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Abstract— Graphical methods have proven an extremely
useful tool employed by the mobile robotics community to frame
estimation problems. Incremental solvers are able to process
incoming sensor data and produce maximum a posteriori
(MAP) estimates in realtime by exploiting the natural sparsity
within the graph for reasonable-sized problems. However, to
enable truly longterm operation in prior unknown environ-
ments requires algorithms whose computation, memory, and
bandwidth (in the case of distributed systems) requirements
scale constantly with time and environment size. Some recent
approaches have addressed this problem through a two-step
process - first the variables selected for removal are marginal-
ized which induces density, and then the result is sparsified to
maintain computational efficiency. Previous literature generally
addresses only one of these two components.

In this work, we attempt to explicitly connect all of the
aforementioned resource constraint requirements by consider-
ing the node removal and sparsification pipeline in its entirety.
We formulate the node selection problem as a minimization
problem over the penalty to be paid in the resulting sparsifi-
cation. As a result, we produce node subset selection strategies
that are optimal in terms of minimizing the impact, in terms
of Kullback-Liebler divergence (KLD), of approximating the
dense distribution by a sparse one. We then show that one
instantiation of this problem yields a computationally tractable
formulation. Finally, we evaluate the method on standard
datasets and show that the KLD is minimized as compared
to other commonly-used heuristic node selection techniques.

I. INTRODUCTION

In many realistic application scenarios, robots are required
to navigate over long time periods in unknown and uncertain
environments by performing simultaneous localization and
mapping (SLAM). For example, a team of autonomous
underwater vehicles (AUVs) is often used to cooperatively
collect data in the ocean (e.g., for seabed mapping). Re-
cently, graph-based approaches have emerged as one of the
most popular approaches to SLAM [1]. In this formulation,
each new sensor measurement adds a new edge (constraint)
between two nodes (states) into the graph. The most likely
configuration of the states can be efficiently found by exploit-
ing the sparse structure of the system, and an incremental
method (e.g. [2]) can be further utilized in order to achieve
real-time performance for “medium-sized” problems.
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Fig. 1: In the absence of node reduction strategies, the size of the
SLAM graph will grow without bound. Top: The Manhattan 3500
dataset [3] with 3500 poses in SE(2) and 5599 constraints. The
blue edges denote the entire dataset and the red circles are 500
poses that have been subselected. Bottom Left: The removal of
the 3000 poses induces density in the graph. Here we show the
sparsity structure of the resulting information information matrix.
Bottom Right: In order to maintain computational efficiency,
the dense representation is approximated by a sparse one. In this
work we propose to choose the nodes to remove so that the sparse
representation is as close as possible (in the KL divergence sense)
to the dense one.

Notwithstanding the efficiency of these graph-SLAM ap-
proaches, they are not directly applicable to large-scale
problems because resources such as memory, computation,
and communication in multi-robot systems do not scale
worse than constantly. For example, communication band-
width through acoustics available to AUVs is typically very
limited [4]. As a result, without removing states from the
system, these graph-based methods will lead to resource
constraint violation as mission duration and operational area
increase.

To address this issue, recent work has focused either
on how to select which nodes to remove, or on how to
maintain sparse connectivity between nodes, but rarely both.
In particular, marginalization is often used to remove nodes,
which is achieved through Schur complement on the Hessian
(information) matrix. Note that marginalization enforces a
“node constraint” on the total number of variables. How-
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ever, this process induces density and significantly increases
the overhead of communication bandwidth or computation
complexity, which in effect motivates edge sparsification [5],
[6], [7]. Specifically, a Kullback-Liebler divergence (KLD)
minimization is formulated to find a sparse information
matrix to approximate the original dense one. Note that spar-
sification allows us to satisfy an “edge constraint” or “density
constraint”, for example, for computational efficiency and/or
bandwidth considerations. However, this process is approxi-
mate and the penalty that we pay can be quantified in terms
of KLD between the dense true distribution and its sparse
approximation.

For a given application, a problem-specific approach to
select and remove nodes may exist. For instance, one recent
work proposed removing the nodes at which there is a
minimum probability of collision with the environment for
a navigation objective [8]. However, we argue that in the
absence of problem-specific node selection strategies (i.e.,
every node is an equal candidate for removal), the optimal
choice of nodes to remove through marginalization in order
to satisfy node number constraints are the ones that will incur
the minimum penalty in the subsequent sparsification to meet
the edge constraints.

