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Abstract— Appearance-based place recognition systems have
been shown to be effective for large-scale mapping but have
notable shortcomings. Visual bag-of-words dictionaries require
offline training, have tens of thousands of words, and are
susceptible to changing environments, either due to lighting
or physical changes, between training and deployment. Recent
advances allow for online 3D mapping and segmentation using
dense RGB-D data. Here we propose the natural extension of
previous visual dictionaries to the 3D world through the use of
physical words that are used to perform place recognition. The
main advantages of this approach is generating and detecting
physical words is invariant to aspect and lighting changes, and
require less words in our physical dictionary to recognize scenes.
We demonstrate this concept on multiple real world datasets
under extreme lighting variations and camera trajectories that
typical appearance-based approaches have difficulty with.

I. INTRODUCTION

Place recognition is a pre-requisite to building consistent
maps. Most previous methods recognize places by visual
appearance, or by looking for similar features in images.
These feature matches are subsequently used to find the
relative transformation between the images, up to a scale
factor. Appearance-based methods have had great success
at performing large-scale topological mapping [1], however
they suffer some notable shortcomings. For example, they
require a training phase to learn the image features, or visual
words, in the environment and are commonly not robust to
changes in illumination or other dynamics in the world.

In this work we propose to extend place recognition into
the dense 3D world through the use of physical words. A
place is now defined by a constellation of physical words
that can be robustly extracted from the dense 3D models, as
shown in Figure 1. This builds on our previous work [2],
where we demonstrate the ability to generate a segmentation
from a dense 3D point cloud in real-time. This follows
previous results that demonstrate real-time dense mapping
from an RGB-D sensor using a system called Kintinuous
[3]. When loop closures are detected, the 3D point cloud is
deformed to make a consistent map [4].

Our attempts to perform place recognition on the segmen-
tation directly have failed, largely due to the high variability
of the segments over multiple views of a scene. However, al-
though the segmentation is variable, the underlying physical
objects are robustly detectable by examining the relationships
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Fig. 1. A map of a simple office scene with three boxes. (a) The dense
RGB-D map. (b) A segmented version of the same map with randomly
colored segments. (c) The same map but with the boxes highlighted and
connected into a constellation which is used to match against other maps.

between the segments. We propose to use this invariant
detection of physical objects, or words, from dense 3D maps
to perform place recognition. Such an approach to place
recognition has significant benefits:

• Lighting invariance
• Robustness to physical changes in any parts of the

environment not containing the physical words used for
matching

• Invariance to aspect or trajectory of observer
• Speed since the physical dictionary can be much more

compact than a visual dictionary that usually contains



tens of thousands words. In this preliminary work we
show the ability to recognize a scene using a single
physical word.

Here we present a proof-of-concept method using physical
words such as rectangular prisms. This is a stepping-stone
towards the next step of matching more complex objects as
combinations of physical words that are reliably detectable.
Our results show that for small experiments we are able
to find a correct association where current state-of-the-art
appearance-based approaches would fail. It should be noted
that the proposed method could work in conjunction with
a standard appearance-based method for increased perfor-
mance.

In Sec. II we review some related work and provide a more
detailed review of our previous work on online segmentation.
In Sec. III we describe the process of building the constel-
lations from the 3D point cloud. In overview the following
progression is followed: 3D point cloud → segmentation →
physical letters → physical words → constellations. These
constellations are used for the actual place recognition, as
described in Sec. IV. We present some results for a small
example in Sec. V and finally conclude and describe future
directions for the work in Sec. VI.

II. BACKGROUND AND RELATED WORK

This work is built on prior research in the area of place
recognition. Our work differs from the majority of past work
in the field by operating over the 3D point cloud rather than
the space of images. However, since the point cloud data is
so dense, we require a method of reducing the search space
and exploiting the fundamental geometric properties of the
underlying world. In this section we will describe related
literature in place recognition, and review our previous work
on online segmentation.

A. Appearance-Based Place Recognition

The ability to recognize a place is a fundamental capability
that crucially enables the calculation of a transformation
between the different views of the place.

