting.

Other attempts such as [8] to use objects as features
for SLAM on the space of objects have only considered
matching of individual 2.5D RGB-D frames. These meth-
ods have shown good results but trajectory and lighting
invariance are still a challenge since the RGB data is used.
Our approach is to extract objects from the full 3-D dense
maps generated in real-time using Kintinuous [7]. However,
directly matching places on this massive amount of data is
computationally infeasible. Therefore we propose a pipeline

The authors thank Thomas Whelan of Imperial College London for his
implementation of Kintinuous.

This work was partially supported by the Office of Naval Research under
grants N00014-10-1-0936, N00014-11-1-0688 and N00014-13-1-0588 and
by the National Science Foundation under grant IIS-1318392, which we
gratefully acknowledge.

1R. Finman, L. Paull, and J. J. Leonard are with the Computer Sci-
ence and Artificial Intelligence Laboratory (CSAIL), Massachusetts Insti-
tute of Technology (MIT), Cambridge, MA 02139, USA. {rfinman,
lpaull, jleonard}@mit.edu

Fig. 1. An object graph being built from a map. Top: a full dense RGB-D
map of a cluttered office scene. Bottom: The object graph extracted from the
office scene above. The objects detected are chairs, small file cabinets, and
computer monitors. As new objects are detected, they are used to compare
new places against the existing object graph.

of object detection, followed by object graph creation and
matching to solve the place recognition problem in full 3-D.

Many previous works on object detection from 3-D data,
such as our own work [9], [10] and others [11] have oper-
ated on point cloud segmentations. However, after extensive
experimentation, our conclusion is that these segmentation-
based methods are not sufficiently invariant to sensor cover-
age for viewpoint and lighting independent place recognition.
Instead, we propose to detect objects using a novel high-
level feature descriptor for objects and use those objects
for place recognition (Fig. 2). These feature descriptors are
generated by convolving the point cloud with a number of
pre-generated primitive kernel patches. These kernels are
flat planes, corners, edges and other basic shapes. Object
feature descriptors for a few objects are calculated offline,
comprising of distributions over the kernel. The result of this
convolution with the feature descriptor is a heat map over the
point cloud, which is then thresholded to detect if any new
instances of the known objects are found.

Once objects are found, they are connected into a graph,
shown in Figure 1. As clusters of objects are detected, they
are compared against the full object graph using a statistical
graphical matching approach. If matches are found, a loop
closure is initiated which can then be followed by a mesh
deformation to correct the map [12].

One interesting point of consideration in this context

is the definition of a ”place”. Standard appearance-based
place recognition work such as [3] defines a place as the
location where a camera frame was taken, but the output
data from dense mapping methods (such as Kintinuous) is
asynchronous, variably sized sets of points and therefore
the definition should be reconsidered in this context. We
define a place as a location where a set of objects could
be observed. This differs from the 2-D frame definition in
that objects could be occluded from one another from any
single viewpoint, not seen within the field of view of the
camera along the trajectory, or seen along vastly different
trajectories.

The contributions of this paper are twofold. First, we
present a non frame-based object descriptor that operates
on dense 3-D models using kernel parts for object-based
place recognition. The technique is invariant to changes in
lighting and easily incrementalized. Second, we present a
sparse metrical object graph that can be efficiently used
for performing place recognition. We evaluate our method
qualitatively on several real-world data sets, demonstrating
the flexibility of this framework.

II. RELATED WORK

The work here is multidisciplinary in scope. We will try to
summarize some of the more closely related and important
works in the areas of object recognition, 3-D SLAM, and
place recognition.