These two operations, marginalization and sparsification,
are usually treated as distinct. The algorithms of node
removal via marginalization do not consider the attainable
performance of the subsequent sparsification, and conversely,
the sparsification approaches are agnostic to the node se-
lection used to choose which nodes to marginalize. In
this work, we tightly couple these two processes into a
single unified optimization framework, whose objective is
to minimize the information loss due to graph reduction
while being constrained by limited resources available. In
particular, our proposed unified framework aims to optimally
account for the resource constraints of computation, memory,
and communication bandwidth. To prove this concept, after
formulating the problem in the general sense, we provide
one tractable solution instance. To validate this solution, we
compare against the node selection strategies available in
the literature and show that in our case the constraints are
met with less penalty in terms of KLD between the dense
distribution and the sparse approximation.

II. RELATED WORK

Graph reduction algorithms can be categorized into two
classes: (i) selecting which measurements and/or variables to
discard, and (ii) marginalizing variables and then sparsifying
measurements. In what follows, we briefly review these two
clusters of literature.

A. Measurement/variable selection

1) Measurement selection: The basic idea of most mea-
surement selection approaches is to evaluate the relative “in-
formativeness” of measurements themselves and then discard
the least useful. In particular, Kretzschmar et al. [9] intro-
duced pose-graph compression for laser-based SLAM, in
which nodes are selected for removal based on the amount of

new information provided by their respective laser scans. The
less informative scans are removed and then the associated
poses are marginalized followed by a Chow-Liu tree (CLT)-
based [10] approximation to regain sparsity. Similarly, Ila
et al. [11] provided a relative information metric to evaluate
whether edges should even be added to the pose graph in the
first place, as well as to remove uninformative loop closure
constraints.

2) Variable selection: The question of how to select
a subset of variables to better support localization and/or
mapping operation has been investigated. In [12], a Euclidean
distance criterion is employed for node removal to ensure
that the size of the state vector grows only with the size of
the mapped environment. However, this approach does not
bound the number of measurements. Similarly, downsam-
pling features based on a visual-saliency measure in vision-
based navigation systems has also been explored in order to
improve loop closing [13], [14], [15]. In appearance-based
visual SLAM approaches a similar problem is framed as
“dictionary learning” where the size of the dictionary must
be reduced. For example, in a online “sparsity-cognizant”
approach to dictionary learning was proposed by Latif et.
al. [16]. Other work considers variable selection to support
the objective of navigation. For example, Strasdat et al.
[17] introduced a reinforcement learning based landmark
selection policy to minimize the robot position error at the
goal. Lerner et al. [18] considered single camera frame
based landmark selection in terms of a “severity function.”
And Sala et al. [19] chose the minimal set of landmarks
that are viewable from every point in the configuration
space. Moreover, Mu et al. [8] recently proposed a single
framework for both landmark and measurement selection
to support navigation. Other landmark and measurement
selection techniques are also available but task-specific, e.g.,
uniform landmark selection [20] and entropy-based landmark
selection [21] for the localization and mapping objective,
as well as an incremental approach [22]. By contrast, in
this work, we address the variable selection strategy by
explicitly considering the resource constraints to be satisfied
and choose the variables whose subsequent removal (through
marginalization and sparsification) will incur the least infor-
mation loss.

B. Node marginalization and edge sparsfication

Since marginalization induces dense connectivity across
the Markov blanket of the marginalized node, recent research
efforts have been devoted to further reduce the edges of the
graph. In particular, Vial et al. [23] are among the first to for-
mulate this sparsification problem as a convex optimization
that minimizes the KLD between the dense distribution and
its sparse approximation. In our prior work [5], we further
regularize this formulation with `1-norm, which is appealing
in its flexibility as it does not commit to any sparse graph
structure. However, one challenge with this approach is that
direct control over the structure of the resulting sparsified
information matrix is lost. To mitigate this issue, Carlevaris
and Eustice [24] introduced generic linear constraints (GLCs)
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to approximate the dense factors induced by marginalization
based on the CLT approximation. Most recently, Mazuran
et al. [7], [25] improve the previous results by allowing
nonlinear measurements to approximate the dense factors
with “virtual” measurements which can be defined arbitrarily
and then insightfully formulating the convex optimization
over the measurement, rather than state, information matrix
and proving that it remains convex. However, designing these
virtual measurements is nontrivial and task specific.

