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Abstract—The operation of mobile robots in unknown environ-
ments typically requires building maps during exploration. As the
exploration time and environment size increase, the amount of data
collected and the number of variables required to represent these
maps both grow, which is problematic since all real robots have
finite resources. The solution proposed in this paper is to only re-
tain the variables and measurements that are most important to
achieve the robot’s task. The variable and measurement selection
approach is demonstrated on the task of navigation with a low risk
of collision. Our approach has two stages: first, a subset of the vari-
ables is selected that is most useful for minimizing the uncertainty
of navigation (termed the “focused variables”). And second, a task-
agnostic method is used to select a subset of the measurements that
maximizes the information over these focused variables (“focused
inference”). Detailed simulations and hardware experiments show
that the two-stage approach constrains the number of variables
and measurements. It can generate much sparser maps than ex-
isting approaches in the literature, while still achieving a better
task performance—in this case (fewer collisions). An incremental
and iterative approach is further presented, in which the two-stage
procedure is performed on subsets of the data, and thus, avoids
the necessity of performing a resource-intensive batch selection on
large datasets.

Index Terms—Indoor navigation, path planning, simultaneous
localization and mapping.

I. INTRODUCTION

ONE of the core enabling capabilities for mobile robots
operating in uncertain and GPS-denied environments is

simultaneous localization and mapping (SLAM). The built map
will subsequently be used to perform tasks. Many of the robotic
missions of interest (e.g., autonomous cars, marine robots) often
require high-dimensional models to represent the robot poses,
landmarks, and obstacles. Graphical models are a powerful tool
for modeling high-dimension problems because they can explic-
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Fig. 1. Resource constrained collision-free navigation: It is more important
to localize landmarks in narrow hallways as compared to those in open areas.
As a result, along the trajectory of the robot (gray dashed line), far fewer
measurements (blue) are required for landmarks (red stars) in the open area as
compared with the narrow hallway. (Black and red dashed ellipses represent
uncertainty in robot position and landmarks position, respectively.)

itly utilize conditional independencies between variables [1]–
[3]. However, when the robot travels longer distance, the vari-
ables required to represent robot poses grows and memory de-
mand growths. And when the robot stays longer in the environ-
ment, it obtains more and more measurements of the landmarks
and the computation demand on processing these measurements
grows. Naively applying these methods can result in an un-
bounded growth in memory and computational requirements.

On the other hand, the required fidelity and choice of map
representation are, in general, domain specific, and furthermore
may not even be constant across a given application. Consider
the following tasks:

1) a robot is navigating through an unknown environment
consisting of both open areas and narrow hallways;

2) an autonomous car is operating on a road network con-
sisting of highways and rarely used local roads;

3) a marine robot is localizing a set of underwater mines
amongst clutter.

In these cases, it is important to prioritize which landmarks
are maintained in the map. As illustrated in Fig. 1, in an indoor
robot navigation scenario, the space consists of both narrow
hallways and open areas. It is more important to have accurate
estimates of landmark locations in tight corridors, therefore the
robot has lower uncertainty in its poses and less chance of colli-
sions compared with open areas. Similarly on the road network,
landmarks on highly traveled roads are more useful [4] and in the
underwater scenario it is more important that the robot localizes
the mines as opposed to the clutter. Consequently, the robot can

1552-3098 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON ROBOTICS

Fig. 2. Two-stage focused inference.

save resources, such as memory and computation, by focusing
the mapping operation to more explicitly support the task.

Recent work on map reduction has focused on minimizing the
impact on the overall quality of the map and robot trajectory. For
example, using some criteria to discard incoming measurements
[5], [6], or marginalizing out nodes followed by a sparsification
procedure to maintain efficiency [7]–[9]. These works do not
consider the robot task performance achieved with the resulting
maps, nor do they answer the variable selection question of what
are the right nodes to retain.

This paper first presents a more flexible batch-selection
framework that supports task-specific prioritization. The com-
mon task of mobile robot navigation is used in this study. By
focusing on the important parts of the map, our approach
reduces the resource requirements without significantly impact-
ing the task performance (navigation).

Batch-selection operates on the full dataset. In a typical sce-
nario, as explored space grows, the number of variables used to
represent the map grows, and as exploring time grows, the num-
ber of measurements grows. Both of these scalability issues will
make the batch selection slow or infeasible for robots, which
necessarily have finite resources. We further propose an incre-
mental selection process to operate on sequences of streaming
data. As new data arrives, we perform the two-stage selection
based on the result from previous selection, thus reducing the
resource requirements for processing a single-batch dataset.

The workflow for the general case is shown in Fig. 2. The
robot first explores to gather data. The next step is to select the
focused variables that are deemed important for subsequent nav-
igation tasks. Section IV discusses the specific case of selecting
landmarks to support collision-free navigation (the “focused
variables”). The third step is to select the subset of measure-
ments that are most useful for estimating the focused variables,
as described in Section III. The last step is to build a map using
the reduced set of variables and measurements. The robot con-
tinues in this loop until the task is complete. In the incremental
approach, the robot will obtain new data each time it performs
the task execution. The reduced map produced from previous
data is taken as an input to the two-stage variable and mea-
surement reduction algorithm with new collected data to further
update the map.

In summary, we claim the following contributions:
1) A generic framework for measurement selection in the

case that some variables are deemed higher priority than
others.

2) A method for landmark (focused variable) selection to
support the specific task of collision-free navigation.

3) An incremental algorithm for selecting variables and mea-
surements from new data to reduce processing and storage
requirements.

4) Simulations and hardware experiments which demon-
strate that the approach reduces collisions given fixed
resources.

A previous version of this paper was presented in [10].
This paper additionally provides a detailed discussion of nav-
igation with uncertain landmark locations (see Section V).
The framework has also been upgraded to enable incremental
operations, where robots can sequentially select variables and
measurements to expand existing maps (see Section VI). Fi-
nally, much more extensive experiments are conducted to test
the variable/measurement selection as well as the incremental
approach (see Section VII-B).

II. RELATED WORK

This study is at the intersection of a number of robotics sub-
domains, so the following reviews some of the key recent results
in the areas of map reduction, landmark selection and its appli-
cation to autonomous navigation, and planning with uncertainty.

A. Map Reduction

The map reduction literature typically assumes the variables
to be retained are provided as input, and focuses only on mea-
surement reduction to make the map sparse. For example, the
original filtering-based approaches to SLAM marginalize old
poses at every time step, and significantly delay inference on
large scale problems. The sparse extended information filter
(SEIF) [11] breaks weak links in the graph to achieve sparsity
and speed up SLAM solutions. A consistent alternative, the ex-
actly SEIF, selectively discards data during the measurement
update step [12]. A less conservative, but still consistent ap-
proach, formulates the sparsification process as a constrained
convex optimization to minimize the Kullback–Leibler diver-
gence (KLD) between the sparse and true estimates subject to
the consistency and sparsity constraints [13].

Graph-based optimization approaches [14] are also widely
used for solving SLAM problems. These methods provide a
naturally sparse representation of the SLAM problem that can
be solved efficiently [15]. Nevertheless, these methods do not
scale constantly with time and space, and ultimately require
some form of graph reduction to enable prolonged operation.

Given the variables to be removed, marginalization induces
a fully connected subgraph over the Markov blanket of the
marginalized variable. A convex optimization can be employed
on the subgraph for sparsification. Similar to the method in-
troduced in [13], the KLD between the dense subgraph and
a sparse approximation is minimized subject to a consistency
constraint. Carlevaris-Bianco et al. [7] present a method called
generic linear constraints (GLC) that sparsifies the dense sub-
graph using a Chow–Liu tree (CLT) approximation. Alter-
nately, sparsity can be enforced through an �1-regularization
term in the KLD minimization [8], which has the advan-
tage that it does not impose a specific graph structure on the
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sparse approximation (e.g., a CLT). Mazuran et al. [9] re-
cently improved upon previous methods by allowing nonlin-
ear measurements to approximate the dense subgraph, and then
formulating the KLD minimization with respect to the mea-
surement, rather than the state, information matrix. These graph
reduction techniques are not concerned with selecting the nodes
to be removed from the graph. A further issue is that perfor-
mance can degrade if the wrong landmarks are removed through
marginalization since they are no longer available for subsequent
loop-closures.