A. Object Detection

Object recognition, both in robotics and computer vision
is a problem that spans decades [13], [14]. We narrow our
scope of review to 3-D object recognition methods. An early
3-D descriptor, spin-images, was developed by Johnson and
Hebert [15] which is still used today. More recently, Rusu
et al. [16] efficiently builds a fast point feature histogram
of two-point descriptors for points in the neighborhood
of a point. Tombari et al. [17] developed a variation on
the popular SHOT descriptor to incorporate texture. Bo et
al. [18] designed kernel descriptors which give a general
design pattern for local feature responses which have led
to promising results. While these approaches have proved
useful, for place recognition these low-level descriptors lack
the richness of full objects. So while these features can be
used to find objects, we are looking for objects to find places.
Other more recent related work by Herbst et al. developed
a method for online object discovery in 3-D maps, thus
introducing a way for robots to automatically learn about
the objects in their environment [19].

To match 3-D objects, an obvious approach is to match
the 3-D structure. One widely used approach for matching
3-D geometry is the Iterative Closet Point (ICP) algorithm.
ICP iteratively finds the transformation between two point
clouds that minimizes the error between the points given an
initial starting transformation. This works well in practice if
an object is extracted cleanly in a scene and all objects are
observed with the same coverage as the model being refer-
enced. However, since the algorithm matches all the points,

Fig. 2. System architecture diagram. Raw RGB-D point cloud data is fed
in from Kintinuous [12] into an object detection window that runs detectors
on recently added data. Any objects discovered are joined together into
subgraph places, and those places are compared against previous places in
the object graph. Any detections are then fed back into Kintinuous. This
system outputs both a loop closure constraint between two parts of a map,
and a map of objects.

it is not robust to partial views. Furthermore, running ICP for
every possible subset of points in a map is computationally
intractable. We propose a method to score an object based
on how well a pre-defined set of kernels match across all
points in an object.

B. 3-D SLAM

3-D SLAM has seen a recent explosion in robotics. For
example, Newcombe et al.’s [5] KinectFusion has opened the
door for dense mapping with RGB-D sensors by exploiting
a truncated signed distance function representation of free
space and massively parallel processing. Whelan et al. [12]
further advance the method by allowing the mapping cube
to move and therefore enable the mapping of much larger
areas and show how to deform the mesh upon detecting
loop closures. These works have laid the foundation for 3-
D SLAM. For example, Choudhary et al. [20] worked on
object discovery in SLAM maps for the purpose of closing
loops. Perhaps the most similar formulation of our method is
SLAM++ by Salas-Moreno et al. [8], which describes a tra-
ditional SLAM framework except using objects as landmarks
instead of low-level point features. They use a frame-based
object detector (based on [21]) to create objects, which are
used as landmarks for SLAM. Our method differs in several
ways. We are not directly solving the SLAM problem, only
determining place recognition. We create a metric, object-
based representation of the world only if objects are densely

connected, and otherwise keep a sparse graph of objects.
Lastly, we take a different approach by working directly and
only with the map and not the RGB-D frames.

C. Place Recognition

The seminal work by Cummins et al. [22] on fast ap-
pearance based mapping (FABMAP) was one of the first to
pose SLAM in a topological context where loop closures
are detected through place recognition and is still among the
state of the art for these types of methods. In effect, they train
a dictionary of images that can be efficiently queried. Many
works have attempted to either robustify this approach to
weather and/or lighting [23], reduce the size of the required
dictionary [24], and learn the dictionary online [25]. These
approaches, while working well with RGB cameras, do not
have 3-D information and have a lower-level representation,
and will necessarily be somewhat dependent on illumination
due to the sensing modality. One interesting approach is Paul
et al. [26], which is a 3-D version of FABMAP for place
recognition, but which still uses point features in frames.
Our work detects objects within a map using the object’s
geometry (not visual appearance) and does place recognition
using a rich object graph.

III. OBJECT DETECTION

This section discusses the object detection framework used
to find objects for subsequent graph matching in Section IV.
We propose a method to score an object based on how well
a pre-defined set of kernels match across all points in an
object. The general approach is to treat objects as uniquely
composed of primitive shapes such as flat sections, round
sections, corners etc. If this unique object representation
can be pre-loaded with one instantiation of an object then
subsequent objects of the same type can be detected from
the incoming RGB-D.