It is important to note that none of these approaches
provides any insight into how nodes should be selected
to be marginalized, although this choice of nodes has a
significant impact on the optimal KLD that is attainable
in the sparsification stage. Moreover, they do not explicitly
consider constraints other than computation, which clearly
is not adequate for real robotic systems since other key
resource constraints such as memory and communication
cannot be ignored. In our recent work [4], communication
constraints were taken into account in building multi-AUV
SLAM systems. Specifically, marginalization is performed
over the robot poses so that only maps are communicated
to save communication throughput, and then the dense map
connectivity is sparsified using a convex optimization similar
to [7]. In this work, building upon our prior work [5], [4],
we propose a unified framework to incorporate both edge
(bandwidth or computation) and node (memory) constraints.

III. PROBLEM FORMULATION

Let X = [xT1 , · · · ,xTN ]T be the set of states (robot poses
and/or landmark positions) that we seek to estimate, and
Z = [zT1 , · · · , zTM ]T be the set of conditionally independent
measurements. By assuming that p(zj |X) = p(zj |Xj), i.e.,
Xj is the subset of states that are constrained by measurement
zj , we can write the measurement model as follows:

zj = hj(Xj) + ηj , ηj ∼ N (0, D−1
j ) (1)

where we assume additive white Gaussian noise.
In graph SLAM, we aim to to find the most likely

configuration of the states X given the measurements that we
have made (i.e., maximum likelihood estimation or MLE).
This problem can be shown to be equivalent to the following
nonlinear least-squares (NLS) problem [1]:

X̂ = argmin
X

M∑
j=1

||zj − hj(Xj)||2D−1
j

(2)

where ||e||Σ denotes the Mahalanobis distance (energy norm)
and Dj ∈ R|zj |×|zj | is the measurement noise information
matrix. To solve (2), due to the nonlinearity of measurement
model (1), an iterative algorithm such as Gauss-Newton is
often employed. Specifically, starting from an initial guess
X̂(0), we iteratively solve for the (locally) optimal error state
(increment) which is then used to update the state estimate:

δX(k+1) = argmin
δX

M∑
j=1

||zj−h(X̂ (k)
j )−H(k)

j δX||2
D−1

k

(3)

X̂(k+1) = X̂(k) + δX(k+1) (4)

where
H

(k)
j =

∂h(Xj)
∂X

|X=X̂(k) ∈ R|zj |×N

is the measurement Jacobian evaluated at the current state
estimate in the k-th iteration. In solving (3), an information
(Hessian) matrix is typically required, which is given by:

I =

M∑
j=1

HT
j DjHj = HTDH

with H ,

H1

...
HM

 , D ,

D1 · · · 0
...

. . .
...

0 · · · DM

 (5)

It is important to note that the sparsity pattern of I
corresponds exactly to the connectivity in the graph, i.e.,
the information matrix encodes the conditional dependence:

I[i,j]

{
6= 0 ∃zk|(xi,xj ∈ Xk)
= 0 otherwise

(6)

Consequently, we can evaluate the number of distinct non-
zeros that will appear in I without ever having to calculate
it using the following iterative equation:

||I||0 =

M∑
j=1

|P2(Xj)| − |P2(Xj)
⋂
{
j−1⋃
i=1

P2(Xi)}| (7)

where P2 is the subset of power set of cardinality at most 2.
It is clear that the size of the NLS problem (3)-(4) grows

as new robot poses and/or landmark positions are added into
the graph. The graph will eventually become prohibitively
large for real-time performance, thus necessitating graph
reduction.

A. Marginalization of nodes

To reduce the graph, marginalization is often used to
remove nodes (i.e., reduce the size of the state space N ). To
this end, we partition all states into two subsets: the states we
wish to keep, XR, and the states we wish to remove, XM .
Marginalization over the canonical parametrization of the
Gaussian distribution is performed via Schur complement:

Id = IRR − IRMI−1
MMIMR (8)

I =

[
IRR IMR

IRM IMM

]
(9)

where Id in general becomes more dense than the original
block matrix IRR. For subsequent optimization, a new set of
dense factors can be generated using this dense information
matrix Id as well as the current estimate of the removed
states X̂R [5], [24], [7].

