An Information Gain Based Adaptive Path Planning Method for an
Autonomous Underwater Vehicle using Sidescan Sonar

Liam Paull, Sajad Saeedi, Howard Li, Vincent Myers

Abstract— The majority of path planning research has fo- [2] for a holonomic mobile robot. In [3], a combination of
cused on robots equipped with forward-facing sensors. Algo- SA and the artificial potential field approach is proposed
rlthr_ns using ce_II decomposition and information gain are ef- to escape from local minima. In [4], a two layered goal-
fective at planning paths through obstacle-laden environments, . . ) . .
but have not been applied to robots with side-looking sensors or|gnted motion planmng.strategy '_S proposed .usmg fuzzy
whose goal is complete coverage. In addition, the assumptions l0gic. The advantage of this method is that there is no need to
made about the environment can often prove false, leading to have prior knowledge about the environment; however, since
poor mission plans being given by deliberative path planning the method is a hybrid approach consisting of model and
methods. As a result, adaptive path planning methods which  gengar approaches, real-time operation becomes an importa
can change the vehicle’s path based om situ measurements . . . -
of the environment are needed. issue. An algorithm proposed in [_5] baseq on performmg

In this paper, the information gain approach is extended to @n incremental search on a multi-resolution, dynamically
apply to adaptive path planning for an autonomous underwater feasible lattice state space has the advantage of realptime
vehicle (AUV) equipped with a sidescan sonar, where the goal formance in high speeds over large distances. The drawback
is to achieve complete coverage of an area. A new regular o this method is its sensitivity to dynamic environments
exact hexagonal decomposition is used, which is shown to be . . . . L
particularly well suited to side-looking sensors. In addition, which -rlleeds gollls!on-free tme—pgrametenzed -trajees)r
the concept of branch entropy in the directed acyclic graph is In addition, estimating the trajectories of dynamic oblesc
proposed to help the AUV achieve its global goals while keeping accurately is a challenging task due to the uncertainty in
the path planning reactive, a task that is not possible with these estimates. In [6], greedy based algorithms have been
information gain alone. The results show that for high desired proposed which are based on trapezoidal decomposition of
confidence thresholds, the new path planning method with . . . .
branch entropy outperforms the more conventional information a large field |nt.0 subfields and selecting the best route
gain approach. among the subfields. The drawback of these methods are

their non-optimal results. Another high quality path desig
|. INTRODUCTION avoiding long detours and staying at a safe distance from the

Sensor path planning refers to the problem of determiningbstacles is proposed in [7] and is based on an approxima-
a strategy for gathering sensor measurements to supporti@ algorithm used to compute near-optimal paths amidst
sensing objective. When the sensors are installed on robofiolygonal obstacles in the plane. This method is optimal
platforms, an important part of the problem is to plan théut the approximation method can slow down the algorithm
path based on sensor readings. Various approaches have heeral-time applications. Other traditional model-bapath
proposed for planning the path of mobile robots with onplanning techniques are potential fields [8], where esakynti
board sensors to enable navigation and obstacle avoidartbe goal attracts the robot and the obstacles repel it, sl ro
in unstructured dynamic environments. These methods amapping [9].
not directly applicable to robotic sensors whose primargilgo  The objective of the present work is to design a path for an
is to support a sensing objective, rather than to navigateaatonomous underwater vehicle (AUV) equipped with sides-
dynamic environment in search of a goal. Traditional migsiocan sonars (SSS) which acheives complete coverage of an
planning methods focus on how the sensor measurements @xaa up to a given confidence threshd\dpriori knowledge
best support the robot misson, rather than focusing on tlé the environment is not assumed, therefore, the AUV must
robot missions that best support the sensing objective.  react and adapt to changes in the environment which affect