To begin, an object O is defined as

O , {rO, dO,HO} (1)

with a bounding sphere of radius rO around the center,
points dO within the bounding sphere, and kernel feature
histogram HO (discussed below). Similarly to the ubiquitous
bounding box used in computer vision object recognition, we
use a bounding sphere to represent our object. Spheres have
the convenient property of being rotationally invariant and
efficiently searchable with a K-D tree representation since
the 3-D points are unstructured (i.e. not a depth frame).

The kernel feature histogram, H is an α × |K| matrix,
where K is the set of all kernels and α is the resolution of
the histogram. A kernel k is defined as k , {rk, dk} where
all points dk are within a bounding sphere with radius rk.
Examples of primitive kernels include flat planes, corners,
edges, curves, and random noise, although in general we
can choose any shape. We choose rk � rO, so dk � dO
since we use the same resolution. We convolve each kernel
over all data points as detailed in Algorithm 1. The result is
a set of scores for every point with a lower score signifying
a closer match. For simplicity, we assume Sk ∼ N (µk, σ

2
k).

Algorithm 1 Kernel Scoring
Input: D: Set of data points
Input: ki: Kernel i
Output: S: Set of point scores

1: S ← ∅
2: for d ∈ D do
3: n← {d′ ∈ D | ‖d′ − d‖ < rki} // Neighbors of d
4: ICP(dki , n)
5: S ← S ∪ {Residual error of ICP}
6: end for

Algorithm 2 Histogram
Input: Ski : Set of scores for a kernel ki
Input: min: Min histogram bound
Input: max: Max histogram bound
Output: Hki : Histogram of scores for ki

1: Hki ← 0α // Initialize histogram with α bins
2: for si ∈ Ski do

3: idx←

α− 1 if si > (max)

0 if si < (min)⌊
(si−(min))∗(α−1)

(max−min)

⌋
otherwise

4: Hki [idx]← Hki [idx] + 1
5: end for

Finally, the values of the H matrix are populated with a
histogram of the scores for each kernel. There are α bins over
the range µsi±2σsi of the scores within the object bounding
sphere. So H is a set of binned distributions over kernels. A
visualization of the feature descriptor for a chair is shown
in Fig. 4 and a detailed description of the object creation
is given in Algorithms 1, 2 and 3. Using kernels instead of
parts of the object helps with scalability. Our algorithm scales
linearly with the number of kernels. The kernels representing
all objects are the same. The subject of future work is to
learn kernels from the data that are the most discriminative
for object sets.

A. Detection

From Kintinuous, there is a continual stream of point cloud
data. We want to do object detection on this streaming data,
but storing the entire map is unnecessary. We keep a window
of points behind the mapping cube for object detection. The
size of the window is 2rmaxOi

,∀Oi ∈ O - twice the size of
the largest object we are detecting. Then, for every point in
the window we call the kernel scoring function (Algorithm
1) for every kernel.

Using the kernel heatmaps, we then make an object
heatmap. Almost identical to Algorithm 3, we score every
point d ∈ D. Using the kernel scores in the surrounding
rOi

radius to build an object model for that point. We build
a histogram around a point with the radius rOi

using the
kernel scores (using the object’s kernel bounds, and not the
local µ ± 2σ). We then find the `1 distance between the
two histograms, with lower values being closer matches.
Such values are then thresholded to determine if an object

Fig. 3. Left: a dense RGB-D map of a sitting area with a table and chair. Middle: a heatmap showing the values of the kernel scores from Algorithm 1
with a flat disk kernel. Red corresponds to a high match and blue corresponds to a low match. The flat disk kernel finds local planes in the map. Right:
An object heatmap that matches based on three additional kernels (edge, corner, and noise) Object matching is done on the heatmap to find the objects
based on their scores. The color of each point is determined by the distribution of kernel scores within a bounding sphere centered on the point.