The most common approach to associating views is
through matching features in imagery. Without real-time
requirements, this can be done with an exhaustive search for
scene reconstruction from a collection of non-temporally se-
quential images [5]. This approach is generally infeasible for
robotics applications since the search space scales quadrati-
cally with the number of images in the database. A common
dimensionality reduction approach is to build a dictionary
of visual words and an inverted index for quick lookup
of images. Online place recognition is often built into an
appearance-based, topological, or hybrid metric/topological
SLAM system. One of the most popular is fast appearance-
based mapping (FAB-MAP [6] and FAB-MAP 2.0 [1]) which
uses a hierarchical information-based tree (Chow Liu tree) to
speed up performance. This approach is purely topological
(maintains no metric information) and defines a place as
a location from which an image is recorded. An issue is
perceptual aliasing, which arises when certain places have

similar appearances, for example brick walls or trees. This
is handled probabilistically in [7] using a particle filter
approach to track multiple hypotheses. In hybrid approaches,
such as [8], robust place recognition is used to define the
origins of metric submaps.

Perhaps the most related work to our own is FABMAP
3D [9] which uses the metric spatial relationships between
features in images to improve the loop closing performance
over FABMAP in terms of the precision/recall curve. Our
approach is similar but has a few notable differences. First,
we are matching scenes using the entire constellation gener-
ated by spatial relationships of the physical words rather than
the pairwise ranges between features. Secondly, and more
importantly, our approach here extends the dictionary itself
into the 3D space.

A common problem with bag-of-words type appearance
matching is that it is highly dependent on the quality of the
dictionary of visual words. Generating these dictionaries re-
quires an onerous training phases. In our proposed approach
the dictionary size can be greatly reduced and requires no
offline training, however some care must be taken to properly
define the physical words in the dictionary. In this initial
work we use a single physical word: a rectangular prism.

In one other related work, place recognition using laser
data has been demonstrated [10] and has the advantage that
it is lighting and illumination invariant. However, it requires
an expensive and large 3D laser-scanning sensor.

B. Graph-Based Segmentation

Our approach to dense 3D map segmentation is based on
the widely used Felzenszwalb segmenter [11]. This method
builds a graph connecting 3D points within a map and then
segments the graph using dynamic thresholding. Specifically
This segmenter builds a graph with all the 3D points in a
map being nodes and edges between them. An edge is only
connected if the points are within a threshold distance of each
other, set to twice the volumetric resolution of the map. Of
the set of edges E, a specific edge is

eij = ((di, dj), wij) (1)

where we define wij as

wij(ni, nj) =

{
(1− ni · nj)2, if (dj − di) · nj > 0

(1− ni · nj), otherwise
(2)

for normals ni and nj of points di and dj respectively.
The edges are then compared to a dynamic threshold which
decides whether to join the two points into a segment. For
more detailed information, please refer to the paper. This
algorithm provides the basis for our work so we can extract
higher-level physical words from the noisy segments.

There are numerous alternatives to [11] for segmenting
maps in a variety of data domains. Wolf et al. [12] use map
segmentation of 3D terrain maps to assist with classification
of traversable regions. Brunskill et al. [13] describe a 2D map
segmentation method that builds a topological map of the
environment by incrementally segmenting the world using



spectral clustering. These methods are more specific in their
application and are not as computationally efficient as the
Felzenszwalb segmenter.

In dense RGB-D sourced data, Karpathy et al. [14] uses
segmentation of maps to perform object discovery by an-
alyzing shape features of extracted segments. Izadi et al.
[15] describe an impressive live segmentation within a dense
volumetric reconstruction using geometric tracking. These
methods are limited in the combined density and scale that
they can map. In larger size maps, Finman et al. [16] detail a
method for learning segmentations of objects in maps using
object change cues to optimize the segmentation.

III. SEGMENTATION-BASED PHYSICAL WORDS

With the goal of doing place recognition in maps, we
start with a segmented map and combine the segments into
physical words to create a constellation. Specifically, We
build segment features and compare those features and the
metric relationships between segments against models of
physical letters, which are the building blocks of the physical
words. From there we merge and refine the physical letters
into physical words. Lastly, we build constellations between
the words, which we can match against other constellations.

A. Segments to Physical Letters

We begin with a segmented map S = {s1, s2, ..., s|S|}
from which we want to extract physical letters P ′.