B. Sparsification of edges

While marginalization reduces the size of the graph, it
adversely increases the density of the graph. To further
reduce the graph, one approach is to replace the dense
distribution over the Markov blanket (subgraph) with a sparse
approximation, for example, using the CLT approximation
which is the optimal minimal yet connected distribution [24].
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However, this approach does not guarantee consistency (i.e.,
information might be added to the graph) and the tree
structure may not be desirable. Alternatively, one seeks
to solve for a sparse approximation based on the convex
optimization of minimizing KLD between the original dense
distribution and the new sparse one [23]:

min
Is∈S++

DKL(N (X̂, I−1
s )||N (X̂, I−1

d ))

= min
Is∈S++

tr(IsI−1
d )− ln(|Is|)

(10)

This method has the advantage that conservativeness can be
enforced through the additional constraint Is � Id. However,
it remains open how to select the edges to remove. Options
include again to choose the CLT structure [6], to enforce
sparsity through sparsity regularization [5] or use problem-
specific predefined graph structure [4].

IV. RESOURCE-CONSTRAINED GRAPH SLAM
In this section, we propose a unified optimization frame-

work that seeks to find an optimal reduced graph with
respect to both nodes and edges, while meeting all resource
requirements by explicitly expressing them as the constraints
imposed onto the pertinent optimization variables.

A. Edge constraints

The number of edges (measurements) in the graph can
be seen as directly aligning with a bandwidth constraint in
the case of multi-robot systems [4], but it also connects
to the computation required to solve for the MLE estimate
[see (3) and (4)]. To derive the exact computation required
as a function of the edge density, or fill-in, is challenging
(if not impossible) since it is heavily impacted by other
factors such as initial estimate, nonlinearity of measurement
functions, and so on. However, in general, the efficiency of
NLS solvers largely depends on the fill-in of the information
matrix, which impacts the efficiency of back-substitution
and covariance recovery [2]. Based on this key observation,
we formulate the following reduction problem with graph
density as the computation constraint:

Problem 1. Graph Density as Computation Constraint

min
Is∈S+

DKL(N (X̂, I−1
d )||N (X̂, I−1

s ))

s.t.
||Is||0
N

≤ κdensity
(11)

where Is is the sparse information matrix, Id is the dense
information matrix, X̂ is the most recent MAP estimate, N
is the dimensionality (number of nodes times dimension of
each node) and κdensity is the edge density constraint.

In the case of multi-robot distributed systems, we also
consider the bandwidth as a finite resource. In this case, it is
advantageous to consider a variation on (10) is to formulate
the minimization over the measurement information of the
new “virtual measurements” Ds [7], which are related to
the sparse state information through Is = HT

s DsHs. As
proposed in [4] if ||Ds||0 ≤ ||Is||0, where ||Is||0 is incre-
mentally calculated through (5), and the virtual measurement

functions are known to all robots (presumably agreed upon
at the start) then it is advantageous to only send the non-
zero values in Ds. This motivates the following bandwidth-
constrained sparsification problem:

Problem 2. Edge Number as Bandwidth Constraint

min
Ds∈D

DKL(N (X̂, I−1
d )||N (X̂, (HT

s DsHs)
−1))

s.t. ||Ds||0 ≤ κbandwidth
(12)

where D is the set of block diagonal positive definite matrices
that correspond to the block structure of the measurements.

It should be pointed out that the actual Jacobian matrices,
Hs can be computed by the receiver, since the structure of
the nonlinear measurements is known and the linearization
points, X̂R, are also sent [4]. Consequently, the sparse
information matrix can be recovered.

B. Variable constraint

In general, the number of nodes, and thus the size of the
NLS problem (2), grows without bound as robot(s) operate.
Therefore, it is necessary to remove nodes to retain constant-
time scalability and enable long-term operation of mobile
robots in unknown environments. To this end, we effectively
impose an upper bound, κnode, on the number of nodes that
can be contained in the graph.

Problem 3. Node Number as Memory Constraint

min
XR⊂X

f(XR)

s.t. ||XR||0 ≤ κnode
(13)

where XR is a subset of the entire set of variables, and f(·)
is an objective function that is a design choice.

The cost function f(·) may be designed based on some
application-specific requirements. For example, it can be
mutual information [9], functions of euclidean distance [12],
mutual information of associated sensor data, or probability
of collision with obstacles [8]. We propose an alternative
definition for the function f(·) as is detailed in the following
subsection.