Metaheuristic methods using stochastic optimization sudhe sensor performance. As described in Choset’s [10] gurve
as tabu search (TS), genetic algorithms (GA) and simulated complete coverage methods, there are heuristic, random,
annealing (SA) are among the more successful of the moti@nd cell decomposition techniques. A heuristic defines a set
planning algorithms. In [1], @ method based on TS is proef rules to follow that will result in the entire environment
posed that performs an iterative visibility scan to findbfisi being covered. For example, Acar and Choset’'s complete
obstacle vertices and decides to move toward an obstadeverage algorithm based on sensing critical points [111], a
vertex according to a cost criterion. Upon making a movajein’s [7] method of building corridors based on maximizing
backward directions are labeled as tabu and excluded frosome quality function. A key facet of these approaches
the next set promising directions. If the robot is trapped in is having obstacles to be able to generate the rules. Cell
local minimum, it takes a random step toward an unexploredecomposition is used to divide up the environment into a
area of the search space and continues its search in thanagable number of cells or areas that can be searched
new area. Another method based on GA is proposed like a graph or tree. Decomposition can be approximate [12],



semi-approximate, or exact [10]. The shape of the cells and
type of decomposition can have a significant impact on the
performance of the search algorithm. The exact hexagon cell
decomposition method proposed in this paper will be shown
to be particularly well-suited to SSS geometry.

Sensor objectives for the coverage task are particularly
hard to define because of the uncertainty of sensor measure-
ments. Information gain is exploited as a goodness criterio
in the field of machine learning. It measures the number of
bits of information obtained for prediction by knowing the
presence or absence of certain values and measurements [12]
In this paper, the information gain approach is used in the

AUV Path

Area Covered

objective function for the SSS. However, it is shown that th&ig. 1. An example of the AUV path and corresponding area eal/éy

information gain method is not sufficient to achieve globafs Side-looking sonar.

goals when there is incomplete prior information about the
environment. To compensate, the concept of branch entropy

is proposed. A directed acyclic graph (DAG) is built and One of the most important considerations of the SSS
the entropy of each branch in the DAG is calculated. Thfamework is that the area directly underneath the AUV is not
inclusion of this branch entropy term in the measuremerovered while the AUV is in normal motion. It is assumed

benefit function transforms the search from a greedy-firshat the aftern timesteps, the total patlhp is piecewise

into a reactive A* search.
The novel aspects of this approach include:

o Using information gain (entropy reduction) for SSS,

complete coverage, and reactive path planning.

« The exact hexagon cell decomposition which is partic-

ularly well-suited to SSS geometry.

o The inclusion of branch entropy in the measurement

benefit function.

A detailed description of the problem formulation an
assumptions is given in Sec. Il. The full methodology i
presented in Sec. lll. The results are shown in Sec. IV. T
conclusions are in Sec. V.

Il. PROBLEM FORMULATION AND ASSUMPTIONS

rectilinear and can be made as a union of all of the
rectilinear subpathg; as given by (2):

n
p= Upi
i=1

B. Coverage Confidence

It should be noted that the entire area covered by the sensor
4 Will not be covered with the same sensor performance.
. The sensor performance is a function of many factors includ-
Slng the environmentF = [e1, ea, ..
~.n represents a different environmental factor such as sea
depth or seabed conditions. For a given environmgnt
the sensor performance is defined by hg/) curve which

)

.en], Where eackh;,i =

defines the confidence that a target is correctly classified,

The task of the AUV is to cover an entire workspate,
such that the average confidengg, is greater than some
predefined threshold value;,.sr, as given by (1), where
(i,4) is a point inW.

Cthresh < Cavg = % Z Cij- (1)
i,jEW
The AUV entersi?” with no prior knowledge of the sensor
performance. It must make decisions on how to effectively
navigate through the environment to achieve the sensing
objective using assumptions and information that it gams a

it travels inW.

