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Abstract— The majority of path planning research has fo-
cused on robots equipped with forward-facing sensors. Algo-
rithms using cell decomposition and information gain are ef-
fective at planning paths through obstacle-laden environments,
but have not been applied to robots with side-looking sensors
whose goal is complete coverage. In addition, the assumptions
made about the environment can often prove false, leading to
poor mission plans being given by deliberative path planning
methods. As a result, adaptive path planning methods which
can change the vehicle’s path based onin situ measurements
of the environment are needed.

In this paper, the information gain approach is extended to
apply to adaptive path planning for an autonomous underwater
vehicle (AUV) equipped with a sidescan sonar, where the goal
is to achieve complete coverage of an area. A new regular
exact hexagonal decomposition is used, which is shown to be
particularly well suited to side-looking sensors. In addition,
the concept of branch entropy in the directed acyclic graph is
proposed to help the AUV achieve its global goals while keeping
the path planning reactive, a task that is not possible with
information gain alone. The results show that for high desired
confidence thresholds, the new path planning method with
branch entropy outperforms the more conventional information
gain approach.

I. I NTRODUCTION

Sensor path planning refers to the problem of determining
a strategy for gathering sensor measurements to support a
sensing objective. When the sensors are installed on robotic
platforms, an important part of the problem is to plan the
path based on sensor readings. Various approaches have been
proposed for planning the path of mobile robots with on-
board sensors to enable navigation and obstacle avoidance
in unstructured dynamic environments. These methods are
not directly applicable to robotic sensors whose primary goal
is to support a sensing objective, rather than to navigate a
dynamic environment in search of a goal. Traditional mission
planning methods focus on how the sensor measurements can
best support the robot misson, rather than focusing on the
robot missions that best support the sensing objective.

Metaheuristic methods using stochastic optimization such
as tabu search (TS), genetic algorithms (GA) and simulated
annealing (SA) are among the more successful of the motion
planning algorithms. In [1], a method based on TS is pro-
posed that performs an iterative visibility scan to find visible
obstacle vertices and decides to move toward an obstacle
vertex according to a cost criterion. Upon making a move,
backward directions are labeled as tabu and excluded from
the next set promising directions. If the robot is trapped ina
local minimum, it takes a random step toward an unexplored
area of the search space and continues its search in the
new area. Another method based on GA is proposed in

[2] for a holonomic mobile robot. In [3], a combination of
SA and the artificial potential field approach is proposed
to escape from local minima. In [4], a two layered goal-
oriented motion planning strategy is proposed using fuzzy
logic. The advantage of this method is that there is no need to
have prior knowledge about the environment; however, since
the method is a hybrid approach consisting of model and
sensor approaches, real-time operation becomes an important
issue. An algorithm proposed in [5] based on performing
an incremental search on a multi-resolution, dynamically
feasible lattice state space has the advantage of real-timeper-
formance in high speeds over large distances. The drawback
of this method is its sensitivity to dynamic environments
which needs collision-free time-parameterized trajectories.
In addition, estimating the trajectories of dynamic obstacles
accurately is a challenging task due to the uncertainty in
these estimates. In [6], greedy based algorithms have been
proposed which are based on trapezoidal decomposition of
a large field into subfields and selecting the best route
among the subfields. The drawback of these methods are
their non-optimal results. Another high quality path design
avoiding long detours and staying at a safe distance from the
obstacles is proposed in [7] and is based on an approxima-
tion algorithm used to compute near-optimal paths amidst
polygonal obstacles in the plane. This method is optimal
but the approximation method can slow down the algorithm
in real-time applications. Other traditional model-basedpath
planning techniques are potential fields [8], where essentially
the goal attracts the robot and the obstacles repel it, and road
mapping [9].