Another approach is not to remove any variables, but instead
discard measurements before they are processed by the SLAM
optimizer. Kretzschmar and Stachniss [6] propose a pose-graph
compression where laser scans are selectively removed by uti-
lizing an approximate marginalization based on a CLT.

The method proposed in this paper selects both variables and
measurements. The only other known works to consider both are
[16] and [5], both of which are task agnostic. In [16], a graphical
method is employed to select the variables to remove which will
result in the minimum KLD after the subsequent sparsification.
In [5], measurements and poses are selectively added as new
data arrives based on an information-theoretic metric, which
can be efficiently computed. Also note that, in [5], there is no
limit on the number of measurements or poses that can be added
to the state space, only their rate of growth will be limited.
Here, we choose to retain a fixed number of variables that will
maximally impact the robot’s ability to perform a given task, and
then, select a fixed number of measurements to preferentially
estimate these more important variables.

B. Landmark Selection

Techniques to perform the subselection of previously mapped
landmarks to support localization have been proposed to ac-
complish a number of different objectives for example, actively
placing sensors to maximize coverage [17] or reducing navi-
gation uncertainty [18]. A standard approach in vision-based
systems is to downsample landmarks based on a measure of
visual saliency in an effort to improve the detection of loop
closures. Specific applications include map compression [19],
active gaze control [20], area coverage [21], and lifelong oper-
ation of service robots [22]. Closely related to our motivation is
the application of resource-constrained inference. For a local-
ization and mapping objective, previously proposed approaches
include uniform landmark selection [23] (henceforth will be
referred to as “downsampling”) and entropy-based landmark
selection [24].

Several researchers have considered selection of land-
marks to support navigation. Strasdat et al. [25] proposed a
reinforcement-learning-based landmark selection policy to min-
imize the robot position error at the goal. Lerner et al. [26] con-
sidered single-camera frame-based landmark selection in terms
of a “severity function.” And Sala et al. [27] proposed to choose
a minimal set of landmarks such that at least k are viewable
from every point in the configuration space. Note, however, that
none of these previous works consider the obstacles, obstacle
uncertainty, or probability of collision in the landmark selec-
tion process. Our method, in contrast, chooses landmarks in a

SLAM setting without a prior map, with an explicit goal of
minimizing the probability of collision during navigation by in-
herently accounting for metric properties of the map, such as
constrictions and tight corridors. This technique also limits the
resources required to map the landmarks simultaneously.

C. Planning Under Uncertainty

This paper specifically considers navigation under map and
pose uncertainty as the motivating application for the focused
inference framework. A vast amount of literature addresses the
problem of finding collision free paths in the presence of robot
pose uncertainty assuming the landmark map is given. A stan-
dard measure in finding a safe path is to define a probability of
collision with an obstacle, and the resulting path can be chosen
that balances optimality and risk [28], [29]. In [30], an optimal
path is found subject to a maximum allowable probability of
collision (typically called a “chance constraint”). Measurement
uncertainty is taken into account in [31] and[32] to compute a
more accurate estimate of the robot pose and collision probabili-
ties. The path is planned in advance assuming accurate stochastic
models for motion dynamics and sensor measurements. Finally,
there is a small class of planning algorithms that consider mo-
tion, measurement, and map uncertainty (e.g., [33]), but these
approaches are mainly limited to problems with small discrete
state, action, or measurement spaces.

The most relevant work to our present approach is by Lambert
and Le Fort-Piat [34] who use a set-bounding technique to en-
sure that the 3σ ellipse of the robot’s pose estimate never comes
into contact with an obstacle. This paper is one of the few to
explicitly consider the pose, control, and map uncertainty. The
known shortcoming of such an approach is that it tends to be
overly conservative. **Particularly, in the case of highly clut-
tered environments or tight corridors, the algorithms will fail
to produce a feasible solution. This paper presents a mapping
scheme that is specifically designed to be utilized in a prob-
abilistic navigation module. We provide a rigorous treatment
of the coupling between trajectory and landmark map uncer-
tainties, which is achieved within memory and computational
constraints, making our approach applicable to low-cost robots
operating with limited sensing in realistic environments.

III. MEASUREMENT SELECTION FOR INFERENCE ON

FOCUSED VARIABLES

We begin by assuming that the selection of focused variables
has already been performed, and proceed to formulate the prob-
lem of measurement selection to support inference over these
focused variables. We keep the formulation as general as possi-
ble at this measurement-selection stage. The following sections
will discuss task-specific focused variable selection and task
execution.

In general, there are two ways to sparsify measurements. The
first one is forward selection where the map is initially empty and
measurements are added when they are deemed important [5].
The second way is backward map reduction in which the map is
initialized with an optimized full graph and measurements are
removed [13]. However, an optimized graph with the full set of
variables and measurements would be difficult to compute for



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON ROBOTICS

a real robot with limited onboard computation. Furthermore,
the number of measurements to retain is typically very small
compared to the total number of measurements that are avail-
able, so the backward reduction is relatively inefficient. If each
step only adds or removes one measurement, then backwards
map reduction will involve many more operations than that of
forward selection. As a result, a forward selection approach is
used in this paper.

A. Problem Formulation

Denote X = {X1 , . . . , XN } as a set of hidden random vari-
ables that are (partially) observable through measurements
z = {z1 , . . . , zK } which are collected in the initial data col-
lection phase, where K can be very large. Then, in its most
general form, the measurement selection problem can be posed
as follows.

Problem 1: Unfocused Measurement Selection: Select the
subset of measurements zR = {zR1 , . . . , zRKR } ⊂ z, such that
some information metric f(·) over the hidden variables X is
maximized, subject to some cost function g(·) constraint on the
measurement set

max
zR ⊂z

f(X; zR )

s.t. g(zR ) ≤ c. (1)

Commonly used information metrics include entropy, mutual
information, and KLD. In this paper, the cost function used is
the cardinality of the set g(zR ) = KR . In practice, the number
of measurements often relates to the model complexity, and thus
the computational cost. Therefore, the resource budget c could
be selected based on computational resource available.

Here, instead of Problem 1, we have a set of “focused” vari-
ables, ˜X = { ˜X1 , . . . ˜X

˜N }, which is a compact representation

of the variables in X , with ˜N � N .1 To maintain generality,
we represent the mapping from the unfocused variables to the
focused variables by a prioritization function.

Definition 1: Prioritization Function: The function w :
RN → R ˜N that maps the full set of variables onto the set of
focused variables.

For example, in the degenerate case of variable selection, ˜X =
w(X) = WX , where W is an ˜N ×N matrix with a single 1 in
each row. However, the formulation allows for more complex
mappings from the full set to the focused set. Notice that the
prioritization function gives a mapping relationship between
original and focused variables, but does not marginalize original
variables: all the original variables X are still maintained in the
model at this stage.

The problem of focused measurement selection consists of
choosing the best subset of the full measurement set z to opti-
mally estimate the focused variables.

Problem 2: Focused Measurement Selection: Select the sub-
set of measurements zR = {zR1 , . . . , zRKR } ⊂ z, such that some

information metric f(·) over the focused variables ˜X is max-
imized, subject to some cost function g(·) constraint on the

1The “ ·̃ ” notation is used in this paper to refer to the set of focused variables.

Fig. 3. Graphical model: Edge colors denote factors: blue ψ123 (X1 , X2 ,
X3 ), red ψ34 (X3 , X4 ), and green ψ45 (X4 , X5 ).

measurement set

max
zR ⊂z

f( ˜X; zR )

s.t. |zR | ≤ c. (2)

Graphical models, such as factor graphs in Fig. 3 are a com-
pact way of representing dependencies between variables [1].
For a factor graph, the joint posterior can be expressed as a
product of factors, ψc(x{c})

p(x|zR ) ∝
∏

c∈C
ψc(x{c}) (3)

where C is the set of all factors, x{c} are the variables in factor c.
Because each factor ψc(x{c}) is strictly positive, p(X = x|zR )
can be written equivalently in logistic form

p(x|zR ) ∝ exp

{

∑

c∈C
φc(x{c})

}

(4)

where φc(x{c}) = logψc(x{c}).
The reduction from the full set of variables to the focused

variables is achieved by mapping the posterior through the pri-
oritization function x̃ = w(x) to produce a new posterior over
the focused variables

p(x̃|zR ) ∝ exp

⎧

⎨

⎩

∑

c∈˜C
φ̃c

(

x̃{c}
)

⎫

⎬

⎭

, x̃ = w(x) (5)

where ˜C is the new (smaller) set of factors over X̃ , and φ̃c are
the resulting factors.