C. Unified optimization with edge and variable constraints

The central idea behind this work is that in the absence
of front-end data considerations or problem-specific node re-
moval strategies, the best way to choose the nodes to remove
is to select the ones that will induce the least penalty in
the subsequent sparsification. Hence, we combine Problems
1, 2 and 3 to formulate one unified optimization problem
constrained by both edge and variable requirements. In
particular, by defining the objective function f(·) in Problem
3 by the output of the KLD minimization of the sparsification
problems, we get the following unified formulation:
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Problem 4. Resource-Constrained Graph Reduction

min
XR⊂X

{
min
Is∈S+

Dkl(N (X̂, I−1
d )||N (X̂, I−1

s ))

s.t. ||Is||0 ≤ κdensity
||Ds||0 ≤ κbandwidth

}
s.t. ||XR||0 ≤ κnode

(14)

Ds and Is are related through Is = HT
s DsHs, and the node

subset determines the information matrix partitioning in the
calculation of Id as given by (8).

Both of the edge constraints, κdensity and κbandwidth, and
the node constraint, κnode, are enforced in Problem 4. The
inequalities in (13) and (14) can be treated as equalities in
the case that we wish to enforce that the resources are fully
utilized.

V. SOLVING PROBLEM 4

Due to the combinatorial nature, it is in general com-
putationally intractable to solve Problem 4 analytically. To
mitigate this issue, let us first turn our attention to the
inner optimization which is convex, and then to the outer
optimization which is combinatorial.

A. Solving the inner convex optimization

Given a potential subset of nodes XR, one standard ap-
proach for solving this problem is to enforce sparsity through
`1-regularization on the information matrix. This is done by
adding the term λ||Is||1 to the objective function in Problem
1 and removing the constraint. The `1 norm is the closest
convex relaxation of the `0 norm but is known to promote
sparsity, where the tuning parameter λ determines the level
of sparsity. This can be solved by an interior point method
or using the alternating direction method of multipliers
(ADMM) [5]. While this is an appealing approach, it is still
preclusively slow since the optimization will have to iterate
to convergence for every node that is evaluated.

Instead, we adopt the formulation for sparsification via
minimizing the measurement information matrix as shown
in Problem 2. In this case, we have direct control over the
design of the Jacobian matrix Hs, and the block structure of
the measurements, encoded in Ds that together will deter-
mine the resulting sparsity. As such, we can satisfy the edge
constraint by construction through appropriate specification
of these matrices. Moreover, it is shown in [25] that in
the case that Hs is invertible, the optimal measurement
informations are computable in closed form:

Di = ({HsI−1
d HT

s }i)−1 (15)

where the {·}i selects the ith block of the inner matrix. The
resulting information matrix is given by Is = HsDsH

T
S with

Ds =


D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · DK

 (16)

We now build the Jacobian matrix that consists of relative
pose-pose or pose-landmark measurements over the CLT
across the Markov blanket of the node(s) being removed,
which is guaranteed to be full rank and square (and hence
non-singular). We can then add additional edges as permitted
by adding correlations between these measurements in the
block measurement information structure [25].

Although not necessarily explicitly stated, current ap-
proaches such as [25] marginalize one node at a time,
performing a sparsification after each one. We note here that
neither the resulting graph topology, nor the approximation
are independent of the node elimination order in this case.
Moreover, it is impossible to enforce hard global sparsity
restrictions this way. Instead sparsity is enforced locally
upon removal of each node. In contrast, here, after selecting
the nodes designated for removal, we eliminate them all
simultaneously. In the case where one node is inside the
Markov blanket of another (and necessarily vice-versa) then
the Markov blankets should be merged. As a result, the
resulting graph topology after marginalization and sparsifica-
tion is unique and optimal (as a result of the CLT optimality)
and actually can be more sparse than the resulting graph after
incremental node removal, which imposes a separate local
CLT structure on each node as it is removed.

We proceed as follows. We begin by using the known
graph topology and the candidate nodes XR to generate a
set of distinct Markov blankets X{p} ⊂ XR, p = 1, · · · , P ,
with 1 ≤ P ≤ |XM | where |XM | is the number of nodes
to be removed times the dimension of an individual node.
We perform a Schur complement to generate Id once using
(8) but then decompose the result into the individual dense
marginal information matrices for each Markov blanket,
I{p}d . For each Markov blanket, we perform a CLT decompo-
sition and generate a non-singular Jacobian H{p}s consisting
of relative pose-pose or pose-landmark measurements over
the CLT evaluated at the current estimates of the nodes,
X̂{p}. We subsequently solve for the block measurement
informations using (15). We can solve for the minimum KLD
by computing the sparse information matrix over the Markov
blanket and re-inserting it into the KLD objective function
(10). Finally, the total KLD for this node combination can
be evaluated by summing the individual KLDs since the
estimates of the variables in XR but not in any Markov
blanket will remain constant. As a result, the function f(XR)
from Problem 3 can be expressed as:

f(XR) =

P∑
p=1

log det(H{p}s D{p}s (H{p}s )T )