A naive approach to place recognition on these dense maps
would be to match directly on the segments. However, if
there are significant changes in camera orientations when
building a map, then the different sources of noise can cause
the segmentation algorithms to inconsistently segment the
same scene. An example of such inconsistencies is shown
Fig. 2. As an alternative, we look for the hidden variables
in the world, physical words, their physical letters, and the
segments that suggest them.

To find the physical letter, we first build a feature vector
of every segment to compare against a model. The feature
vector is populated by first running principle component
analysis on the points dsi of each segment si ∈ S. The
length, width, and height of the segment are calculated by
taking the magnitudes of the vectors connecting the two
extremum points are projected onto their respective axes. The
neighbors of a segment are defined in two ways, shown in
(3). First, the segments that share an edge are included. As
the segmentation algorithm can be messy along the edges
of large segments, direct segment adjacency is insufficient.
Therefore, segments that are within a distance τ between

TABLE I
SEGMENT FEATURES

Notation Description
L, W, H First three principle axis unit vectors
λL, λW , λH First three eigenvalues
l, w, h Max distance along first principle axis
c Mean XYZ location of all the points
SN Segment neighbors

(a)

(b)

Fig. 2. (a) A segmentation of two file cabinets and a box with the camera
trajectory from left to right. (b) A segmentation of the same scene as (a),
but with the camera trajectory being from right to left. Note the large
variance in segment shapes and sizes for the same objects. Surfaces that
are viewed perpendicularly by the RGB-D camera are stable, while other
surfaces are not. Colors in each segmentation are randomly assigned and
do not correspond to segments between maps.

segment centers are also added to the neighbor set. In
this work τ was empirically chosen to be 0.5 meters. The
complete feature vector is shown in Table I.

SN
si ← {sj ∈ S | {∃eij ∈ E}, {si 6= sj}} ∪ (3)

{sj ∈ S |‖csi − csj‖ < τ}

From these segments and corresponding feature vectors, we
want to connect segments that make up our final physical
word model. Using the neighbors of the segments as edges,
we construct an unweighted graph of all segments. Within
this graph of locally connected segments we can begin to find
our physical words. In the scope of this paper, we restrict the
words to only rectangular prisms. To find these shapes, we
look for segments that form a corner - a physical letter of
the rectangular prism physical word. Intuitively, a corner is
formed by a clique of three perpendicular, planar segments
that are spatially connected and convex. Cliques are found
by iterating over a segment’s neighbors and its neighbor’s
neighbors and storing any clique that has three and only
three segments. This is shown below in (4).

Q← {{si, sj , sk} | si ∈ {SN
sj ∩ S

N
sk
}, (4)

sj ∈ {SN
si ∩ S

N
sk
},

sk ∈ {SN
si ∩ S

N
sj}}

With the three-connected cliques, we can filter Q for only
planar segments. We define a segment to be planar if the



(a) Segments (b) Physical Letters (c) Physical Words (d) Constellation of Words

Fig. 3. Overview of the process from segments to constellations

second eigenvalue of the point cloud is greater than a
factor of the third eigenvector. That is, λWsj

>> λHsj
.

This enforces that the length and width of a segment are
significantly larger than the depth of the segment.

With the three-connected cliques of planar segments, Qp,
we filter based on the perpendicularity of the segments. With
the planar segments, λHsi

is the approximate surface normal
of an entire segment si. We compare the volume of the
parallelepiped formed by the unit normal vectors of all three
segments against the unit cube. Intuitively, if all segments
are perfectly perpendicular, then the normals will make a
perfect unit cube.

Qc ← {q ∈ Qp | ((λHsi
× λHsj

) · λHsk
) > γ} (5)

si, sj , sk ∈ q & si 6= sj 6= sk

with γ set to 0.95.
There is no guarantee that the segments in Qc make a

fully convex corner. We want to find the corner made by
three sides of a box and not two sides of a box and the table
the box is on. Our last step in making physical letters is
to find the convex corners. We expand the simple convexity
measure from Finman et al. [16] from points to segments.

Q′ ← {q ∈ Qc | (csj − csi) · λHsj
> 0,∀si, sj ∈ q} (6)

where Q′ containing all segments that form corners of
rectangular prisms.

