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a b s t r a c t

This paper presents a novel domestic hot water heater model to be used in a multi-objective demand
side management program. The model incorporates both the thermal losses and the water usage to
determine the temperature of the water in the tank. Water heater loads are extracted from household
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load data and then used to determine the household water usage patterns. The benefits of the model
are: (1) the on/off state of the water heater and temperature of the water in the tank can be accurately
predicted, and (2) it enables the development of water usage profiles so that users can be classified based
on usage behaviour. As a result, the amount of ancillary services and peak shaving that can be achieved
are accurately predictable and can be maximized without adversely affecting users.
ower system efficiency
oad control

. Introduction

The efficiency of the power grid is of great importance as
nvironmental concerns related to the combustion of fossil fuels
ncrease. One important way to reduce losses and increase power
ystem stability is through advanced control algorithms on the load
ide. This idea is broadly referred to as demand-side management
DSM). Different objectives have been considered by past DSM pro-
rams found in the literature, such as peak shaving and valley filling
1], and providing ancillary services like synchronous reserve [2],
requency regulation [3], and voltage stability [4]. The pilot project
hat is underway in Saint-John, New Brunswick, tries to balance
ll of these objectives for maximum overall benefit. Other multi-
bjective DSM projects have been attempted but in these cases, the
mpact on the user is treated as an objective [5,6]. In the present
roject, a control objective function has been developed similar
o the one presented in Ref. [7] where minimal impact on the
sers is treated as a constraint. In order to satisfy this constraint, a
ore advanced mathematical model of the domestic electric water
eater (DEWH) is required.
DEWHs are ideal candidates for DSM projects because the hot

ater in the tanks acts as energy storage. In winter-dominated cli-
ates, the DEWH loads can contribute as much as 30% of the total
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household load [8]. In addition, the DEWH load profile and aver-
age daily load profile follow a similar pattern, meaning that DEWH
loads significantly contribute to peak load values [9]. DEWH loads
have been used in the past to achieve DSM, most recently [10]
among many others.

The heat transfer characteristics of the DEWH tank are well
known, and are presented in Section 2. In most cases, when the
DEWH is used for DSM, the individual DEWH heat transfer model is
used to develop an aggregated DEWH model. For example, Ref. [11]
uses a Monte Carlo rejection method to aggregate individual mod-
els, Ref. [12] uses a state-queuing model to account for uncertainties
in user behaviour, and Ref. [9] replaces the deterministic parame-
ters of the model with normal random variables. These aggregated
models allow many DEWHs to be controlled together, thereby sim-
plifying the control algorithms needed. However, aggregation of
the model allows the temperature of the water in individual tanks
to be at an unacceptable level at times when the user requires
hot water. This adversely affects user comfort and can permit the
growth of unwanted and potentially dangerous bacteria [13]. For
the widespread acceptance and integration of the program, it is
critical to avoid these situations.

This paper develops a predictive model that is not aggregated.
Each household that is part of the DSM project has its own model
with most parameters determined through inspection of the site.
DEWHs will be controlled remotely using high frequency commu-

nications, and smart meters record household load data on 15 min
intervals.

Although the aggregated model produces undesirable results,
it is useful to classify similar users. The benefits are that control
algorithms can be simplified, and users with habitual water usage

dx.doi.org/10.1016/j.epsr.2010.06.013
http://www.sciencedirect.com/science/journal/03787796
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atterns can be identified. In previous literature, classification is
erformed on the household load data rather than the data for the
emotely controlled load [14], which may introduce a significant
ource of error. The algorithm presented here allows the water
sage data to be determined from the household load data, and
water usage profile can be developed as will be shown. It is much
ore effective to classify users based on their water usage pat-

erns rather than the household load profile shape. It is important
o note that although users are being classified for reduced control
lgorithm complexity, the individual models are still available so
hat the user comfort constraint is never violated.

The novel aspects of this model that make it advantageous over
hose presented in previous literature include:

It can be implemented in near real time so that the on/off state
of the individual heaters and the temperature of the water in the
tanks can be accurately predicted. The result is that the exact
amount of frequency regulation, synchronous reserve, or peak
shaving that can be achieved is known before a control action is
taken.
Water usage profiles can be developed so that users may be clas-
sified in terms of water use rather than household load profile.