+ tr(H{p}s D{p}s (H{p}s )T (I{p}d )−1)

(17)

where the edge constraint satisfaction is explicitly guaranteed
through the design of the Jacobians and block structure of the
measurements. Note that we could also optionally guarantee
consistency by efficiently projecting into the consistency
space using an eigendecomposition of the small local infor-
mation matrices [4]. The algorithm for evaluating a candidate
solution is summarized in Algorithm 1.
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Algorithm 1 Solving the inner optimization in Problem 4
for one candidate node subset XR

Input: XR - the set of nodes that should be retained
X̂R - the current map estimates of the nodes in XR

I - the full information matrix
κdensity , κbandwidth - the edge contraints

Output: D∗KL
1: I =

[
IRR IMR

IRM IMM

]
2: Id = IRR − IRMI−1

MMIMR

3: Extract the P separable Markov blankets X{p}, p = 1..P
based on nodes to remove XR and connectivity encoded
in I

4: D∗KL ← 0
5: for all p = 1, . . . , P do
6: I{p}d ← block information matrix according to X{p}

7: Find minimum spanning tree (CLT) for Markov blan-
ket p

8: H
{p}
s ← Jacobians for pairwise measurements over

spanning tree evaluated at X{p}R
9: (optional) greedily add conditional dependencies to

measurements until reach κdensity or κbandwidth
10: increment D∗KL by log det(H

{p}
s D

{p}
s (H

{p}
s )T ) +

tr(H{p}s D
{p}
s (H

{p}
s )T (I{p}d )−1)

11: end for

B. Solving the outer combinatorial optimization

We solve the combinatorial outer optimization using a
branch and bound method over the partial order of node
subsets. Fig. 2 illustrates the process, where there are 8
nodes and 10 edges (unary factors don’t count as edges).
The corresponding partial order is shown in Fig. 3. Each row,
N , in the partial order contains all possible combinations of
N nodes. Edges in the partial order (with arrows as shown)
correspond to a single node removal. We bias the search in
the tree to follow paths minimizing the “edge cost” which is
defined as follows:

Definition 1. (Edge Cost) The edge cost is the number of
edges added to the graph by removing an additional node
(moving down one level in the partial order) assuming dense
connectivity over the nodes in the Markov blanket

The edge costs are labeled on the edges in the partial order
in Fig. 3. These edge costs can be calculated quickly by
looking at the sparsity pattern in the Schur complement sub-
blocks, IRR and IRMI−1

MMIMR. The matrix IRR encodes
the existing connectivity over the remaining nodes. Every
non-zero component in IRMI−1

MMIMR without a counterpart
in IRR denotes the addition of a new edge over the Markov
blanket that did not previously exist.

One can immediately observe that these edge costs do
no necessarily align with the least connected nodes, but
instead the nodes whose Markov blankets have the densest
connectivity. For example, consider removal of node X7 as
shown in Fig. 2-bottom right. It is connected to nodes X6

x1 x2 x6 x7

x5x4x8 x4 x3 x5x8

x1 x6 x7

x5x4x8 x4 x3 x5x8

x1 x2 x6

x5x4x8 x4 x3 x5x8

Remove 7Remove 2

Fig. 2: Example of graph reduction. Large nodes constitute vari-
ables to be estimated. Small blue circles are constraints (factors)
derived from sensor measurements. Top: Original graph with eight
nodes and 10 edges. Bottom Right: Node X7 removed. Since
the nodes connected to X7 were already connected, the constraint
(shown in green) can be updated resulting in no new edges. Graph
now has 7 nodes and 8 edges. Bottom Left: Node X2 is removed.
3 new edges (shown in red) are added over the Markov blanket
which was previously not connected. Graph now has 7 nodes but
10 edges.

N = 8

N = 6

N = 7

N = 1

N = 0

...

{1,2,3,4,5,6,7,8}

{2,3,4,5,6,7,8} {1,2,3,4,5,6,7}

{3,4,5,6,7,8} {2,4,5,6,7,8} {1,2,3,4,5,6}

{1} {2} {8}

∅

{1,3,4,5,6,7,8}

0 0 −1

1 −1 1 −2

000

...