The objective of the present work is to design a path for an
autonomous underwater vehicle (AUV) equipped with sides-
can sonars (SSS) which acheives complete coverage of an
area up to a given confidence threshold.A priori knowledge
of the environment is not assumed, therefore, the AUV must
react and adapt to changes in the environment which affect
the sensor performance. As described in Choset’s [10] survey
of complete coverage methods, there are heuristic, random,
and cell decomposition techniques. A heuristic defines a set
of rules to follow that will result in the entire environment
being covered. For example, Acar and Choset’s complete
coverage algorithm based on sensing critical points [11], and
Wein’s [7] method of building corridors based on maximizing
some quality function. A key facet of these approaches
is having obstacles to be able to generate the rules. Cell
decomposition is used to divide up the environment into a
managable number of cells or areas that can be searched
like a graph or tree. Decomposition can be approximate [12],



semi-approximate, or exact [10]. The shape of the cells and
type of decomposition can have a significant impact on the
performance of the search algorithm. The exact hexagon cell
decomposition method proposed in this paper will be shown
to be particularly well-suited to SSS geometry.

Sensor objectives for the coverage task are particularly
hard to define because of the uncertainty of sensor measure-
ments. Information gain is exploited as a goodness criterion
in the field of machine learning. It measures the number of
bits of information obtained for prediction by knowing the
presence or absence of certain values and measurements [12].
In this paper, the information gain approach is used in the
objective function for the SSS. However, it is shown that the
information gain method is not sufficient to achieve global
goals when there is incomplete prior information about the
environment. To compensate, the concept of branch entropy
is proposed. A directed acyclic graph (DAG) is built and
the entropy of each branch in the DAG is calculated. The
inclusion of this branch entropy term in the measurement
benefit function transforms the search from a greedy-first
into a reactive A* search.

The novel aspects of this approach include:

• Using information gain (entropy reduction) for SSS,
complete coverage, and reactive path planning.

• The exact hexagon cell decomposition which is partic-
ularly well-suited to SSS geometry.

• The inclusion of branch entropy in the measurement
benefit function.

A detailed description of the problem formulation and
assumptions is given in Sec. II. The full methodology is
presented in Sec. III. The results are shown in Sec. IV. The
conclusions are in Sec. V.

II. PROBLEM FORMULATION AND ASSUMPTIONS

The task of the AUV is to cover an entire workspace,W ,
such that the average confidencecavg is greater than some
predefined threshold value,cthresh as given by (1), where
(i, j) is a point inW .

cthresh ≤ cavg =
1

ij

∑

i,j∈W

cij . (1)

The AUV entersW with no prior knowledge of the sensor
performance. It must make decisions on how to effectively
navigate through the environment to achieve the sensing
objective using assumptions and information that it gains as
it travels inW .

A. Sidescan Sonars

Most path planning research has assumed that the robot
is equipped with a forward-looking sensor. In this case, the
area covered by the sensor is assumed to be effectively one
dimensional; therefore, the sensor only covers an area of the
map while the AUV is in motion. In addition, data obtained
from the SSS is only considered meaningful while the AUV
is in rectilinear motion. Fig. 1 shows an example of the area
covered by the sensor,SA, for a given path,p.

Area Covered

AUV Path

Fig. 1. An example of the AUV path and corresponding area covered by
its side-looking sonar.

One of the most important considerations of the SSS
framework is that the area directly underneath the AUV is not
covered while the AUV is in normal motion. It is assumed
that the aftern timesteps, the total pathp is piecewise
rectilinear and can be made as a union of all of then
rectilinear subpathspi as given by (2):

p =

n
⋃

i=1

pi (2)

B. Coverage Confidence

It should be noted that the entire area covered by the sensor
SA will not be covered with the same sensor performance.
The sensor performance is a function of many factors includ-
ing the environment,E = [e1, e2, ...en], where eachei, i =
1..n represents a different environmental factor such as sea
depth or seabed conditions. For a given environmentE,
the sensor performance is defined by theP(y) curve which
defines the confidence that a target is correctly classified,c
, as a function of lateral distance from the AUV,d. Three
sampleP(y) curves are shown in Fig. 2, one each for sand,
cobble and clay seabed types. The curves are computed using
the method described in [13].
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Fig. 2. P(y) curves for three different seabed conditions

Let Tij represent the existence of a target at each point
(i, j), with confidencecij in W . The probability of detecting



a target,Pij at location(i, j) is given by (3). The confidence
value, cij , therefore, represents the probability that we can
accurately predict the existence of a target at location(i, j).
The range ofPij is [0,1] but the range ofcij is [0.5,1]. Using
(3) and the confidence values read from theP(y) curve in
Fig. 2, the probabilityPij of a target existing at point(i, j)
can be determined.