The result of these two benefits is that load control becomes
redictable and the multiple objectives can be maximized with
n absolute minimum impact on the users’ comfort. It is the first
nown model to be developed that uses an analysis of past load
ata to determine exact water usage patterns, a facet which is inte-
ral in the modeling of the DEWH and is overlooked in all of the
revious literature.

The previously established thermal model of the tank is pre-
ented in Section 2. The proposed methods of extracting water
sage are presented in Section 3. The model is validated and results
re shown in Section 4. Finally, the conclusions are presented in
ection 5.

. Background on DEWH thermal model

There is extensive literature on the modeling of DEWHs
9,11,15,16]. A differential equation model of the thermal charac-
eristics of the water heater is presented in Refs. [9,11]. This model
s based mainly on energy flow analysis and yields a method to
etermine the temperature of the water in the tank as a function of
ime. The differential equation describing the temperature of the
ater in the tank is

CṪH(t) = −SA

(
1
R

)
[TH(t) − Tout] − D × WD(t)Cp[TH(t) − Tin] + Q (t) (1)

A solution is given by

H(t) = TH(�) e−(1/R′C)(t−�) + {GR′Tout + BR′Tin + QR′}
× [1 − e−(1/(R′C))(t−�)] (2)

here � is the initial time (h); TH(�) is the initial temperature (◦F);
in is the incoming water temperature (◦F); Tout is the ambient air
emperature outside tank (◦F); TH(t) is the temperature of water in
ank at time t (◦F); Q(t) is the energy input rate as a function of time
W); R is the tank thermal resistance (m2 ◦F/W); SA is the surface
rea of tank (m2); G = SA/R (W/◦F); WD(t) is the water demand as
function of time (L/h); Cp is the specific heat of water (J/(◦F kg));

is the density of water = 1 kg/L; B(t): D × WD(t) × Cp × 1 h/3600 s;

W/◦F); C: (volume of tank) × D × Cp (J/◦F); R′ = 1(B/G) (W/◦F).
It is important to note that the values of Q and B are time depen-

ent. Q, as the energy input, is dependent on whether the element
s on or off, and B is a function of the usage of water. Therefore, the
Fig. 1. Temperature of water in the tank with no water usage.

value of � and TH(�) must be updated every time there is a change
in B or Q. All of the other parameters are measured from the site
and must be known for accurate prediction of the temperature.

The element turns on and off in a hysteresis fashion as the tem-
perature varies between the minimum and maximum setpoints,
Tmin and Tmax. The value of Q is either 3000 W or 0, and is deter-
mined from (3):

Q (t + �t) =

⎛
⎜⎝

3000 W, TH(t) < Tmin

0, TH(t) > Tmax

Q (t), else

(3)

During no water usage operation of the DEWH, the tempera-
ture of the water exponentially decays and rises between the two
temperature setpoints at shown in Fig. 1.

The other time dependent variable, B, which is a function of
the water usage, is more difficult to predict. Past projects treat the
water usage as known [11] or as constant [9]. The assumption that
the water usage is constant leads to significant errors in the predic-
tion of the temperature of the water in the tank. The present study
will use past household load data to develop a water usage model
for accurate prediction of individual water heater temperature.

3. Proposed method

The development of the water usage profile requires three steps.
First, the DEWH load data must be extracted from the household
data. Next, the water usage amounts are determined from the
DEWH load. Last, the water heater profile is determined from large
amounts of DEWH load data.

3.1. Extracting water heater load data from household load data

It is known that the water heater elements in the study are 3 kW.
The household load data is analyzed for drops or jumps that account
for this 3 kW load. In general, there are two types of scenarios under
which the water heater element turns on: (1) the temperature of
the water has dropped below the minimum setpoint as a result pri-
marily of conduction heat losses; and (2) a large amount of water
has been drawn and replaced with colder incoming water. In the
first case, the temperature of the water in the tank is at the min-

imum setpoint, and the element will be on for a consistent and
predictable amount of time. In the second case, the water temper-
ature can be far below the minimum temperature setpoint, and the
length of time that the element is on will be variable, depending on
the amount of water drawn.
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ig. 2. Zoomed in view of household load spike when DEWH turns on for short
eriod.