A. Sidescan Sonars

Most path planning research has assumed that the robot
is equipped with a forward-looking sensor. In this case, the
area covered by the sensor is assumed to be effectively one
dimensional; therefore, the sensor only covers an areaeof th
map while the AUV is in motion. In addition, data obtained
from the SSS is only considered meaningful while the AUV
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, as a function of lateral distance from the AU, Three
sampleP(y) curves are shown in Fig. 2, one each for sand,
cobble and clay seabed types. The curves are computed using
the method described in [13].
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Fig. 2. P(y) curves for three different seabed conditions

is in rectilinear motion. Fig. 1 shows an example of the area Let T;; represent the existence of a target at each point

covered by the sensaf,4, for a given pathp.

(4, 7), with confidence:;; in . The probability of detecting



a target,P;; at location(i, j) is given by (3). The confidence min (6, — 62,6, — 62 — 7,61 — 62 — 2), such that the range
value, ¢;;, therefore, represents the probability that we caof « is [0, 7/2].

accurately predict the existence of a target at location). In the case that the two measurements are parallel, then
The range off; is [0,1] but the range of;; is [0.5,1]. Using « = 0 and the two probabilities are considered to be
(8) and the confidence values read from &) curve in  dependantP;,; = P;. In the case that the two measurements
Fig. 2, the probabilityP;; of a target existing at point, j)  are perpendicular, them= 7 /2 and the two probabilities are

can be determined. considered to be independatit,; = 1 — ((1— P;)(1— P2)).
If the angle0 < a < w/2 then there is a linear relation
p._ Jei if T;;, =1 3) connecting dependence and independence as described in (5)
N 1_Cij |fT”:0 9P
™
C. Objective Function Prot = 1-P)+h ®)

In order to plan the path, each subpathy, attimet must g Estimated Information Gain
be selected to maximize an objective benefit function based ) ) )
on assumptions about the surrounding unknown environmentAS described in [14], the entropy of a random variable
conditions and the data that has been obtained from previolRY) v given an RVz is:
measurements. The objective function is inspired by the one
in [12], and is given in (4).B is the information gain, as
will be elaborated on in Section I1I-BJ is proportional Hylz) = - Z Py =y"|z = 2)log, P(y = y*|2 = 2%).
to ¢, the angle in radians between_; and p;, D is the 2kez (6)
distance travelled in meters, ar@ is the branch entropy
as will be explained in Section IlI-D. The weighisg, w,
wp, wg, represent the weightings for each of the differen
factors: information gain, turning angée distance travelled,
and branch entropy respectively,

The entropy itself is not as useful as the entropy reduction
or information gain. Conditional information gairt,, as
Befined in (7), is additive and represents the reduction in
uncertainty brought about by ., the set of measurements
at timet + 1.

R(t)=wp-B({t)—wy-J(t)—wp-D(t)+wg-G(t). (4) I(y; ze41|2e) = H(ylze) — H(ylze, 2e41)- @)

At each timet, the membership benefR(t) is evaluated In the case when the output isa binary Va"ﬂ% (e {07 1})
for each potential path and the one with the most meahe summation (6) reduces to:

surement benefit, i.e. highest value Bf is chosen to be
followed. The values o8 and G contribute positive benefit
and should be maximized, whereas the the facioend B H(y|z) = —Plog,(P) — (1 — P)logy(1 — P), (8)
are detremental and should be minimized.
whereP represents the conditional probability of detecting
I1l. METHODOLOGY a target. The conditional entrogy is symmetrical about the
Previously published methods must be adapted to suft = 0.5, soc can be used directly from thg(y) curve in-
the present problem framework. In this section, algorithmgtead of probability of target detectioR, A high confidence
and theory are developed to combine measurements frofdlue implies that if there is a target present, it will have a
different incident angles, compute the estimated infoimat higher chance of being detected.
gain, obtain the cell decomposition, and compute the branchGiven the system state at tinteas the set of variables

entropy to be included in the objective function. X, = [My, By, T;], then we wish to evaluate the expected
information gain that will result from the set &f measure-
A. Combining Measurements ments made by following a particular path, i: M;;; =