Pij =

{

cij if Tij = 1

1− cij if Tij = 0
(3)

C. Objective Function

In order to plan the pathp, each subpath,pt at timet must
be selected to maximize an objective benefit function based
on assumptions about the surrounding unknown environment
conditions and the data that has been obtained from previous
measurements. The objective function is inspired by the one
in [12], and is given in (4).B is the information gain, as
will be elaborated on in Section III-B,J is proportional
to θ, the angle in radians betweenpt−1 and pt, D is the
distance travelled in meters, andG is the branch entropy
as will be explained in Section III-D. The weightswB , wJ ,
wD, wG, represent the weightings for each of the different
factors: information gain, turning angleθ, distance travelled,
and branch entropy respectively,

R(t) = wB ·B(t)−wJ ·J(t)−wD ·D(t)+wG ·G(t). (4)

At each timet, the membership benefitR(t) is evaluated
for each potential path and the one with the most mea-
surement benefit, i.e. highest value ofR, is chosen to be
followed. The values ofB andG contribute positive benefit
and should be maximized, whereas the the factorsJ andB
are detremental and should be minimized.

III. M ETHODOLOGY

Previously published methods must be adapted to suit
the present problem framework. In this section, algorithms
and theory are developed to combine measurements from
different incident angles, compute the estimated information
gain, obtain the cell decomposition, and compute the branch
entropy to be included in the objective function.

A. Combining Measurements

The detection of the targets is conditional upon all of
the previous measurements. However, the way that current
sensor measurements are combined with previous ones must
be known and well defined. In this case, it is assumed that
there is a linear relationship between complete dependance
and complete independance of two measurements based on
the angle,α, between the two measurement incidence angles.
Let the two probabilities to be combined beP1 andP2 with
corresponding angles of measurementθ1 and θ2. Without
loss of generality, we can assume thatP1 ≥ P2 and that
θ1 ≥ θ2. α is calculated as the acute angle of the intersection
of two lines with directionsθ1 and θ2. Analytically, α =

min(θ1− θ2, θ1− θ2−π, θ1− θ2− 2π), such that the range
of α is [0, π/2].

In the case that the two measurements are parallel, then
α = 0 and the two probabilities are considered to be
dependant:Ptot = P1. In the case that the two measurements
are perpendicular, thenα = π/2 and the two probabilities are
considered to be independant:Ptot = 1−((1−P1)(1−P2)).
If the angle0 < α < π/2 then there is a linear relation
connecting dependence and independence as described in (5).

Ptot =
2αP2

π
(1− P1) + P1 (5)

B. Estimated Information Gain

As described in [14], the entropy of a random variable
(RV) y given an RVz is:

H(y|z) = −
∑

zk∈Z

P (y = yk|z = zk)log2P (y = yk|z = zk).

(6)
The entropy itself is not as useful as the entropy reduction

or information gain. Conditional information gain,I, as
defined in (7), is additive and represents the reduction in
uncertainty brought about byzt+1, the set of measurements
at time t+ 1.

I(y; zt+1|zt) = H(y|zt)−H(y|zt, zt+1). (7)

In the case when the output is a binary value (Tij ∈ {0, 1})
the summation (6) reduces to:

H(y|z) = −P log2(P )− (1− P )log2(1− P ), (8)

whereP represents the conditional probability of detecting
a target. The conditional entropyH is symmetrical about the
P = 0.5, so c can be used directly from theP(y) curve in-
stead of probability of target detection,P . A high confidence
value implies that if there is a target present, it will have a
higher chance of being detected.

Given the system state at timet as the set of variables
Xt = [Mt, Et, Tt], then we wish to evaluate the expected
information gain that will result from the set ofN measure-
ments made by following a particular pathpt+1: Mt+1 =
[M1

t+1M
2
t+1...M

N
t+1]. The expected entropy reduction (EER)

then becomes:

B(t) = Hy|Xt −

p
∑

i=1

H(y|Xt,M
i
t+1). (9)

The values ofB(t) are caluclated for each of the potential
paths to be followed and the values are inserted into the
measurement benefit function (4). It should be emphasized
that this is only theexpectedentropy reduction. If the
environment conditions are unknown, then it is assumed that
they are the same as the present location.