Algorithm 3 Object model creation
Input: D: Set of data points
Input: K Set of kernels
Input: c: Center point
Input: rO: Object radius
Output: O: Object model

1: S ← 0|K|×|D|

2: dO ← {di ∈ D| {‖di − c‖ < r}
3: for ki ∈ K do
4: Ski ← {S ∪ KERNEL SCORING(D, ki)}
5: end for
6: for ki ∈ K do
7: s′ ← All scores si ∈ Ski corresponding to dO points
8: µ =← Mean of s′

9: σ2 ← variance of s′

10: HkiO ← HISTOGRAM(Ski , µ− 2σ, µ+ 2σ)
11: end for

is detected or not. The object detection is done on each
individual point. Note that since the histogram values add up
to the number of points for every kernel, there is an implicit
size bias to the feature descriptor as shown mathematically
below.

α∑
j=1

H
kij
O = |dO| , ∀ki ∈ K (2)

Intuitively, this is stating that the number of points is encoded
within each histogram. Visually, this is summing over a
single non-normalized row in Fig. 4. Because we have full 3-
D data, normalizing the histogram is unnecessary. In practice,
the noise around the edge of a map tends to be detected as
objects if the histograms are normalized.

For efficiency in computation, the kernel and object
scoring are each parallelized. Furthermore, since the new
data being added is small relative to the window, only the
points and their neighbors in the window are calculated
or recalculated. Neighbors are defined as within rmaxk of
the new data for kernels and rmaxO for objects. We found
that subsampling the points used for object detection by 8
still produced satisfactory results. However, due to the small
radius of the kernels, they were computed on the fully dense
point cloud. Subsampling the kernels produced noise in the

Flat
Corner

Noise
Edge

0

1

2

3

x 10
−4

0

0.1

0.2

0.3

0.4

Kernels
Binned Scores

N
o

rm
a

liz
e

d
 V

a
lu

e
s

Fig. 4. Histogram for a chair feature descriptor. The x-axis lists the kernels
used for the points, with each name describing the general shape of the
kernel. The y-axis lists the bins used. The z-axis shows the normalized
values of the bins.

Chair1
Chair2

Recycle Bin
Bunny

1
2

3
4

5
6

7
8

9
10

0

0.1

0.2

0.3

0.4

Object

Flat

Bin

N
o
rm

a
liz

e
d
 S

c
o
re

Chair1
Chair2

Recycle Bin
Bunny

1
2

3
4

5
6

7
8

9
10

0

0.1

0.2

0.3

Object

Corner

Bin

N
o

rm
a

liz
e

d
 S

c
o

re

Chair1
Chair2

Recycle Bin
Bunny

1
2

3
4

5
6

7
8

9
10

0

0.2

0.4

Object

Noise

Bin

N
o

rm
a

liz
e

d
 S

c
o

re

Chair1
Chair2

Recycle Bin
Bunny

1
2

3
4

5
6

7
8

9
10

0

0.1

0.2

0.3

0.4

Object

Edge

Bin

N
o

rm
a

liz
e

d
 S

c
o

re

Fig. 5. Sample kernel histograms for four different objects for comparison.
Note that some kernels have similar distributions to others depending on
the object. The objects used are directly the objects shown in Fig. 9. The
distributions are normalized on the y-axis into bins so a direct comparison
can be shown, however the distributions vary as shown in the Chair1
histogram in Fig. 4.

detection output.

IV. GRAPH FORMATION

Using the objects from Section III, we want to construct
an object graph to use for place recognition. Once we have a
newly detected object Oi we create and add object vertex vi
(corresponding to Oi) to an object graph G. G is composed
of object vertices V and metric edges E between the vertices.
Each vertex is defined as

v , {cv, lv} (3)

where cv ∈ R3 represents the center of the detected bound-
ing sphere and lv is the label associated with the object (e.g.
chair). Note that an object vertex is different from an object
since only the center and label are needed.

Using object vertices and their labels as nodes in the graph,
we need to decide on which objects to connect. One solution
is to use the Kintinuous SLAM result and have metric edges
between all objects or all objects within some Euclidean
distance. However, this simple solution can lead to problems
in the case that the SLAM solution drifts over time, thus
leading to more erroneous edge measures between objects
that are farther apart. Conversely, having no edges would
produce false positives due to aliasing in the case that there
can be multiple instantiations of the same object. So we
desire some connectivity, in between these two extremes.