The detection of the targets is conditional upon all ofMit1 M7 1--M;Y,]. The expected entropy reduction (EER)
the previous measurements. However, the way that currdfn becomes:
sensor measurements are combined with previous ones must
be known and well defined. In this case, it is assumed that
there is a linear relationship between complete dependance
and complete independance of two measurements based on
the anglep, between the two measurement incidence angles. The values ofB(t) are caluclated for each of the potential
Let the two probabilities to be combined b& and P, with  paths to be followed and the values are inserted into the
corresponding angles of measureméntand 6,. Without measurement benefit function (4). It should be emphasized
loss of generality, we can assume thHat > P, and that that this is only theexpectedentropy reduction. If the
0, > 0. v is calculated as the acute angle of the intersectioenvironment conditions are unknown, then it is assumed that
of two lines with directionsd; and 5. Analytically, « = they are the same as the present location.

B(t) = Hy|X; — > H(y|X:, M{,,). 9)

i=1



C. Exact Hexagonal Cell Decomposition 1) Building the Directed Acyclic GraphThe Directed

L ) i Acyclic Graph (DAG) is built such that every céll; appears
Cell decomposition is an effective way of reducing theonly once in the graph, and is at levl where! is the

path planning problem into the searching of a tree. Normally,iniy;mum number of steps that could be taken to get from
the cells are either exactly or approximately decomposegle present cell, to C;. There can be several paths from

into rectangloids (i.e. a grid decomposition), althougheot C., to C; but they must all be the same minimum length. The
polygonal shapes have been proposed [6]. However, thegg e, of each node in the graph is the average entropy of
decompositions assume that once the AUV moves into ge ceic,. A major advantage of the hexagon decomposition

cell, that it is efficiently covered. This assumption is NOts that each cell at levélis the same path distance frof.
applicable to the the SSS architecture so a new decomposi-

tion method is proposed. The regular hexagon decompositiong 1, neighbour of’, becomes a child in the graph. The

has the advantage that as the AUV moves from one c&lbighnours of those nodes become children provided they

to any adjacent cell, two other cells can be completely.e ot aready in the graph at higher level. This process
covered assuming that the hexagons are sufficiently small, \tinues until all cells are in the DAG.

This cell decomposition will result in fewer cells being

partlally. covered. The DAG is built using the following pseudocode where
If W is the workspace to be searched and the cell<are C, is the current cell and” is the set of all cells:

for i = 1..N where N is the total number of cells then:

C[J Ci =W, (10) procedure build_graph(C, Cp)
DoneList < C,

level <1

and while DonelList # C do

level < level + 1

for n < Each node inevel — 1 do
CurrentList < ()
n.children + ()

CinC;=0,¥i=1..N,j =1..N,i # j, (11)

An additional benefit is that the distancé), can be for k « All neighbors ofn do
omitted from the objective function (4) because the distanc if k ¢ DoneList then
from the center of any cell to the center of any adjacent cell n.children — n.children U k
is the same. Consequently, at each time step the AUV has a k.value < Cy,.entropy
maximum of six potential next next locations corresponding if k¢ CurrentList then
to the centers of the six neighbouring hexagons. CurrentList « CurrentList U k

end if
D. Branch Entropy end if
end for

The information gain method has been shown to be gnd for

effective for solving the path planning problem whaen DonelList < DoneList U CurrentList

priori knowldege of the environment, obstacles, and targets end while

is available. However, it is common that this information

will not be available, or will not be completely accurate. As o ]

a result, the AUV must be able to be reactive. In the reactive 2) Derivation of Branch Entropy:The BE is used to
approach, the information gaiB is useful for evaluating evaluate how much entropy therg is down each branch of the
the benefits of each of the potential next moves, but whefAG- Some preference will be given to the move that takes

complete coverage is the goal, this approach reduces td"§ AUV towards an unfinished arealdf. Also, priority will
greedy-first search (GFS). be given to moves that have more unfinished area nearer to

It is necessary to include a parameter in the objectiv@e current position so that the AUV does not leave an area

function that helps the AUV to achieve its global goal. Thi§)emre it is finished.
parameter is coined the branch entropy (BE) and transforms
the GFS into a reactive A* search. The benefits of includin%u
the BE in the objective function are:

There will be a value of BE for each neighbour of the

rrent cellC, as each neighbour has its own branch in the

DAG. In order for the BE to provide the benefits desired,

« It helps the AUV finish sections before it leaves themce|ls that are at higher levels in the graph must be given

« It allows the AUV to find the areas of the graph thatmore weight. For each neighbdr,= 1..K, of C,, the BE,
are left undone. G, for a DAG with a total ofL levels is given by (12)m;

« It acts as a tiebreaker so that the AUV never enterig the number of nodes in levélof branchk and H; is the
infinite loops. average entropy of cell);.
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IV. RESULTS d

The workspacdV is a 100 meter squaréV is divided
into four quadrants and each is either cobble , sand, or clahat the detection rate is not guaranteed to be higher than
TheP(y) curves are given in Fig. 2. The step-size is chosety,,..s;, however the mean of the detection rate over repeated
as 10m. trials is guaranteed to be higher than ¢sp, -

From the results, the branch entropy method outperforms
the information gain alone, particularly in the case whéee t

Fig. 4 shows the path obtained fof,,..., = .99 using confidence threshold is very high. For the case whgre
the information gain approach. Some targets were randomilyas 99%, the information gain method required 1270m of
added to the map and simulated. distance travelled and 62.0 total radians turned, but branc
entropy method travelled only 790m and turned 49.7 rads to
cover the entire workspace.

A. Information Gain

B. Information Gain with Branch Entropy

Fig. 5 shows the path obtained fo,,.s;, = .99 with the
branch entropy term included in the objective function. V. CONCLUSION

In Fig. 6, the final achieved confidence over the entire A framework is developed for the reactive path planning
workspace is shown. The colours at the bottom correspormd a Autonomous Underwater Vehicle (AUV) equipped with
to different environmental conditions: blue is cobble, ied a sidescan sonar (SSS). The AUV uses information gain,
clay, and yellow is sand. distance travelled, angle turned, and branch entropy teemak

Table. | shows the results of the simulation for randondecisions. The information gain is defined as the expected
search, information gain approach, branch entropy, each fentropy reduction over the entire map that would result if
three different confidence thresholds. It is important tteno that move was made.



[ Search Algorithm[ c¢nresn | Path Length (m)[ Total Angle Turned (rads) Detected Targets§ Undetected Target$s Detection Rate (%)

Random Search .90 1820 306 454 41 91.7
Random Search .95 2940 475 485 21 95.9
Random Search .99 6660 1051 498 6 98.9
Information Gain .90 460 30.0 468 33 93.4
Information Gain .95 520 37.2 486 24 95.3
Information Gain .99 1270 62.0 479 1 99.8
Branch Entropy .90 390 25.5 486 37 92.9
Branch Entropy .95 500 30.1 524 18 96.7
Branch Entropy .99 790 49.7 484 3 99.4
TABLE |

PERFORMANCE OFRANDOM SEARCH, INFORMATION GAIN AND INFORMATION GAIN WITH BRANCH ENTROPY ALGORITHMS FORDIFFERENT
CONFIDENCE THRESHOLDS

5

[6

[7

confidence

8

9

meters 0o meters [10]

Fig. 6. Achieved confidence over workspace. Colours on cenéid = 0 [11]
axis correspond to subsections of workspace with diffeesnvironmental
conditions.

[12]

The branch entropy is used to help the AUV achieve its

global goals. A directed acyclic graph is built using an éxac
o . 13

hexagon decomposition over the entire search area, and tHEH
the branch entropy is defined according to (12). The inctusio
of the branch entropy in the objection function has many ber!4]
efits: it helps the AUV finish areas before it leaves, it allows
the AUV to find areas of workspace that are unsearched, and
it resolve ties to prevent infinite loops. The results shoat th
branch entropy method outperforms information gain alone,
particularly when the desired confidence level is very high.
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