If we define the function f(·) in (2) to be the Shannon entropy
of the conditional distribution

H( ˜X|zR ) = E
˜X |zR [− log p(x̃|zR )] (6)

where E is the expectation operator, then we obtain the resulting
equation for the entropy of the focused variables, ˜X conditional
on the subset of measurements zR as

f( ˜X; zR ) = H( ˜X|zR ) = E
˜X |zR

[

−
∑

c∈˜C
φ̃c(x̃{c})

]

+ C (7)

where C is a constant. A more concrete example will be given
in next Section III-B.

Note that computing the transformation from φ to φ̃ can
be hard in general. Furthermore, the graph over ˜X will be
more dense than the graph of X , and computing H( ˜X|zR )
can be computationally expensive. However, it will be shown
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that H( ˜X|zR ) can be computed in closed-form given two as-
sumptions:

Assumption 1: The graphical model can be approximated as
a Gaussian distribution.

Assumption 2: The prioritization function w(·) is an affine
transformation.

Assumption 1 is, in fact, less limiting than the standard ad-
ditive Gaussian noise assumption in the SLAM literature, since
even in the case of robust cost functions, we can always ap-
proximate the posterior as a Gaussian distribution using the
Laplacian approximation [35]. Assumption 2 essentially re-
quires the focused variables to be linear combinations of the
original variables, which is still more general than other vari-
able selection methods [23], [24] which restrict the set of focused
variables to be a strict subset of the original set. For example,
given corners/edges of an object, a focused variable could be
the center of the object, which is a linear combination of the
corners/edges.

B. Gaussian Approximation

We begin by applying the standard method [36] of ap-
proximating a posterior over the unfocused variables (4) us-
ing a second-order Taylor series expansion of the factors φc
at some initial guess x∗ and denote the approximated factors
as φ̂c2

p(x|zR ) ≈ p̂(x|zR ) ∝ exp

{

∑

c∈C
φ̂c(x{c})

}

= exp

{

∑

c∈C
φc(x∗{c}) + (x− x∗)T

∑

c∈C

∂

∂x
φc(x∗{c})

+
1
2
(x− x∗)T

(

∑

c∈C

∂2

∂x2 φc(x
∗
{c})

)

(x− x∗)
}

. (8)

Note that the exponential component in (8) is quadratic in x,
therefore the approximation is a Gaussian distribution with in-
formation matrix, ΛzR given by the Hessian

p̂(x|zR ) = N−1(ζ,ΛzR ) , ΛzR =
∑

c∈C
− ∂2

∂x2 φc(x
∗
{c}) (9)

which can be further decomposed in the case of single and
pairwise factors as

ΛzR =
1
2

∑

i,j=1..N

xTi Λi,j xj (10)

where Λi,j 
= 0 only if i = j or Xi and Xj are connected in
the graph. We write ΛzR with subscript zR to explicitly repre-
sent that the information is dependent on the choice of selected
measurements which will impact the structure of the graph and
the resulting factors. One point of note is that ΛzR is inherently
dependent on the linearization point chosen x∗.

C. Affine Prioritization Function

In Def. 1, we defined the prioritization function w(·), which
is a task-specific function that maps the set of all variables

2Theˆnotation is used throughout to refer to the Gaussian approximation.

Fig. 4. Transformed graphical model. New variables ˜X1 = X2 , ˜X2 = 1
3 X3

+ 2
3 X4 , ˜X3 = X5 . New factors: blue ˜ψ12 ( ˜X1 , ˜X2 ), green ˜ψ2 ,3 ( ˜X2 , ˜X3 ).

onto the set of focused variables. In this section, we impose
the restriction that this function is affine in order to provide a
closed-form solution of getting from (4) to (5):

˜X = w(X) = WX (11)

where W ∈ R ˜N×N. For example, in Fig. 4 we have

⎡

⎢

⎢

⎣

˜X1

˜X2

˜X3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎣

0 1 0 0 0

0 0 1/3 2/3 0

0 0 0 0 1

⎤

⎥

⎦

︸ ︷︷ ︸

W

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

X1

X2

X3

X4

X5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (12)

This restriction on the prioritization to be affine guarantees that
the posterior over the focused variables will still be Gaussian:
p̂(x̃|zR ) = N−1(ζ̃,ΛzR ) [3]. Furthermore, we can easily write
an expression for the information matrix

ΛzR = (WΛ−1
zR W

T )−1 (13)

as a result, the approximate entropy of the focused variables
given the selected measurements can be written in closed form as

Ĥ( ˜X|zR )=−1
2

log
∣

∣˜ΛzR
∣

∣ + C=
1
2

log
∣

∣WΛ−1
zR W

T
∣

∣+C.
(14)

We finish by restating Problem 2 based on the Gaussian ap-
proximation and restriction to affine prioritization functions.

Problem 3 (Approximate Focused Measurement Selection):
Select the subset of measurements zR = {zR1 , . . . , zRKR } ⊂ z,
such that approximate entropic information over the focused
hidden variables ˜X is maximized, subject to the same constraint
as (2) as

max
zR ⊂z

− log
∣

∣WΛ−1
zR W

T
∣

∣

s.t. |zR | ≤ c.

D. Efficiently Solving Problem 3

Notice Problem 3 optimizes an objective function that is de-
fined on a set. Such a set function is discrete and combinatorial,
and computing the optimal solution is typically intractable on
SLAM-size problems. We use a greedy selection procedure that
maximizes the incremental information gain on the next mea-
surement.

Each new measurement zRk added to the set will introduce a
new factor, φk (x∗{k}), into the joint posterior, where the set of

variables X{k} are the ones affected by measurement zRk . We
denote the intermediate set of k ≤ KR measurements that have
already been selected as zRk = {zR1 , . . . , zRk }.

The approximate entropy reduction (or information gain) over
the focused variables brought about by adding a new measure-
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ment zRk that we want to maximize is

ΔĤ( ˜X|zRk ) = Ĥ( ˜X|zRk −1 )− Ĥ( ˜X|zRk ). (15)

In the following theorem, we show that this quantity can be
efficiently computed.

Theorem 1: The approximate reduction in entropy over the
focused variables brought about by introducing the new mea-
surement zRk will be

ΔĤ( ˜X|zRk ) = −1
2

log
∣

∣I − (I + JTk Λ−1
zR k −1

Jk )−1

×LTk ˜ΛzR k −1 Lk
∣

∣ (16)

where Lk � WΛ−1
zR k −1

Jk , Jk is the measurement covariance
weighted stacked Jacobian [8], andW is the affine prioritization
function.

Proof: We proceed similarly to [5], but with the added com-
plication that there is a transformation from the unfocused to
the focused variables ( ˜X = WX) required to evaluate (15).