In the first case, given that the on-time for the element is known,
he amount of power used is consistent and can be calculated. The
ime required to heat the water from the minimum setpoint to
he maximum setpoint can be determined from an analysis of the
ystem assuming no water usage by measuring the rise time in
ig. 1. This time is given as tshort. From the values of tshort and Q,
he amount of energy, Eshort that is required to heat the water from
he minimum to maximum setpoint can be calculated from (4). The
oad data is scanned for any spikes and their areas are calculated.
f the area, A, calculated using (5) of any spike is approximately
qual to Eshort plus the baseline loading over that period of accord-
ng to (6) then it is determined that the DEWH turned on. The units
f A and Eshort are W ∗ min. The baseline loading is calculated by
oing an interpolation between the baseline points before and after
he spike, Pbefore, and Pafter, respectively. P(t) is the load data as a
unction of time, and t1 and t2 are as shown in Fig. 2.

short = tshort × Q (4)

=
∫ t2

t1

P(t)dt (5)

≈ Eshort + .5(Pbefore + Pafter) × (t2 − t1) (6)

Larger water usage events result in the DEWH element being on

or a longer and more unpredictable amount of time. Under normal
perating conditions, the element can be on from .5 to almost 4 h.
o detect these events, jumps or drops of 750 W/15 min (3 kW/h)
re identified by doing a difference between Pon and Poff as shown in
ig. 3. Once a jump is identified, the data for the next .5–4 h segment

ig. 3. Zoomed in view of household load during a long turn on period of the DEWH.
Fig. 4. Determining the water used during a normal cycle.

is carefully analyzed and the most likely choice for the DEWH turn
off is chosen. If a drop of 750W is identified, then the previous .5–4 h
is examined for the most likely turn on point.

The two previous methods are combined to form a water heater
load profile.

3.2. Using the DEWH load to determine hot water usage

To determine the hot water usage, it is useful to separate water
usage events into two categories: large water draws, such as show-
ers are large enough to cause the heater element to turn on almost
immediately, and small water draw events, such as washing hands,
which shorten the normal hysteresis cycle.

3.2.1. Small water draw events
If the temperature of the water in the tank is at the minimum

setpoint when the heater turns on, the assumption cannot be made
that no water has been used. If a small amount of water is used then
the element will have to turn on sooner than otherwise. The amount
of water used during this cycle can be calculated. It is assumed that
the water used during the time when the element is off is used
uniformly throughout the cycle.

From analysis of the DEWH load data, the exact times that the
heater element turns on are known. In addition, from a simulation
of the model similar to that of Fig. 1, the amount of time that would
normally elapse for the water to decay from Tmax to Tmin is known.
As shown in Fig. 4, if the time when the element turns off is tturn off,
then the temperature of the water in the tank at this time is known
to be Tmax. Under a no water usage situation, the element would
turn on at time tturn on no usage. If instead it turns on at a sooner
time, tturn on, then it can be concluded that some water was used. To
determine the amount of water used over the cycle, then a curve is
constructed that is parallel to the no water usage curve determined
by (2), and runs through the point (tturn on, Tmin). The temperature
where this curve intersects the line t = tturn off is denoted as Tadj.
This would be the temperature that the water in the tank would
have needed to be at for the tank to have turned back on at tturn on

without any water usage. Given this temperature, the size of the
tank, and the temperature of the incoming water, Tin, the amount
of water drawn can be determined from (7):

water used = volume of tank × Tmax − Tadj (L) (7)

Tmax − Tin

3.2.2. Large water draw events
The other type of water use is the major water draw event that

causes the temperature of the water to drop far below Tmin. From
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Fig. 5. Determining the water used during large water draw event.

xamining the DEWH load data, the time that the element is on
or, ton, can be determined. It is also known that when the element
s shut off, the temperature of the water in the tank is at Tmax. By
nding a curve that satisfies (2) and runs from the point that the
lement turns off backwards for time ton, then the temperature
hat the water in the tank dropped to, Tdrop, can be determined, as
hown in Fig. 5. Similar to the small water use case, a ratio can be
sed to determine the amount of water that was drawn, as shown

n (8):

ater used = volume of tank × Tmax − Tdrop

Tmax − Tin
(L) (8)

Once all of the water usages have been calculated, they are com-
ined and used in the value of B in (2). Fig. 6 shows the total water
sed and the corresponding temperature of the water in the tank
uring a two day period of one household.

