AREA COVERAGE PLANNING THAT ACCOUNTS FOR POSE UNCERTAINTY WITH AN AUV SEABED SURVEYING APPLICATION

Liam Paull¹ Mae Seto² Howard Li³

¹Computer Science and Artificial Intelligence Lab, MIT ²Defense R&D Canada - Atlantic ³COBRA Lab, University of New Brunswick

June 4, 2014

OVERVIEW

• (Most) Coverage literature assumes robot state known ¹

¹Examples that don't include Das et al. IROS 2011, Bosse et al ICRA 2007, and others $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle$

MOTIVATION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

2 Application to AUV Seabed Surveying

- **2** Application to AUV Seabed Surveying
- **3** Coverage Path Planning with Uncertain Coverage

- **2** Application to AUV Seabed Surveying
- **3** Coverage Path Planning with Uncertain Coverage
- **4** Experimental Results

- **2** Application to AUV Seabed Surveying
- **3** Coverage Path Planning with Uncertain Coverage
- **4** Experimental Results

PROBLEM SETUP

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

ALGORITHM OVERVIEW Step 1: Pose Estimation

Filtering $bel(x_t) \triangleq$ $p(x_t | u_{1:t}, z_{1:t}, x_0)$

• Smoothing $bel(x_{1:t}) \triangleq$ $p(x_{1:t}|u_{1:t}, z_{1:t}, x_0)$

ALGORITHM OVERVIEW Step 2: Uncertain Relative Cell Location

 ^sCⁱ_t Location of cell i at time t in the coverage sensor frame

ALGORITHM OVERVIEW Step 3: Project Cell Location Through Coverage Sensor Model

$$\breve{W}_t^i = \mathcal{H}({}^sC_t^i)$$

 $\mathcal{H}:$ Coverage sensor

model

ALGORITHM OVERVIEW Step 4: Recursive Coverage Update

$$W_t^i = \max(\breve{W}_t^i, W_{t-1}^i)$$

Note: This is an operation on RVs

- **2** Application to AUV Seabed Surveying
- **3** Coverage Path Planning with Uncertain Coverage
- **4** Experimental Results

SEABED SURVEYING WITH A SIDESCAN SONAR SENSOR

STEP 1: POSE ESTIMATION

- GPS Measurements
- DVL Measurements
- Compass Measurements

・ロト ・聞ト ・ヨト ・ヨト

æ

STEP 2: UNCERTAINTY PROJECTION

STEP 3: Location Uncertainty \rightarrow Coverage Uncertainty

・ロト ・ 日 ・ モ ト ・ モ ・ つ へ ()・

STEP 4: COMBINING MEASUREMENTS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- **2** Application to AUV Seabed Surveying
- **3** Coverage Path Planning with Uncertain Coverage
- **4** Experimental Results

COVERAGE AS ENTROPY REDUCTION²

$$p(T_t^i=1)=E[W_t^i]$$

COVERAGE AS ENTROPY REDUCTION ²

$$p(T_t^i = 1) = E[W_t^i]$$

 $\begin{aligned} \Delta H(T_t^i|X_t) &= \\ H(T_t^i) - E_{X_t}[H(T_t^i|X_t)] \end{aligned}$

²Paull et al. IEEE/ASME Trans. Mechatronics, 2013.

COVERAGE AS ENTROPY REDUCTION ²

$$p(T_t^i=1)=E[W_t^i]$$

 $\begin{aligned} \Delta H(T_t^i|X_t) &= \\ H(T_t^i) - E_{X_t}[H(T_t^i|X_t)] \end{aligned}$

$$au: [0,1]
ightarrow SE(2), s
ightarrow au(s)$$

²Paull et al. IEEE/ASME Trans. Mechatronics, 2013.

COVERAGE AS ENTROPY REDUCTION²

$$au^* = rg\max_{ au} B(au) riangleq \int_0^1 \sum_i \Delta H(T_t^i | au(s)) ds$$

²Paull et al. IEEE/ASME Trans. Mechatronics, 2013.

ADAPTIVE TRACK

- **2** Application to AUV Seabed Surveying
- **3** Coverage Path Planning with Uncertain Coverage
- **4** Experimental Results

HARDWARE FIELD TRIALS

FINAL RESULT

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

CONCLUSIONS AND FUTURE WORK

SUMMARY

- Probabilistic coverage
- AUV application
- Robust coverage planning

CONCLUSIONS AND FUTURE WORK

SUMMARY

- Probabilistic coverage
- AUV application
- Robust coverage planning

FUTURE WORK

- More general path planning
- Presence of obstacles
- Cooperative