We set a threshold emax for the maximum edge length
between objects. The value of emax should depend on the
sensor used, an Asus Xtreme Pro with a maximum usable
depth range of 4m, and the size of the mapping volume (also
4m). As such, we set emax to 4m. The intuition is that if
we connect objects mapped together within the same cube,
the error due to drift between the observations of the two
objects will be negligible. Almost all uncertainty in the edge
distance will be induced by the uncertainty in the locations of
the objects themselves as described below. We only keep the
last emax of object data to connect objects together; hence,
if two objects were mapped at different times, but were close
to each other in metric space due to differences in coverage
or a loop in the sensor trajectory, they would not be joined
together. Note that this threshold results in a graph that is
not guaranteed to be connected.

For a newly created vertex vi, we find the set of recently
added objects in G within emax distance away and create an
edge e between them. Every eij connecting vertices vi and
vj is defined as

eij ∼ N (‖cvi − cvj‖,Σv) (4)

We model each edge as a distribution centered on the
distance between the two object vertices (with both objects
adding variance). Determining Σv is a difficult problem as
described in Fig. 6. Since we already assume the variance
in edge length is negligible for eij < emax, all the variance
comes from the vertex positions vc. Variance in the node
positions primarily results from the object detection method’s
determination of the center, as well as a lack of coverage of

Fig. 6. A visual interpretation of the Σv in Eq. 4 for a chair. The object
heatmap method we use usually has a wide area where there are matches
due to the similarity of the object bounding sphere around each point. We
characterize this variance with test data.

the object due to the trajectory of the camera. We characterize
Σv through collecting data across multiple observations and
using previously acquired training data.

V. GRAPH MATCHING

After each new vertex, vi and corresponding edges eij are
added the graph, a search is performed to see if the newly
created subgraph, G1 matches any parts of the full graph G.
We build the subgraph G1 using the following 3 criteria:
• G1 ⊆ G
• vi ∈ V G1

• ∃d ∈ R3,∀vj ∈ V G1 , ‖cvj − d‖ < β

Intuitively, G1 is a graph that contains the new vertex and
all object vertices within 2β distance away. Setting β small
makes the expected edge variance smaller, but potentially
limits the number of objects used to match, which decreases
confidence in a match. We set β to be emax

2 , thus limiting a
place to be within the maximum edge distance.

The problem to solve then becomes finding a match for
any new place in the entire object graph. Following the
formulation from [27], we consider two labeled graphs G1

and G2 made up of vertices V1, V2 and edge sets E1, E2. We
say G2 = G\G1 so that the place cannot be associated with
itself. Without loss of generality, we assume |G2| ≥ |G1|,
i.e. the graphs can be differently sized.

Let vG1
i be the ith object vertex of graph G1. The

problem of matching objects from G1 to objects in G2 is the
equivalent to looking for an |V1|× |V2| assignment matrix X
such that Xi1,i2 is the indicator variable:

Xi1,i2 =

{
1 when vG1

i1
is matched to vG2

i2

0 otherwise
(5)

We are looking for a one-to-many mapping of nodes in
G1 and G2. So any object in a potential place in G2 will
map to a single object in the place in G1, thus limiting the
search space to reasonable matches (three chairs in a new
place won’t map to one chair in the object graph, but many
chairs in the object graph may map to a single box in the

new place). In other words, we assume that the sums of each
column in X are equal to 1:

{X ∈ {0, 1}N1×N2 |
∑
i1

Xi1,i2 = 1} (6)

Changing the formulation from [27], [28] to include object
labels, the graph matching problem can now be formulated
as X∗ = argmaxX score(X) where:

score(X) =
∑

i1,i2,j1,j2

H∗i1,i2,j1,j2Xi1,i2Xj1,j2

H∗i1,i2,j1,j2 =H l
i1,i2,j1,j2 ∗H

r
i1,i2,j1,j2

(7)

where H∗ is the element-wise multiplication of Hr and H l.
We define the pair potential Hr and the binary label potential
H l as