From (9), the information matrix after the introduction of zRk
will be

ΛzR k = ΛzR k −1 −
∂2φk (x∗{k})

∂x2 = ΛzR k −1 + JkJ
T
k (17)

where Jk ∈ RN×|x{k }|, with |x{k}| the number of variables in
clique k and only blocks corresponding to the variables in the
clique x{k} being nonzero. The new entropy after adding mea-
surement zRk can be evaluated as

Ĥ( ˜X|zRk ) =
1
2

log
∣

∣W (ΛzR k )−1WT
∣

∣ . (18)

Then, the reduction in entropy, ΔĤ( ˜X|zRk ), is

−1
2

log
∣

∣WΛ−1
zR k

WT
∣

∣ +
1
2

log
∣

∣

∣WΛ−1
zR k −1

WT
∣

∣

∣

= −1
2

log

∣

∣W (ΛzR k −1 + JkJ
T
k )−1WT

∣

∣

∣

∣

∣

(

WΛ−1
zR k −1

WT
)∣

∣

∣

. (19)

By applying the matrix inversion lemma

(A+BBT )−1 = A−1 −A−1B(I +BT A−1B)−1BT A−1

and the determinant property |I +AB| = |I +BA|, (19)
reduces to

−1
2

log
∣

∣

∣I − (I + JTk Λ−1
zR k −1

Jk )−1LTk ΛzR k −1 Lk

∣

∣

∣

which is the required result. �
1) Computational Complexity of (16): Similar to [5], we

have avoided the need to compute the entropy over the en-
tire variable set. However, unlike in [5] where the calculation
of information gain scales only with the size of the mea-
surements, we have a slightly more complicated scenario be-
cause of the prioritization transformation W . Upon further
inspection of (16), calculating JTk Λ−1

zR k −1
Jk has a computa-

tional complexity of O(|x{k}|4) (similar to [5]), where |x{k}|
is the cardinality of x{k}. In addition, note that calculating the
ith element of Lk (which is computed as Lik = WiΛ−1

zR k −1
Jk ,

where Wi is ith row of W ) requires us to check the subma-
trix of Λ−1

zR k −1
that corresponds to the nonzero elements of

Algorithm 1: Measurement Selection for Prioritized Land-
marks.

Input: Initial information matrix ΛzR 0 , focused variables
˜X , all measurements z, budget c

Output: measurements zR

1: k ← 0, zR0 ← ∅
2: while |zRk | < c do
3: k ← k + 1
4: z∗k = arg maxzRk ∈z\zR k −1 ΔĤ( ˜X|zRk )
5: zRk = zRk −1 ∪ {z∗k}
6: ΛzR k = ΛzR k −1 + JkJ

T
k

7: ˜ΛzR k = (WΛ−1
zR k

WT )−1

8: end while

Wi and Jk . Therefore, the overall complexity of computing
Lk is O(||W ||0 |x{k}|+ |x{k}|4), where ||W ||0 is the number
of nonzero elements in the prioritization transformation. Typi-
cally the clique size, |x{k}| � N , and since ˜N � N we should
expect that ||W ||0 � N , therefore the overall complexity of
computing Lk is much less than the problem sizeN . Algorithm
1 summarizes the measurement selection approach.

IV. FOCUSED MAPPING FOR NAVIGATION

In this section, we return to the question of variable selection
that generates an input to the measurement selection scheme
described in the previous section. The selection of focused vari-
ables mainly depends on the robot’s tasks and goals. Here, we
specifically consider the task of collision-free navigation.

Assume that the robot gathered some data, and needs to map
a set of landmarks that can be used to localize itself and navigate
through the environment. The dataset contains both the robot’s
path as well as measurements of landmarks along the path.
Denote the robot’s trajectory as a sequence of random variables
X = {X1 , . . . , XT }. In GPS-denied environments, X is not
directly observable. However, the robot can always measure the
incremental change between two sequential poses (odometry),
for example from an IMU or wheel encoder. There also exists a
set of landmarks from which focused landmarks can be selected.
Denote the set of landmarks as L = {L1 , L2 , . . . LN }.

A. Selection of Focused Landmarks

While there may exist thousands of landmarks, typically a
small, carefully chosen subset can result in sufficiently accu-
rate navigation. This indicates we can reduce the amount of
landmarks without significantly degrading navigation perfor-
mance. Reducing the number of landmarks is desirable, as it will
significantly reduce the required computation for data associa-
tion, which will in turn enable faster and more efficient on-line
trajectory planning and navigation.

In navigation, narrow passages are especially challenging for
collision-free motion planning. However, in the case of high map
and robot uncertainty, the “narrowness” should be redefined. As
shown in Fig. 5, a “geometrically” wide passage might still be
problematic for a robot that does not have access to accurate
landmark information, and thus, has poor localization accuracy.
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Fig. 5. Probabilistic narrowness: A measure of the probability of collision
while navigating the environment. Left: This geometrically narrow corridor is
probabilistically wide because there are many landmarks with which to localize.
Right: Conversely, this geometrically wide hallway is probabilistically narrow.

We refer to this passage as being “geometrically wide” but
“probabilistically narrow” and we will formalize these terms
below.

The evaluation of probabilistic narrowness involves two key
components: 1) Calculating an estimate of the robot’s position
uncertainty and 2) Calculating the probability of collision based
on the robot’s uncertainty and the distance to obstacles as deter-
mined by the robot.

1) Robot Position Uncertainty: To generate an estimate of
the robot’s position uncertainty at any given point x along the
robot’s path X , we use the concept of belief stabilization since
it is a trajectory-independent measure [31].

Assume we have a closed-loop controller that can stabilize
the robot’s state to belief state x. Such a controller is typically
comprised of an estimator and a separated controller. The
estimator generates an a posteriori distribution over all robot
poses based on the existing map of landmarks and the local
observation of landmarks. Given these estimates, the separated
controller will generate a control signal that drives the robot
toward x. To design an analytic measure of narrowness, we
rely on a simple Linear-Quadratic-Gaussian (LQG) controller,
which combines a Kalman filter and a linear quadratic regulator.
It can be shown [31] that starting from any Σ0 > Σ∗(x), the
estimation covariance decreases monotonically and approaches
the covariance Σ∗(x), which is the fixed point of a Riccati
recursion at location x

{Σ∗=Q+A(Σ∗−Σ∗HT (HΣ∗HT +R)−1HΣ∗)AT }x . (20)

The Jacobians, A and H are computed by linearizing the
process and measurement model at point x on the path, where
Q and R are the process and measurement noise, respectively.
A visual depiction of the stabilization process is shown in
Fig. 6. We associate a set of visible landmarks L(x) (the ones
connected to the robot by blue lines in Fig. 6) with each pose
x. The value of the steady-state covariance will depend on the
set of visible landmarks as expressed through the measurement
noise covariance R. Note that the set of visible landmarks
and Jacobian matrices would depend on the point x on the
path. However, they do not depend on the path that leads to
x. Therefore, main computational advantages can be gained by
parallelizing the computation of Σ∗(x).

2) Collision Probability: Using N (x,Σ∗(x)) as a measure
of uncertainty for each point x on the path, the collision prob-
ability can be defined by a Monte Carlo method. For each x,

Fig. 6. Stabilization: Based on the landmark estimates, we solve a Riccati
recursion to determine the minimum robot uncertainty at each point along the
robot’s path. This value is used as the measure of “probabilistic narrowness”
introduced in Fig. 5.

sample the normal distribution and denote I as the set samples
drawn from N (x,Σ∗(x)). Denote Obs as the set of obstacles,
and I ∩Obs as the set of samples that collide with obstacles.
Then, the collision probability can be defined as

Pc(x) = lim
|I |→∞

|I ∩Obs |
|I| . (21)

Monte Carlo methods are typically computationally expensive,
and thus, not well-suited for real-time implementation. There
have been many approximate methods, such as [18], [37], [38].
Here, we utilize an approximate measure that is computationally
cheaper. First, denote the set of readings received from the laser
range finder in its local frame as D = {di} where each di is
a 2-D vector connecting x to a point on the obstacle surface.
Then, we simply compute the minimum Mahalanobis distance
between x and the obstacle surface as

Pc(x) = min
di ∈D̄
{(di)T Ωdi} (22)

where Ω = (Σ∗(x))−1 is the information matrix correspond-
ing to x. D̄ could be equal to D or could be a subsampled
version of D based on the available computational resources.
In the extreme case, D̄ could be a single point D̄ = xobst =
arg mindi ∈D ‖di‖ on the obstacle surface. In other words,Pc(x)
measures how near the closest obstacle point is from any possi-
ble poses of x in terms of standard deviations from the mean.

Notice the approximation retains the ability to favor some un-
balanced covariance choices. For example, when one eigenvalue
is significantly larger than the other, resulting in a “collision” in
the direction of the larger one, the approximation will still have
a high cost along that direction.