C. Exact Hexagonal Cell Decomposition

Cell decomposition is an effective way of reducing the
path planning problem into the searching of a tree. Normally,
the cells are either exactly or approximately decomposed
into rectangloids (i.e. a grid decomposition), although other
polygonal shapes have been proposed [6]. However, these
decompositions assume that once the AUV moves into a
cell, that it is efficiently covered. This assumption is not
applicable to the the SSS architecture so a new decomposi-
tion method is proposed. The regular hexagon decomposition
has the advantage that as the AUV moves from one cell
to any adjacent cell, two other cells can be completely
covered assuming that the hexagons are sufficiently small.
This cell decomposition will result in fewer cells being
partially covered.

If W is the workspace to be searched and the cells areCi

for i = 1..N whereN is the total number of cells then:

N
⋃

i=1

Ci = W, (10)

and

Ci ∩ Cj = ∅, ∀i = 1..N, j = 1..N, i 6= j, (11)

An additional benefit is that the distance,D, can be
omitted from the objective function (4) because the distance
from the center of any cell to the center of any adjacent cell
is the same. Consequently, at each time step the AUV has a
maximum of six potential next next locations corresponding
to the centers of the six neighbouring hexagons.

D. Branch Entropy

The information gain method has been shown to be
effective for solving the path planning problem whena
priori knowldege of the environment, obstacles, and targets
is available. However, it is common that this information
will not be available, or will not be completely accurate. As
a result, the AUV must be able to be reactive. In the reactive
approach, the information gainB is useful for evaluating
the benefits of each of the potential next moves, but when
complete coverage is the goal, this approach reduces to a
greedy-first search (GFS).

It is necessary to include a parameter in the objective
function that helps the AUV to achieve its global goal. This
parameter is coined the branch entropy (BE) and transforms
the GFS into a reactive A* search. The benefits of including
the BE in the objective function are:

• It helps the AUV finish sections before it leaves them.
• It allows the AUV to find the areas of the graph that

are left undone.
• It acts as a tiebreaker so that the AUV never enters

infinite loops.

1) Building the Directed Acyclic Graph:The Directed
Acyclic Graph (DAG) is built such that every cellCi appears
only once in the graph, and is at levell, where l is the
miniumum number of steps that could be taken to get from
the present cellCp to Ci. There can be several paths from
Cp to Ci but they must all be the same minimum length. The
valuevi of each node in the graph is the average entropy of
the cellCi. A major advantage of the hexagon decomposition
is that each cell at levell is the same path distance fromCp.

Each neighbour ofCp becomes a child in the graph. The
neighbours of those nodes become children provided they
are not already in the graph at higher level. This process
continues until all cells are in the DAG.

The DAG is built using the following pseudocode where
Cp is the current cell andC is the set of all cells:

procedure build graph(C,Cp)

DoneList← Cp

level← 1
while DoneList 6= C do
level← level + 1
for n← Each node inlevel − 1 do

CurrentList← ∅
n.children← ∅
for k ← All neighbors ofn do

if k /∈ DoneList then
n.children← n.children ∪ k
k.value← Ck.entropy
if k /∈ CurrentList then
CurrentList← CurrentList ∪ k

end if
end if

end for
end for
DoneList← DoneList ∪ CurrentList

end while

2) Derivation of Branch Entropy:The BE is used to
evaluate how much entropy there is down each branch of the
DAG. Some preference will be given to the move that takes
the AUV towards an unfinished area ofW . Also, priority will
be given to moves that have more unfinished area nearer to
the current position so that the AUV does not leave an area
before it is finished.

There will be a value of BE for each neighbour of the
current cellCp as each neighbour has its own branch in the
DAG. In order for the BE to provide the benefits desired,
cells that are at higher levels in the graph must be given
more weight. For each neighbor,k = 1..K, of Cp, the BE,
G, for a DAG with a total ofL levels is given by (12).ml

is the number of nodes in levell of branchk andHi is the
average entropy of cellCi.