Hr
i1,i2,j1,j2 = emax − ‖ei1j1 − ei2j2‖

H l
i1,i2,j1,j2 =

{
1 if li1 = li2 & lj1 = lj2
0 otherwise

(8)

Higher values of Hr corresponds to more similar pairs.
However, the graph-matching problem has no known

efficient solution in the general case. For the results in this
work, we brute force searched through all possibilities and
thresholded graphs with X∗ > 0.5. This is done for all
subgraphs in the full map (which may be several connected
graphs). Brute-force search works for small examples since
the size of each new place G1 � G2 as the graph grows
larger, but for scaling, approximate methods should be used.
We suggest using the spectral method described in [28], with
a clearer overview in [27]. Our formulation of the problem
including object labels in this section follows the formulation
and notation of the latter.

VI. DISCUSSION & RESULTS

For this work, we show qualitative results highlighting
our system performing in a variety of maps. At the time
of this writing, there are no open-source methods or object-
based dense place-recognition datasets available to the au-
thors’ knowledge, so quantitative comparisons are difficult.
Following [8], our results are best visualized so we refer the
reader to our video http://youtu.be/jqh__XJADwE.

In Figure 7, we show a single map with two loops. The
drift on even a small indoor scene is enough to distort the
global map. Our method is able to recognize the objects
and further recognize the place over three loops. With four
objects, our system can recognize multiple places in the same
scene. When the third object is detected, the subgraph is
found within the full object graph, and the same place can
be re-recognized when the fourth object is found.

In addition to the video results, we highlight some of
the benefits of our current method. We discuss the lighting
invariance of our method and how that compares to the
popular appearance-based place recognition systems. Further,
we detail the simple way that our method handles multi-
session mapping. Lastly, we show preliminary results for

Fig. 7. Top: a map of a small scene with two loops. The trajectory of
the camera is shown in purple. As shown, the map drifts with time, as can
be seen with the offset objects. Bottom: the trajectory of the camera, with
time being the vertical axis. On left, all places matched in the object graph
are shown. These matches are shown in the trajectory with lines connecting
the trajectory between times.

an object discovery method that can allow robots to auto-
matically learn objects in their surroundings directly from
our place-recognition method. Our system can handle some
moving objects as long as most of the objects used for place-
recognition are static.

A. Lighting Invariance
One advantage of object-based place recognition over

purely vision-based methods is that we recognize objects
based on geometry, thus negating the lighting or shadowing
issues. Variations in lighting are almost inevitable for any
long-term deployment of a robot, so methods should be
invariant to lighting conditions. Fig. 9 shows an example.

B. Multi-Session
Our place recognition framework extends naturally to

multiple sessions of mapping or even sharing maps between
cooperative robots. Since the object graph may have dis-
connected sub-graphs, all that is needed for multi-session
mapping is to load in the previous object graph matrix, and
the systems runs identically. This is shown in Fig. 8 where
two separate maps are built, and the second map finds the
same object place in the first graph. The two graphs can then
be fused.

C. Object Discovery
The use of objects for place recognition raises an obvious

concern: since movement is an inherent quality of objects

http://youtu.be/jqh__XJADwE

Fig. 8. Left: two maps collected at different times with different trajectories with some overlap between them. Middle: the detected objects using four
object models (large and small chair, large and small recycling bin) to account for the variations within the category. For ease of viewing, the connectivity
of the graph is not shown. The blue lines signify a correspondence between the two object graphs. So the detected place is the three red chairs and the
small recycling bin. Right: the two maps transformed into the same coordinate system using the object locations.