The landmark selection problem is framed as finding the
poses along the trajectory with the highest approximate collision
probability.

Problem 4 (Minimum Collision Probability Landmark Selec-
tion): Select the α landmarks Lf ⊂ L, such that the worst case



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON ROBOTICS

Algorithm 2: Minimum Collision Probability Landmark
Selection.

Input: Robot poses X , landmarks L, odometry noise Q,
measurement noise R, budget α

Output: Selected landmarks Lfk
1: k ← 0, Lf0 ← ∅
2: Compute Pc(x) for all x ∈ X by (20) and (22)
3: P (l) = minx s.t. l∈L(x) Pc(x) for all l ∈ L
4: while k < α do
5: k ← k + 1
6: l∗k ← argminl∈L\Lf

k −1
P (l)

7: Lfk = Lfk−1 ∪ {l∗k}
8: update Pc(x) for x that can observe l∗k
9: update any P (l) that may have changed
10: end while

probability of collision is minimized as

max
Lf ⊂L

min
x
Pc(x)

s.t. |Lf | ≤ α. (23)

The problem is solved approximately by greedily selecting
landmarks as summarized in Algorithm 2. At each iteration,
pick the landmark l∗ that is associated with minimal Pc(x), then
update Pc(x) for all the x that can observe l∗. Since the number
of poses that can observe any individual landmark is low, this
greedy approximation can be computed efficiently.

B. Focused Measurement Selection for Navigation

Here we detail how to apply this landmark selection scheme
resulting from solving Problem 4 to the measurement selection
process described in Section III. Recall random variables X to
represent robot poses and L to represent landmarks. Recall that
the joint log probability of a factor graph is proportional to the
sum of the factors φ(Xc, Lc |o, z)

p(X,L) ∝ exp

(

∑

c∈C
φc(Xc, Lc |o, z)

)

. (24)

An odometry measurement, o, adds a factor between two sub-
sequent poses φt(Xt,Xt+1; ot) and a landmark measurement,
z, adds a factor between a pose and a landmark φit(Xt, Li ; zit ).

The focused variables are selected focused landmarks: ˜X =
Lf ⊂ L. The rest of the unfocused variables, including the rest
of the unfocused landmarks and robot poses, are denoted as
˜X
′
= {L \ Lf , Y }. Then, the affine prioritization function rep-

resented by W is

˜X = W

[

Lf

˜X
′

]

, W =
[

IÑ×Ñ 0Ñ×N−Ñ
]

. (25)

Using the standard assumption that the odometry and land-
mark measurement are corrupted by additive. Gaussian noise

[14], then the factors are

X0 ∼ N (μ0 ,Σ0)

Xt+1 = f(Xt, ot) + η , η ∼ N (0, Qt)

φt(Xt,Xt+1) = −1
2

(Xt+1 − f(Xt, ot))
T

× Q−1
t (Xt+1 − f(Xt, ot))

zit = g(Xt, Li) + ν , ν ∼ N (0, Rt,i)

φit(Xt, Li) = −1
2
(zit − g(Xt, Li))T R−1

t,i (z
i
t − g(Xt, Li)).

The W matrix and the factors can be used in Algorithm 1
now for the second stage (focused measurement selection).

Notice that the Gaussian approximation of the joint likelihood
(9) is subject to the linearization point. An ideal linearization
point would be the maximal likelihood value where the gradient
is 0. However, computing this optimal value would involve opti-
mizing the full graph with all variables and edges, which would
become slow and resource intensive quickly when the problem
gets bigger. Instead, we use the odometry based initial value as
the linearization point. While it may subject to performance loss,
this approach significantly reduces the computational burden.

For this choice of W , (16) can be further simplified. First
decompose Λ−1

zR
into blocks of focused and unfocused variables

Λ−1
zR =

[

A B

BT C

]

(26)

with A = AT > 0 and C = CT > 0. Then

LTk Λ̃zR k −1 Lk = JTk Λ−1
zR k −1

WT
(

WΛ−1
zR k −1

WT
)−1

× WΛ−1
zR k −1

Jk . (27)

Inserting (26) into (25) gives
(

WΛ−1
zR k −1

WT
)−1

= A−1 (28)

and

LTk Λ̃zR k −1 Lk = JTk

[

A B

BT C

][

I

0

]

A−1[ I 0
]

[

A B

BT C

]

Jk

= JTk

[

A B

BT BT A−1B

]

Jk

= JTk

(

Λ−1
zR k −1

−
[

0 0

0 C −BT A−1B

])

Jk

= JTk

(

Λ−1
zR k −1

−
[

0 0

0 (ΛC
zR k −1

)−1

])

Jk

(29)

where ΛC
zR k −1

denotes the submatrix of ΛzR k −1 corresponding
to the unfocused variables and (ΛC

zR k −1
)−1 is the marginal co-

variance matrix of unfocused variables. Inserting (29) into (16)
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yields

ΔĤ(X̃|zRk )

= −1
2

log
∣

∣

∣I − (I + JTk Λ−1
zR k −1

Jk )−1LTk Λ̃zR k −1 Lk

∣

∣

∣

=
1
2

log
∣

∣

∣I + JTk Λ−1
zR k −1

Jk

∣

∣

∣

− 1
2

log
∣

∣

∣I + JTk Λ−1
zR k −1

Jk − LTk Λ̃zR k −1 Lk

∣

∣

∣

=
1
2

log
∣

∣

∣I + JTk Λ−1
zR k −1

Jk

∣

∣

∣

− 1
2

log

∣

∣

∣

∣

∣

I + JTk

[

0 0

0 (ΛC
zR k −1

)−1

]

Jk

∣

∣

∣

∣

∣

. (30)

Note that the form of (30) is intuitive. The first term is the in-
formation gain on all variables. The second term has a similar
form, but is computed only on unfocused variables. The dif-
ference of these two terms is the information gain on focused
variables. Depending on whether the new measurement is of a
focused landmark or unfocused landmark, (30) can be further
simplified, as outlined in the following.

Case 1: Measurement of focused landmark, li ∈ Lf . In this
case, Jk is nonzero only at the ith row corresponding to the
focused landmark and the jth row corresponding to the robot
pose, Jk = [. . . , Jk , . . . , Jj , . . .]

T
k . Denote Λ−1

ij as the element
corresponding to i, j location of matrix Λ−1

zR k −1
, and (ΛC

ij )
−1 as

the element corresponding to i, j location of matrix (ΛC
zR k −1

)−1 ,
then (30) can be further simplified to

ΔĤ(X̃|zRk ) =
1
2

log

∣

∣

∣

∣

∣

∣

I +

[

Ji

Jj

]T [

Λ−1
ii Λ−1

ij

Λ−1
j i Λ−1

jj

][

Ji

Jj

]

∣

∣

∣

∣

∣

∣

− 1
2

log
∣

∣I + JTj (ΛC
jj )
−1Jj

∣

∣ . (31)

Case 2: Measurement of unfocused landmark, li /∈ Lf

ΔĤ(X̃|zRk ) =
1
2

log

∣

∣

∣

∣

∣

∣

I +

[

Ji

Jj

]T [

Λ−1
ii Λ−1

ij

Λ−1
j i Λ−1

jj

]

[

Ji
Jj

]

∣

∣

∣

∣

∣

∣

− 1
2

log

∣

∣

∣

∣

∣

∣

I +

[

Ji

Jj

]T [

(ΛC
ii )
−1 (ΛC

ij )
−1

(ΛC
ji)
−1 (ΛC

jj )
−1

][

Ji

Jj

]

∣

∣

∣

∣

∣

∣

. (32)

Note that the first terms of (32) and (31) are identical. However,
only Jj contributes to the second term in (31) but both Ji and
Jj contribute to the second term in (32). Case 2 has larger
information gain over the unfocused variables as compared to
Case 1, and consequently, the change in total information is
much smaller.

C. Robot Pose Sparsification

The variables in the graph consist of both landmarks and robot
poses. After marking certain landmarks as focused variables
and selecting measurements, the graph structure is significantly
sparsified. However, the graph size is still big, as all the variables

including both landmarks and robot poses are still maintained
in the graph, which will exceed the robot memory constraint
quickly.