B. Physical Letters to Words

The set of physical letters P ′, may have several parts of
a larger word P . For example, one can observe two corners

TABLE II
PHYSICAL WORD FEATURES FOR RECTANGULAR PRISM

Notation Description
lp, wp, hp Lengths of all sides
λpL, λ

p
W , λpH Unit vectors of word coordinates

cp Mean XYZ location
Sp Set of segment members

(a) (b)

Fig. 4. Two physical letters used to build a physical word. (a) A set
of three segments detected as a physical letter of a rectangular prism. (b)
A different physical letter of the same rectangular prism. Note the two
overlapping segments in red and blue showing that multiple segments can
be part of the same physical letter.

on a rectangular box, but they all represent parts of the same
box (Figure 3(b) and 4). We combine these physical letters
into one physical word as in Figure 3(c). The detailed feature
description of the rectangular prism word is given in in Table
II. We begin the word building process by finding the center
of the cube. Simple computing the mean of all the points or
the segment centers would bias the calculated center towards
the detected corner and is thus incorrect. Instead we calculate
the point intersection, x, between all three planes. This is
guaranteed to be a point if no planes are coplanar, parallel,
or share the same intersecting line between them. This is a
linear set of equations that can be solved as follows.

A · x = b (7)
x = A−1 · b (8)
A ← [λHsi

, λHsj
, λHsk

]T

b ← [λHsi
· csi , λHsj

· csj , λHsk
· csk ]T

si, sj , sk ∈ q, q ∈ Q′

From the corner point x, the center can be simply found by
subtracting half the lengths of each segment in the opposite



direction of the normals.

cp
′

q ←

x−
∣∣∣∣∣∣∣
lsi
2 · (−λHsi

)
lsj
2 · (−λHsj

)
lsk
2 · (−λHsk

)

∣∣∣∣∣∣∣
 (9)

si, sj , sk ∈ q, q ∈ Q′

The dimensions of the words are the lengths of the segments
that make up the physical word. For example, if there are
three segments of length 1, 2, and 3 that make up a word.
Then the length of the word is 3, the width is 2, and the
height 1. The set of segment members for the physical letter
and the corresponding dimensions are

lP
′
← max(lsi , lsj , lsk) (10)

wP ′
← median(lsi , lsj , lsk) (11)

hP
′
← min(lsi , lsj , lsk) (12)

SP ′
← q (13)

si, sj , sk ∈ q; q ∈ Q′; si 6= sj 6= sk

1) Merging Physical Letters: With the physical letter
features defined, we merge the physical letters by finding the
overlap between them. An overlap occurs when the vector
between the centers is fully contained within the other letter.
Formally, this is

vij ← cP
′

i − cP
′

j (14)

Overlap(P ′i , P
′
j) ←


True, if vij −

∣∣∣∣∣∣∣
lP

′

i /2

wP ′

i /2

hP
′

i /2

∣∣∣∣∣∣∣ <
∣∣∣∣∣∣∣
0

0

0

∣∣∣∣∣∣∣
False, otherwise.

(15)

If there is an overlap, then the larger word is chosen to be
the root word and the segment members set is updated with
any new segments from the new physical letters. If there is a
single physical letter and no other physical letters to merge
with, then that is a final physical word.

C. Word Constellations

Using the physical words P built up in the previous
sections, we make another graph of the full physical words.
Examples of this can be seen in Figures 1(c) and 3(d). We
make a constellation C between all metrically local word
centers cP where each edge corresponds to the distance D
between each center cP of the word. We only look at local
constellations for two reasons. First, any mapping system has
drift associated with it and drift increases with the size of the
map so for future matching, using metrically local words is
beneficial. Second, the environment in which we are mapping
is on the scale of an office building and finding a place
based on observations dozens or hundreds of meters apart
is less descriptive. We use the term local to say that no edge
between two words is longer than a threshold, empirically
chosen to be 2 meters

IV. CONSTELLATION MATCHING

In Section III, we detailed how to find physical words P
in a map and build them into a constellation. In this section
we will use the constellation C to match against other map
constellations.

Specifically, we compare two constellations of the same
size C and C′. For each constellation, we define a set Ce of
all the distances between nodes within the constellation.

Ce = {D1,D2, ...,D|Ce|} (16)

where Di is the distance between two word centers in
the constellation. Three non-colinear points can define a
transformation between two surfaces with only an ambiguity
of direction.