(a) (b)

(c) (d)

Fig. 9. Examples showing how our method is lighting invariant. (a) (b),
two maps of the same scene with roughly similar trajectories. The second
map (b) is purposefully difficult to see since the lights are turned off,
thus showing the shortcomings of purely vision-based approaches. (a) (b)
show the objects found within the two maps. Note that both chairs and the
recycling bin can be detected.

over time [9], are objects a good representation for place
recognition? The objects used in the evaluation of this work
cannot be expected to remain static (chairs for example).
We analyze this issue by observing that objects within an
environment have a rate of change. Chairs move several times
throughout a workday, but computer monitors generally
remain constant for months. A scene should have some
consistent structure between successive robot runs. Future
work will evaluate this on larger and longer datasets.

Furthermore, changing environments can actually lead to
improvements in place recognition since place recognition
can be used for more than just aligning maps. Learning
from changes in maps is an unsupervised way of performing
object discovery [9], [19]. Object discovery has a limited
window size that can be searched through since drift leads

to changes in maps. However, with our method, there already
is a place localized in a region where drift is negligible
(by construction of our graph), so local change detection
can occur even within a large map. By doing a simple 3-D
difference in overlapping maps with minor filtering (see [9]),
objects can be found. Fig. 10 shows an example of an object
being found. With this recursive idea, a robot can start with
a base set of objects (and as such, limited place recognition
capability), and bootstrap its object dictionary. Using objects
to find more objects.

VII. CONCLUSION

In this paper, we present a place-recognition system that
operates over an object graph, and a method for incremen-
tally building such a graph from a dense RGB-D map. Our
method builds an object heatmap over a map by convolving
and scoring multiple kernel patches, and detecting objects
from the heatmap. The objects are then connected into a
sparse object graph structure. We provide a definition for
a place in the context of an object graph and use this
definition to recognize places within the global object graph.
Our flexible framework allows for efficient place comparison
as well as naturally extending to multi-session mapping. We
evaluate our method on multiple datasets.

We believe that object-based representations of the world
are a prerequisite for many interesting avenues of future
work. Specifically for our method presented, we will pursue
learning optimal set kernel patches that discriminate the
objects from the background rather than manually choosing
them. We also will pursue how our method handles much
larger object graphs (building-sized) in dynamic environ-
ments. Another promising direction is building on Section
VI-C and having a robot bootstrap its object dictionary.

REFERENCES

[1] E. Olson, “Real-time correlative scan matching,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), (Kobe, Japan), pp. 4387–4393,
June 2009.

(a)

(b)

(c)

Fig. 10. (a) (b), Two maps with objects detected (two chairs and a file
cabinet), similar to Fig. 8. Using the suggested alignment, changes in the
map can be discovered. These changes are often objects, which can then
be added into our dictionary of objects. (c), A discovered change from the
two scenes.

[2] B. Williams, M. Cummins, J. Neira, P. Newman, I. Reid, and J. Tardós,
“A comparison of loop closing techniques in monocular SLAM,”
Robotics and Autonomous Systems, vol. 57, no. 12, pp. 1188–1197,
2009.

[3] M. Cummins and R. Newman, “Appearance-only SLAM at large scale
with FAB-MAP 2.0,” Intl. J. of Robotics Research, 2010.

[4] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D
mapping: Using depth cameras for dense 3D modeling of indoor
environments.,” in Intl. Sym. on Experimental Robotics (ISER), vol. 20,
pp. 22–25, 2010.

[5] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
IEEE and ACM Intl. Sym. on Mixed and Augmented Reality (ISMAR),
(Basel, Switzerland), pp. 127–136, Oct. 2011.

[6] H. Johannsson, M. Kaess, M. Fallon, and J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), (Karlsruhe, Germany),
May 2013.

[7] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and
J. McDonald, “Kintinuous: Spatially extended KinectFusion,” in RSS
Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
(Sydney, Australia), July 2012. Available as MIT CSAIL Technical
Report MIT-CSAIL-TR-2012-020.

[8] R. Salas-Moreno, R. Newcombe, H. Strasdat, P. H. J. Kelly, and A. J.

Davison, “SLAM++: Simultaneous localisation and mapping at the
level of objects,” in Proc. IEEE Int. Conf. Computer Vision and Pattern
Recognition, (Portland, Oregon), June 2013.