Observe that after c measurements are selected, there are at
most c robot poses that are connected to any landmarks in the
graph. Most robot poses are only connected to the previous and
subsequent poses (an odometric chain). Marginalizing out such
robot poses is an odometry composition. Robot poses with-
out any landmark measurements are marginalized out to reduce
graph size. If an unfocused landmark is not connected to any
robot poses, it is also marginalized out. The same lineariza-
tion point is maintained during the variable and measurement
selection, to minimize information loss.

After these two marginalizations, the number of variables in
the graph is linear in the measurement constraint, which is given
as an input as a memory and computation constraint.

V. NAVIGATION WITH UNCERTAIN LANDMARKS

Different from classical path planning algorithms with known
map of landmarks for localization, the environment map here is
given as a set of stochastic landmarks L ∼ N (̂L,RL ) learned
from SLAM. In this section, we discuss how to use such a map
to navigate. In particular, an LQG controller is designed that
tracks a trajectory connecting robots initial point to its goal.
First, the trajectory is discretized to T steps as (xdi )

T
i=0 and

(udi )
T −1
i=0 where, xdk and udk denote the desired state and control

signal at the kth time step on the trajectory. Assume that the
robot starts at x0 ∼ N (x̂0 ,Σ0).

We formulate the problem by incorporating a stochastic map
into the LQG framework. Assume that the locations of the land-
marks are random variables with a mean and covariance given
by the map data structure.

The nonlinear partially observable state-space equations of
the system are

xk+1 = f(xk , uk , wk ), wk ∼ N (0, Qk ) (33a)

zk = h(xk , L, vk ), vk ∼ N (0, Rk ), L ∼ N (̂L,RL ).
(33b)

Represent the control problem as

min
μt (·)

E

[

N
∑

t=0

(xt − xdt )T Wx(xt − xdt )

+ (ut − udt )T Wu (ut − udt )
]

xk+1 = f(xk , uk , wk ), wk ∼ N (0, Qk )

zk = h(xk , L, vk ), vk ∼ N (0, Rk ), L ∼ N (̂L,RL )

ut = μt(bt)

bt = p(xt |z0:t , u0:t−1). (34)

To transform the problem in (34) into an LQG problem, we
first compute a time-varying linear system by linearizing the
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nonlinear system about the nominal trajectory (xdk , u
d
k )k≥0

xk+1 = f(xdk , u
d
k , 0) +Ak (xk− xdk ) +Bk (uk− udk ) +Gkwk ,

wk ∼ N (0, Qk ) (35a)

zk = h(xdk , ̂L, 0) +Hk (xk − xdk ) +ML
k (L− ̂L) +Mkvk ,

vk ∼ N (0, Rk ), L ∼ N (̂L,RL ) (35b)

where

Ak =
∂f

∂x
(xdk , u

d
k , 0), Bk =

∂f

∂u
(xdk , u

d
k , 0) (36a)

Gk =
∂f

∂w
(xdk , u

d
k , 0), Hk =

∂h

∂x
(xdk , ̂L, 0) (36b)

Mk =
∂h

∂v
(xdk , ̂L, 0), ML

k =
∂h

∂vL
(xdk , ̂L, 0). (36c)

Now define the following errors:
1) LQG error (main error): ek = xk − xdk .
2) Map error: vL = L− ̂L.
3) Kalman filter error (KF estimation error): ẽk = xk − x̂+

k .
4) LQR error (estimation of LQG error): ê+

k = x̂+
k − xdk

where x̂+
k refers to the mean of estimated state at the

kth time step. Let δuk = uk − udk and δzk = zk − zdk :=
zk − h(xdk , ̂L, 0), then the linearized models in (35) can be
rewritten as

ek+1 = Akek +Bkδuk +Gkwk ,

wk ∼ N (0, Qk ) (37a)

δzk = Hkek +ML
k v

L +Mkvk ,

vk ∼ N (0, Rk ), vL ∼ N (0, RL ). (37b)

Defining M̄k = [ML
k Mk ] and v̄k = [vL

T
vTk ]T and R̄k =

diag[RL,Rk ], the observation equation can be written as

δzt = Hkek + M̄k v̄k , v̄k ∼ N (0, R̄k ). (38)

The last step is to write the control problem in the linear error
space as

min
μt (·)

J = E

[

N
∑

t=0

eTt Wxet + δuTt Wuδut

]

ek+1 = Akek +Bkδuk +Gkwk ,wk ∼ N (0, Qk )

δzt = Hkek + M̄k v̄k , v̄k ∼ N (0, R̄k )

δut = μt(bt)− udt
bt = p(et + xdt |δz0:t , δu0:t−1). (39)

Now, the problem in (39) is in the standard LQG form. Note that
ek = ẽk + ê+

k and, based on the separation principle [39], it can
be shown that minimizing the quadratic objective in (39) can
be divided into two separate minimizations over the estimation
error ê+

k and the separated controller error ẽk . In the following,
we discuss how a KF and an LQR can be designed for this
linearized system and finally combine them to construct a time-
varying LQG controller.

Kalman Filter: In Kalman filtering, we aim to provide an
estimate of the system’s state based on the available partial in-
formation we have obtained until time k, i.e., z0:k . The error
estimate is a random vector denoted by e+

k , whose distribution
is the conditional distribution of the state on the obtained ob-
servations so far, which is called belief and is denoted by bk
as

bk = p(x+
k ) = p(xk |z0:k ) = N (ê+

k + xdk , Pk ) (40)

ê+
k = E[ek |δz0:k , δu0:k−1 ] (41)

Pk = C[ek |δz0:k , δu0:k−1 ] (42)

where E[·|·] and C[·|·] are the conditional expectation and con-
ditional covariance operators, respectively.

Kalman filtering consists of two steps at every time stage:
prediction step and update step. In the prediction step, the mean
and covariance of prior e−k is computed. For the system in (37)
prediction step is

ê−k+1 = Ak ê
+
k +Bkδuk (43)

P−k+1 = AkP
+
k A

T
k +GkQkG

T
k . (44)

In the update step, the mean and covariance of posterior e+
k is

computed. For the system in (37), the update step is

Kk = P−k H
T
k (HkP

−
k H

T
k + M̄k R̄kM̄

T
k )−1 (45)

ê+
k+1 = ê−k+1 +Kk+1(δzk+1 −Hk+1 ê

−
k+1) (46)

P+
k+1 = (I −Kk+1Hk+1)P−k+1 . (47)

LQR Controller: Once we obtain the belief from the filter, a
controller can generate an optimal control signal accordingly. In
other words, we have a time-varying mapping μk from the belief
space into the control space that generates an optimal control
based on the given belief uk = μk (bk ) at every time step k.
LQR controller is of this kind and it is optimal in the sense of
minimizing cost

JLQR = E

[

∑

k≥0

(ê+
k )T Wx(ê+

k ) + (δuk )T Wu (δuk )

]

.

The linear control law that minimizes this cost function for a
linear system is of the form

δuk = −Fk ê+
k (48)

where the time-varying feedback gains Fk can be computed
recursively as

Fk = (BT
k Sk+1Bk +Wu )−1BT

k Sk+1Ak (49)

Sk = Wx +AT
k Sk+1Ak −AT

k Sk+1BkFk . (50)

If the nominal path is of length N , then the SN = Wx is the
initial condition of above recursion, which is solved backwards
in time. Note that the final controller is

uk = udk + δuk

= udk − (BT
k Sk+1Bk +Wu )−1BT

k Sk+1Ak ê
+
k . (51)
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It should be especially noticed that when stochastic landmarks
are incorporated in the navigation mechanism, we can predict
the navigation accuracy based on the map accuracy. This infor-
mation is utilized in the map generation phase. In other words,
because we especially optimized the uncertainties on key land-
marks in the map, the robot will have high confidence to go
through narrow passages and successfully reach the goal.