We begin by defining the association between edges in the
two constellations being compared:

M : Ce 7→ C′e (17)

To find the best match between the constellations, we
exhaustively search for the association between nodes that
has the minimum Mahalanobis distance between the asso-
ciated edges. If we model distances in the constellations as
Gaussian and uncorrelated with constant covariance 1 Σ:

Di ∼ N (µDi
,Σ), (18)

then the difference between the edge values is also a Gaus-
sian distribution. For example if edge Di is associated with
edge D′

j (M(Di) = D′

j) then the difference is:

Di −D
′

j ∼ N (µDi
− µD′

j
, 2Σ). (19)

The best match M∗ can then be found as:

M∗ = argmax
M

|Ce|∏
i=1

exp−1

2
||µDi − µM(Di)||2Σ

= argmin
M

|Ce|∑
i=1

||µDi
− µM(Di)||2Σ

(20)

using the property that argmax{·} = argmin{− log{·}}, and
where ||e||Σ is the Mahalanobis distance.

We accept a match between two constellations if the sum
of the Mahalanobis distances for all edge associations is
below a threshold:

Match(Ce, C′e) =
1, if

|Ce|∑
i=1

||Di −M∗(Di)||2Σ > τ ′(|C|)

0, otherwise

(21)

where τ ′(x) = tx is the threshold for accepting the match
which is a function of the size of the constellation.

1A more rigorous treatment of this covariance will be the subject of future
work



Fig. 6. The same map in Fig. 2(b) with the detected cubes showing. Our
method does not have full coverage of the object, but the bounding cube’s
dimensions are qualitatively similar to the true object.

V. RESULTS

We evaluate this method in two ways on real world
datasets: qualitatively and timing. We compare our approach
against the popular DBoW method in conditions with varying
lighting and camera trajectories when creating the map.

We present a number of datasets collected with a handheld
RGB-D camera of varying length. In total, 12 datasets were
recorded, the statistics of which can be seen in Table III.
The datasets were captured with a map volumetric resolution
between 8.7 and 11.7 mm. We made a point of collecting
varying datasets. Figures 5(b), (c), (d) show three different
maps of the same scene, with variations in lighting, chairs,
while the camera perspective being the exact opposite in
the two dark datasets. Figures 5(f), (g), (h) show the three
maps segmented, from which the boxes are detected. Fi-
nally, Figures 5(j), (k), (l) show the three matching boxes
highlighted according to their match across maps. Running
DBoW on these three datasets of the same scene did not
lead to any matching frames since DBoW is sensitive to
variations detailed in the datasets. Figures 5(a), 5(e), and 5(i)
show a similar progression but in a larger and more cluttered
environment. The box detections there are arbitrarily colored
and do not correspond to the other figures. Lastly, Figure 6
shows how some rectangular prisms are not fully found due
to the noisy segmentation shown in Figure 2(b).

TABLE III
DATASET STATISTICS AND TIMING

Datasets
Small Medium Large

Number of Datatsets 7 4 1
Avg Vertices 213,892 773,611 2,155,284
Avg Map Build Time (s) 15.08 36.70 92.57
Avg Map Length (m) 3.50 7.37 26.21
Function Avg Timing (s)
Segmentation 0.22 0.79 1.83
Feature creation 0.47 1.32 2.70
Letter creation 0.08 0.10 0.15
Word creation ¡0.01 ¡0.01 0.01
Constellation creation ¡0.01 ¡0.01 ¡0.01
Total timing 0.80 2.51 4.88

VI. DISCUSSION AND FUTURE WORK

In this week we presented a novel method for place
recognition using physical words to form constellations.
We demonstrated how we segment a map, combine those
segments into physical letters and words, and finally build a
constellation of words. These constellations were then used
to match places in other maps. We tested our algorithm
on multiple real-world datasets under extreme lighting and
camera viewing angles.

In future work, we will extend this concept by creating
words from the data rather than predefining them. Given
noisy measures of some latent physical word, we will infer
what words there are in the world. Once those are defined,
we can break the words into physical letters as we did in this
work. With more physical words, we will add these words
into our constellation matching method. Furthermore, we will
tie the method described in this paper into our incremental
segmentation algorithm [2] that can efficiently segment a
map as it is being built in real-time. This capability provides
the groundwork for performing scene matching based on
these incrementally generated segments in real time over
large graphs.
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