Gk =

L
∑

l=2

(L− l + 1)

mlk
∑

i=1

Hi

mlk

L−1
∑

l=1

l

. (12)

3) Simple Example:Fig. 3 shows the transformation from
hexagon cells to DAG. The cell labeledCp is the cell that
the AUV is currently in, and the values in all of the other
cells represent their average entropies.

Fig. 3. A transformation from Cell to DAG. (numbers in cells/nodes
represent average cell entropy)

The corresponding BE for each of the three neigbours are
calculated as:

G1 = 1/3((2)(0.6) + (1)(0.1)) = 0.433,

G2 = 1/3((2)(0.5) + (1)(0.1)) = 0.367,

G3 = 1/3((2)(0.2) + (1)(1/2)(0.95 + 0.90)) = 0.442.

(13)

From the calculations, the third branch would get the
highestG value but the choice of which cell to move to
next depends on the evaluation of the measurement objective
function (4).

IV. RESULTS

The workspaceW is a 100 meter square.W is divided
into four quadrants and each is either cobble , sand, or clay.
TheP(y) curves are given in Fig. 2. The step-size is chosen
as 10m.

A. Information Gain

Fig. 4 shows the path obtained forcthresh = .99 using
the information gain approach. Some targets were randomly
added to the map and simulated.

B. Information Gain with Branch Entropy

Fig. 5 shows the path obtained forcthresh = .99 with the
branch entropy term included in the objective function.

In Fig. 6, the final achieved confidence over the entire
workspace is shown. The colours at the bottom correspond
to different environmental conditions: blue is cobble, redis
clay, and yellow is sand.

Table. I shows the results of the simulation for random
search, information gain approach, branch entropy, each for
three different confidence thresholds. It is important to note
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Fig. 4. path and targets detected (blue x’s) and not detected(red o’s) using
information gain alone with confidence threshold = .99
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Fig. 5. Path and targets detected (blue x’s) and not detected(red o’s) using
branch entropy with confidence threshold = .99

that the detection rate is not guaranteed to be higher than
cthresh, however the mean of the detection rate over repeated
trials is guaranteed to be higher thancthresh.

From the results, the branch entropy method outperforms
the information gain alone, particularly in the case where the
confidence threshold is very high. For the case wherecthresh
was 99%, the information gain method required 1270m of
distance travelled and 62.0 total radians turned, but branch
entropy method travelled only 790m and turned 49.7 rads to
cover the entire workspace.

V. CONCLUSION

A framework is developed for the reactive path planning
of a Autonomous Underwater Vehicle (AUV) equipped with
a sidescan sonar (SSS). The AUV uses information gain,
distance travelled, angle turned, and branch entropy to make
decisions. The information gain is defined as the expected
entropy reduction over the entire map that would result if
that move was made.



Search Algorithm cthresh Path Length (m) Total Angle Turned (rads) Detected Targetss Undetected Targets Detection Rate (%)

Random Search .90 1820 306 454 41 91.7
Random Search .95 2940 475 485 21 95.9
Random Search .99 6660 1051 498 6 98.9

Information Gain .90 460 30.0 468 33 93.4
Information Gain .95 520 37.2 486 24 95.3
Information Gain .99 1270 62.0 479 1 99.8
Branch Entropy .90 390 25.5 486 37 92.9
Branch Entropy .95 500 30.1 524 18 96.7
Branch Entropy .99 790 49.7 484 3 99.4

TABLE I

PERFORMANCE OFRANDOM SEARCH, INFORMATION GAIN AND INFORMATION GAIN WITH BRANCH ENTROPY ALGORITHMS FORDIFFERENT
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Fig. 6. Achieved confidence over workspace. Colours on confidence = 0
axis correspond to subsections of workspace with differentenvironmental
conditions.

The branch entropy is used to help the AUV achieve its
global goals. A directed acyclic graph is built using an exact
hexagon decomposition over the entire search area, and then
the branch entropy is defined according to (12). The inclusion
of the branch entropy in the objection function has many ben-
efits: it helps the AUV finish areas before it leaves, it allows
the AUV to find areas of workspace that are unsearched, and
it resolve ties to prevent infinite loops. The results show that
branch entropy method outperforms information gain alone,
particularly when the desired confidence level is very high.
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