VI. INCREMENTAL MAPPING

Mobile robot autonomy will typically require operation over
long time periods and large distances. In such cases, batch se-
lection on a big dataset would be extremely slow, and would
likely exceed the resources onboard the robot. As such, it is
particularly important to develop algorithms that can perform
both variable and measurement reduction incrementally using
smaller sets of data. The variable reduction would enable the use
of a small model of the environment, thus saving memory. The
measurement reduction enables the use of a sparse graphical
model, which reduces the computational effort and reduces the
inference computation times.

The incremental pipeline is illustrated in Fig. 2, with an ar-
row connecting map building step back to data collection step.
After some operation in the environment collecting some data,
the robot first performs the two-stage landmark and measure-
ment selection procedures in Sections III and IV to reduce that
dataset. The reduced dataset is then used to update the partial
map of the environment constructed by the robot. The robot can
navigate with the updated partial map to newly defined goal lo-
cations, such as frontiers. More data would be collected during
that further operation, which enables the robot to incrementally
interleave the mapping/exploration operation with the measure-
ment/landmark reduction.

At some time point during operation, assume the robot has fin-
ished t− 1 operations of two-stage selection. Denote the graph
to t− 1 steps of operation as Gt−1 , the data the robot gathers
during operation t as zt , and the landmarks observed during op-
eration t as Lt , then the incremental two-stage selection process
is described by Problem 5.

Problem 5: A. Incremental Focused Measurement Selec-
tion: Given graph Gt−1 , select a minimal set of measurements
zRt from newly obtained measurements zt during operation t,
such that the information metric f(·) over the focused variables
˜Xt is bounded

max
zR t ⊂z t

g(zRt )

s.t. f( ˜Xt ; zRt |Gt−1) ≥ ct . (52)

B. Incremental Landmark Selection: Given graphGt−1 , select a
minimal set of landmarks Ltf from landmarks Lt observed dur-
ing operation t, such that the maximum probability of collision
is bounded

min
Lt
f ⊂Lt

|Ltf |

s.t. max
xk

Pc(xk |Gt−1) ≤ αt. (53)

Algorithm 3: Incremental Focused Mapping.

Input: Initial graph G0 = ∅, t = 0
1: while not stopped do
2: t = t+ 1
3: Operate robot and get data zt , Lt

4: Select landmarks Ltf with (53) and Algorithm 2
5: Select measurements zRt with (52) and Algorithm 1
6: Gt = Gt−1 ∪ {zRt , Ltf }
7: end while

Note that Problem 5 differs from Problems 2 and 4 in two as-
pects. First, the new metrics in (52) and (53) are conditioned on
the reduced graphical model from the previous operation Gt−1 .
Second, Problem 5 enforces the collision probability and infor-
mation gain as constraints, instead of optimizing information
gain and collision probability given a landmark and measure-
ment budget. In a single batch setting, the robot has access to all
of the data, which represents the entire environment. In an in-
cremental setting, the robot only has access to a single subset of
the data at a given time. Each subset only represents a part of the
environment and different subsets may correspond to different
geometric shapes of the environments. For example, one sub-
set represents narrow spaces while others corresponds to more
open space. If the incremental problem is set up as Problems 2
and 4, then a uniform resource budget is enforced for all dif-
ferent data subsets. As a result, it will lead to wasted resources
on open spaces and low accuracy on narrow places. Therefore,
Problem 5 enforces collision probability and information gain as
constraints, then greedily selects landmarks and measurements
until the constraints are satisfied. The incremental algorithm is
summarized in Algorithm 3.

VII. EXPERIMENTS

We present simulation and real-world results.3 First, experi-
ments are run in a simulated environment, where ground truth is
available to compare accuracies. In the real-world experiment,
we ran a turtlebot in a cluttered office space.

A. Simulations

Fig. 7 shows the simulation environment. It includes both
open areas on the left-hand side and narrow passages on the
right-hand side. The parameters and statistics are listed in Ta-
ble I. We first run the robot once to get the initial dataset, then
reduce robot poses and landmark measurements with various ap-
proaches. The sparsified maps are optimized with iSAM [40].
Repeated trials were performed on the generated maps to test
the collision probability when navigating from a start point to a
goal point. Five selection strategies were compared:

1) optimal: use all landmarks and all measurements;
2a) coverage, glc, global: use maximal coverage to proposed

in [19] and [41] to select landmarks and robot poses.
Thirty landmarks are selected and robot poses are selected
when the robot travels longer than 1.2 m. GLC is used to

3The software is available for download at: https://github.com/BeipengMu/
focused_slam.git.
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Fig. 7. Navigation with focused landmark selection and map building. Green circles represent selected landmarks with their size representing uncertainty. Blue
lines are the nominal trajectories each robot wants to follow with red circles representing pose uncertainty. The focused approach can successfully navigate through
narrow passages. (a) case 2 maximal coverage and GLC, without optimal initialization, (b) case 2 maximal coverage and glc with optimal initialization, (c) case 3
only select measurements, (d) case 4 only select landmarks, (e) case 5 two-stage selection.

TABLE I
SIMULATED DATASET

environment size 120 m × 120 m
distance traveled 1066.9 m
robot field of view 35 m, 180o

landmarks (black stars) 74
odometry measurements 1992
landmark measurements 12 760
focused landmarks α 30
landmark measurement budget KR 80
Odometry noise Q 0.1
Measurements noise R 0.1

marginalize out unselected variables [7]. Global optimal
point is used to initialize GLC.

2b) coverage, glc, direct: same as (2a), but use odometry as
initialization of GLC.

3) all, info: use all landmarks, and apply measurement selec-
tion based on information gain proposed in [5] until the
number of measurements exceeds a threshold;

4) focus, down-sampling: select focused landmarks and uni-
formly down-sample measurements;

5) focus, info: select focused landmarks for minimal colli-
sion, and select measurements based on information gain
on focused variables (our proposed method);

Case (1) is a bound on other approaches. Case (2) is a
map reduction approach that starts with full variables and

measurements. Typically, as implemented with (2a), the full
graph is optimized first, and then, reduced with the global op-
timal point. However, in our case, we try to avoid large scale
global optimization and do not have access to the optimal values,
as implemented in (2b). Case (3) is a measurement sparsification
approach but does not sparsify variables. Case (4) uses focused
landmarks to minimize collisions, but uses a naive way to spar-
sify measurements. Case (5) is our proposed two-stage selection
algorithm.

Fig. 7(a)–(e) shows the sample trials for cases (2), (3), (4),
and (5), respectively, and Fig. 8 shows the overall probabilities
of collision obtained from all trials. The trials are stopped when-
ever there is an actual collision with an obstacle. The landmarks
that are not selected are distinguished by small black boxes
around them. The landmark uncertainty are shown in green.
The blue line represents the robot trajectory. The red ellipses
represent the uncertainties of the robot along the trajectory. In
the focused landmark selection cases (5), the proposed proce-
dure picks the landmarks that contribute more in reducing the
robot’s uncertainty in desired regions (narrow passages) and
spend the computational budget to reduce the uncertainty of
these focused landmarks. The key point to note from Fig. 7(e) is
that the robot uncertainty is preferentially reduced in the areas
of the environment where the corridors are tight and there is a
higher chance of collision. In case (3), the measurements are
spread across landmarks. As a result, each landmark gets very
little resource thus the method fails to recover a meaningful



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MU et al.: TWO-STAGE FOCUSED INFERENCE FOR RESOURCE-CONSTRAINED MINIMAL COLLISION NAVIGATION 13

TABLE II
COMPARISON OF SIMULATED MAPPING RESULTS

case Variable Selection Measurement Selection Number of Landmarks Number of Poses Number of Factors Error on Landmarks (m) Time(s)

1 all all 74 1993 14 752 0.014 1.24
2a max coverage GLC 30 707 2932 0.012 960.2
2b max coverage GLC 30 707 2939 22.28 697.3
3 all info gain 74 61 141 36.43 52.6
4 focus down-sample 30 79 160 10.75 1.10
5 focus info gain 30 35 109 0.21 69.43

Fig. 8. Collision probability of Monte Carlo simulations. Focused two-stage
algorithm (black) has lower collision probability compared to unfocused (other
colors).