[9] R. Finman, T. Whelan, M. Kaess, and J. Leonard, “Toward lifelong
object segmentation from change detection in dense RGB-D maps,” in
European Conference on Mobile Robotics, (Barcelona, Spain), Sept.
2013.

[10] R. Finman, T. Whelan, L. Paull, and J. J. Leonard, “Physical words
for place recognition in dense RGB-D maps,” in ICRA workshop on
visual place recognition in changing environments, June 2014.

[11] E. Herbst, X. Ren, and D. Fox, “RGB-D object discovery via multi-
scene analysis,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pp. 4850–4856, IEEE, 2011.

[12] T. Whelan, M. Kaess, J. Leonard, and J. McDonald, “Deformation-
based loop closure for large scale dense RGB-D SLAM,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), (Tokyo, Japan),
Nov. 2013.

[13] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, pp. 91–110,
Nov. 2004.

[14] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to
object matching in videos,” in Intl. Conf. on Computer Vision (ICCV),
vol. 2, (Los Alamitos, CA, USA), p. 1470, IEEE Computer Society,
2003.

[15] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3D scenes,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 21, no. 5, pp. 433–449, 1999.

[16] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3D registration,” in Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pp. 3212–3217, IEEE,
2009.

[17] F. Tombari, S. Salti, and L. Di Stefano, “A combined texture-shape
descriptor for enhanced 3d feature matching,” in Image Processing
(ICIP), 2011 18th IEEE International Conference on, pp. 809–812,
IEEE, 2011.

[18] L. Bo, X. Ren, and D. Fox, “Depth kernel descriptors for object
recognition,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pp. 821–826, IEEE, 2011.

[19] E. Herbst, P. Henry, and D. Fox, “Toward online 3-d object segmen-
tation and mapping,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2014.

[20] S. Choudhary, A. J. Trevor, H. I. Christensen, and F. Dellaert, “Slam
with object discovery, modeling and mapping,” in Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on, pp. 1018–1025, IEEE, 2014.

[21] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match
locally: Efficient and robust 3D object recognition,” in Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pp. 998–1005, IEEE, 2010.

[22] M. Cummins and P. Newman, “FAB-MAP: Probabilistic localization
and mapping in the space of appearance,” Intl. J. of Robotics Research,
vol. 27, pp. 647–665, June 2008.

[23] M. J. Milford and G. F. Wyeth, “Seqslam: Visual route-based naviga-
tion for sunny summer days and stormy winter nights,” in Robotics
and Automation (ICRA), 2012 IEEE International Conference on,
pp. 1643–1649, IEEE, 2012.

[24] M. Milford, “Vision-based place recognition: how low can you go?,”
The International Journal of Robotics Research, vol. 32, no. 7,
pp. 766–789, 2013.

[25] Y. Latif, G. Huang, J. Leonard, and J. Neira, “An online sparsity-
cognizant loop-closure algorithm for visual navigation,” in Robotics:
Science and Systems (RSS), (Berkeley, CA), July 2014.

[26] R. Paul and P. Newman, “FAB-MAP 3D: Topological mapping with
spatial and visual appearance,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on, pp. 2649–2656, IEEE, 2010.

[27] O. Duchenne, F. Bach, I.-S. Kweon, and J. Ponce, “A tensor-based al-
gorithm for high-order graph matching,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 33, no. 12, pp. 2383–2395,
2011.

[28] M. Leordeanu and M. Hebert, “A spectral technique for correspon-
dence problems using pairwise constraints,” in Computer Vision, 2005.
ICCV 2005. Tenth IEEE International Conference on, vol. 2, pp. 1482–
1489, IEEE, 2005.

	I Introduction
	II Related Work
	II-A Object Detection
	II-B 3-D SLAM
	II-C Place Recognition

	III Object Detection
	III-A Detection

	IV Graph Formation
	V Graph Matching
	VI Discussion & Results
	VI-A Lighting Invariance
	VI-B Multi-Session
	VI-C Object Discovery

	VII Conclusion
	References