. Model simulation, validation, and results
The DEWH load extraction system is validated by comparing the
ctual measured DEWH load with the calculated load. The predic-
ions of the temperature of the water in the tank are validated by
nsuring that the rise and fall of the temperature corresponds cor-
ectly with the known state of the element. Several water usage

Fig. 6. Water use and temperature of water in tank.
Fig. 7. Extraction of water heater load from household load data.

profiles are also developed using averaged data to illustrate how
these profiles may be used for accurate classification of users based
on water usage habits. These profiles are validated by interviews
with the users.

4.1. Water heater load extraction

In Fig. 7 the smart meter data is presented, as well as the calcu-
lated and actual water heater load values. The actual water heater
load was determined by logging the power usage of the DEWH with
a power meter. The calculation of the water heater load for this time
period is very accurate as can be seen in the figure.

4.2. Simulation of model with water usage

Fig. 1 demonstrates the pattern of the water temperature under
no water usage conditions. In Section 3, a method for determining
water usage from household loads is developed. To validate this
method, it must be verified that the element is indeed on when the
temperature is predicted to be increasing, and that the element is

off during the times that the temperature is predicted to be decreas-
ing. The small water use and large water use events are combined
to generate the value of B in (2) and then the model is simulated
and compared with the water heater load in Fig. 8. It is clear that

Fig. 8. Temperature of water in tank and water heater load.
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ig. 9. (Top) Weekday water usage profile and (bottom) weekend water usage pro-
le.

he predictions as to when the water heater element will turn on
nd off are very accurate.

.3. Development of water usage profile

As previously stated, water usage profiles are used to classify
sers more accurately than household load profiles. A water usage
rofile is developed by analyzing large amounts of hot water usage
ata. The water usage profile shown in Fig. 9 is generated by aver-
ging the water usage data for one month, in this case July 2008,
or each hour of the day. As a result, the water usage profile shows
hen the user has used the most water during that month. Peaks

n the water usage profile represent times of day when the user
s more likely to use hot water. It is determined in this case that
hat the weekday and weekend patterns for this user are distinctly
ifferent, and, consequently, the two time periods are treated sepa-
ately. It is known from conducting an interview with the members

f this household that the two adults work a regular workday from
onday to Friday, and they tend to use quite a lot of water later

n the evenings for laundry because they have two small children.
hey rarely work weekends, and most of the adult laundry is done

ig. 10. (Top) Weekday water usage profile and (bottom) weekend water usage
rofile.
Research 80 (2010) 1446–1451

during the day on weekends. The water usage profile reflects this
pattern.

Another sample water usage profile is shown in Fig. 10.
The second household contains only a single male. This type of

user is very valuable to the load control project because he is so pre-
dictable. The figure shows the user’s water profile has sharp spikes
in the morning around 7 a.m. and around 6 p.m. on weekdays. On
weekends the majority of hot water usage is late at night. The sharp
spikes in certain areas, as compared to the rest of the profile, which
is flat, indicate that the user is very regular in his habits. These
users’ tanks can be controlled with very low risk that they will be
affected, as long as the water is hot in their tank at the points in
the profile where the sharp spikes occur. Again, these results were
verified by conducting an interview with this user who confirmed
that this profile matches his usage patterns very closely.

5. Conclusion

A multi-objective demand side management (DSM) program
has been initiated that uses remote control of domestic electric hot
water heaters to achieve added power system efficiency and relia-
bility. It has been noted in the past that the widespread acceptance
of DSM programs relies on minimal impact to the users. As a result,
the DEWH loads cannot be controlled in an aggregate manner as
they have in previous literature because users will be adversely
affected. To achieve minimal impact, the model of the DEWH must
be able to predict the temperature of the water in individual users’
tanks in real-time. In addition, the exact knowldege of which tanks
are on or off at a given time allows the controller to make bet-
ter calculations about how much of each of the multiple objectives
(peak shaving, frequency regulation, synchronous reserve, etc.) can
be achieved at a given time.

In order to make these accurate predictions of the temperature
of the water in the tanks, a predictive model is built that generates a
water usage profile for each user. The household load data that has
been logged for some time by smart meters is processed to extract
only the electric water heater loads. From a detailed analysis of
the electric water heater load data, the water usage is determined.
Once large amounts of water usage data are obtained, a water usage
profile is calculated for each user by averaging the data for each
hour of the day. This water usage profile is integral in allowing the
controller to coordinate which water heaters should be shut off at
which times to have maximum benefit with the minimum impact
on users.
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