Fig. 9. Environment used for hardware experiments.

map for navigation, thus showing that, in this case, measure-
ment selection alone would not produce an acceptable result.
Case (4) only selects landmarks, more resources are spent on
the focused landmarks, thus the map is more accurate, but mea-
surement selection is not based on how much they contribute to
uncertainty reduction, thus the landmark positions are much less
accurate than selecting both (case 5). In case (2), landmarks and
robot poses are reduced based on maximal coverage, and vari-
ables are removed via sparse GLC. First notice map reduction
is more time-consuming than map selection, because the vari-
ables and measurements need to be removed are in the majority.
And computing CLT for landmarks with big Markov blankets is

Fig. 10. Floor plan of the hardware experiment environment. Narrow passages
include a door way and a sofa cluster.

TABLE III
OFFICE DATASET

length 10 min 24 s
distance traveled 115.5 m
# odometry measurements 5211
# landmark measurements 8252
# landmarks 114
focused landmarks α 30
landmark measurement budget KR 90
Odometry noise Q 0.1
Measurements noise R 0.1

especially time consuming. Without a prior optimization over
the full graph, sparse GLC loses information through marginal-
ization, and the remaining graph fails to converge. A prior opti-
mization over the full graph gives optimal landmarks locations
and GLC maintains the right locations through marginalization.
However, full-graph optimization is not desirable, especially
on resource constrained systems. Furthermore, maximal cover-
age does not maintain enough features in narrow passages, the
robot has major collisions there even with accurate landmark
estimates.

We further compare the cases from a mapping perspective
in Table II based on three metrics: the sparsity of graph, rep-
resented by number of landmarks, robot poses and factors in
the graph; the accuracy of SLAM, represented by the error on
landmark locations. The proposed focused two-stage landmark
and measurement selection approach achieves a sparser graph
than others, maintains accurate estimates of landmarks, which
results in sparser systems with good task performance.

The percentage of collision in Monte Carlo simulation is
given in Fig. 8. Of all the trials, the proposed two-stage selection
achieved significant less collisions. The collision probability of
other approaches quickly go up in the very beginning due to poor
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Fig. 11. Mapping results. Magenta circles represent landmarks with the size representing its uncertainty. The proposed two-stage approach (case 3) outperforms
either selecting measurement only (case 5) or selecting landmark only (case 4) isolated, (a) case 1 optimal, (b) case 5 two-stage selection, and (c) case 4 only
landmarks.

Fig. 12. Navigation results. Magenta stars represent designed waypoints for robot to follow. Blue lines represent the estimated robot trajectory by Kalman
filter. The proposed two-stage approach (case 5, focus, info) has least collisions, while only measurement reduction (case 3, all, info) has bad estimates and only
landmark reduction (case 4, focus, down-sampling) has more collisions. (a) case 5 two-stage selection, (b) case 4 only select landmarks, and (c) case 3 only select
measurements.

map or around 300 steps into navigation, which corresponds to
narrow passage at upper-right corner.

B. Hardware Experiment

In the hardware experiments, the turtlebot is equipped with
an ASUS Xtion Pro RGB-D camera (we only use the RGB cam-
era in this study) and a Hokuyo URG-04LX-UG01 laser-range
finder. Fig. 10 shows the floor plan of the environment. April-
Tags [42] were installed to create an initial pool of landmarks,
as shown in Fig. 9. The area consists of an office with desks, a
doorway, and an open atrium with couches and chairs scattered.
A summary of the dataset is provided in Table III.

The odometry measurements are obtained from the turtlebot’s
wheel encoders. The landmark measurements are obtained by
running the AprilTag detector with the RGB images, which gives
the relative orientation and range of the tags in the robot’s frame
[42]. The selected measurements and odometry information are
then fed into iSAM [15] to optimize the graph. Note that we did
not use the laser data for SLAM, only for detecting the closest
distance to obstacles.

Fig. 11 compares mapping results of case (1) (optimal), case
(3) only select measurements, case (4) only select landmarks,
and case (5) two-stage selection. The rebuilt robot trajectory is

TABLE IV
NAVIGATION PERFORMANCE

Method length # collisions

(5) two-stage selection 10 m 28 s 2
(4) only select landmarks 10 m 52 s 13
(3) only select measurements 28 m 40 s 20

shown with a color map, where the red color on the trajectory
indicates the risky (close to obstacles) regions and blue indi-
cates the safer regions. Magenta circles represent landmarks
with the size representing its uncertainty. The focused approach
[see Fig. 11(b)] can concentrate the measurements on the nar-
row passage and door way, resulting in less uncertainty there.
The other approaches scatter the measurements across different
landmarks, and thus, have much higher landmark uncertainty in
narrow passages.

Fig. 12 and Table IV compare the navigation results. Magenta
stars represent designed waypoints for the robot to follow. Blue
lines represent the estimated robot trajectory from a Kalman
filter. The proposed two-stage approach (5) has least collisions,
while only select landmarks (4) has more collisions and only
select measurements (3) has bad estimates.
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Fig. 13. Incremental selection. Green circles represent selected landmarks after processing each new batch. Blue lines represent the robot’s trajectory in each
batch. The robot is able to use existing focused landmarks as priors and augment focused landmarks when passing through narrow passages. (a) Batch 1, (b) Batch
2, (c) Batch 3, (d) Batch 4, and (e) Batch 5.

Fig. 14. Incremental selection. This dataset contains five batches. Magenta circles represent selected landmarks after processing each new batch. Black lines
represent the robot’s trajectory in each batch. The robot is able to use existing focused landmarks as priors and augment focused landmarks with new observed
data. (a) Batch 1, (b) Batch 2, (c) Batch 3, (d) Batch 4, and (e) Batch 5.

TABLE V
COMPARISON OF BATCH AND INCREMENTAL SELECTION

batch incremental

Number of Landmarks 30 33
Number of Poses 30 43
Number of Edges 120 150
Mean Error on Landmarks 0.1345 0.8001
Min Mahalanobis Distance 14.53 27.05

C. Incremental Selection

In the incremental setting, the robot iterates between land-
mark and measurement selection on streaming batches of data.
When a new batch is processed, it selects focused variables
and measurements using results from the previous batches as a
prior. Both simulated and real-world data are used to show the
incremental capability developed in Section VI.

In the simulated environment, the dataset in Table I is divided
into five batches, and Algorithm 3 is applied. The Mahalanobis
distance for selecting landmarks is set to be 100 and the infor-
mation gain for selecting measurements is set to be 0.5. Fig. 13
shows how the algorithm progresses. In the first two batches
of data, the robot selects landmarks in narrow passages as fo-
cused variables, however, the uncertainty over them is high as
the robot has not closed a loop yet. After batch three, the robot
closes loops, and significantly reduces the uncertainty on the
focused landmarks. Table V compares the performance with
incremental selection with batch selection.

TABLE VI
STATISTICS OF DATA BATCHES

Batch No. Time(s) Distance No. measurements

1 120 16.87 1711
2 120 13.67 1049
3 120 25.12 1902
4 120 25.18 1240
5 120 29.10 1390

The incremental algorithm is also tested on the office dataset
in Table III. The dataset is divided into five batches. Their statis-
tics are listed in Table VI.

Fig. 14 shows the map after processing each batch. Magenta
circles represent selected landmarks after processing each new
batch. Black lines represents the robot’s trajectory in each batch.
The robot is able to use existing focused landmarks as priors
and augment focused landmarks with new observed data.

VIII. CONCLUSION

We have presented a two-stage landmark and measurement
selection procedure designed for a real robot operating in un-
known or uncertain environments. With exploring time and
space growing, physical robotic system will have to discard data
at some point. In this paper, we provide one principled choice of
which data to retain. Namely, the data which is the most useful
to achieve the task at hand. Simulations and hardware results
demonstrate that the approach can identify a relevant subset of
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landmarks and accurately localize them to reduce the probabil-
ity of colliding with obstacles. As a result, the robot is able to
navigate the environment, without the memory or computational
requirements growing beyond the constraints. We have focused
on the task of navigation as an example here, but there are many
inference and planning tasks that require a similar prioritization
of variables and measurements.
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