...

...

Fig. 3: The partial order over nodes in the graph corresponding to
Fig. 2. Labels on edges correspond to edge costs.

and X5, but X6 and X5 are already connected, therefore
the removal of X7 has an edge cost of −2 (Edges 5− 7 and
6−7 are removed) which is the lowest even though there are
nodes that are more minimally connected in the graph (node
3 is singly connected but its removal imposes an edge cost
of only −1). Removal of node X2, on the other hand, has
a connectivity of three but none of the nodes in the Markov
blanket are previously connected. Therefore, removal of node
X2 incurs an edge cost of 0, which will serve to increase
the edge density since one node has been removed.

To search the tree we greedily explore nodes of the
tree with smaller “edge costs” since these are more likely
(although not guaranteed) to provide solutions that not have
minimum KLD and also are able to meet the edge constraint.

The efficiency of branch and bound in this case is derived
from the fact that we can quickly find a “good” solution, even
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Fig. 4: The Kullback-Liebler divergence over the remaining nodes
as a function of the number of nodes removed. The dataset used is
a 670 node subset of the Manhattan dataset shown in Fig. 1. Five
different node removal strategies are compared.

if it is not the best by using the minimum node cardinality
heuristic and then updating when we find a better solution
using the greedy strategy. Armed with a strong incumbent,
we are able to rapidly prune potential solutions. In this case,
if the evaluation of a candidate in the partial order that does
not yet meet the node removal requirement incurs a higher
minimum KLD as given by (17), then all subsets of this
candidate can already be removed. For example, consider that
we are tasked with removing two nodes from the graph in
Fig. 2, and we have already evaluated that removal of nodes
X7 and X8 results in a minimum KLD of 10 while meeting
the edge requirements. Hypothetically, we then evaluate the
minimum KLD for removal of only node X2 and it induces
a minimum KLD of higher than 10, we need not evaluate
any further candidates that contain X2 as a candidate node
for removal. Note that monotonicity of the KLD is not
guaranteed in this case, however it proves a good bound in
practice and is able to rapidly reduce the size of the search
space.

VI. RESULTS & DISCUSSION

We evaluate the proposed method on standard SLAM
datasets. We compare against four other commonly-used
node selection strategies:
• Uniform
• Smallest degree (i.e. the ones with the least connectivity

in the graph)
• Most spatially redundant nodes as determined by the

Euclidean distance to other nodes
• Random
Fig. 4 plots the KLD values as a function of the number of

nodes removed for a subset of the Manhattan 3500 dataset
(see Fig. 1) that contains 670 nodes and 1001 constraints.
We can see that the minimum Euclidean distance approach
induces the highest penalty since it tends to remove nodes
that are densely connected in the graph. Uniform and random
are roughly equal except when the number of nodes to be
removed becomes large at which point uniform becomes
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Fig. 5: The Kullback-Liebler divergence over the remaining nodes
as a function of the number of nodes removed. The dataset used is
the Intel dataset. The full dataset, nodes selected by our method,
and the dense and sparse information matrices are shown in Fig. 6.

highly sub-optimal since it will tend to maximize the number
of distinct Markov blankets to be optimized. The minimum
node cardinality approach is effective at a low number of
nodes but then increases rapidly. It should be stated that we
implemented no principled way to break ties in the case of
minimum node cardinality. We can see that our approach
performs the best in all cases. As an additional note, it
was found that our approach would naturally tend to favor
selecting connected nodes. In many cases we would select
a fully connected set such that there was only one resulting
Markov blanket and the resulting impact was minimized. In
this case the KLD is roughly constant across all levels of
node removal at a value roughly equal to the removal of
single node. However, we deemed that practically speaking
this is usually not an acceptable approach since large chunks
of the pose graph are simply removed. As a result, we
explicitly discouraged the selection of connected nodes until
it was required due to the number of nodes being removed.
Such a restriction is not imposed upon the other node
selection strategies. Also note that the approach is guaranteed
to maintain one connected graph at all times.

We also show results for the Intel dataset, which has 943
nodes and 1838 constraints. The total KLD as a function of
number of nodes removed is shown in Fig. 5 and follows
a similar pattern to Fig. 4. Additionally we show the nodes
selected for the 400 node removal case on the dense dataset
in Fig. 6. We show the dense and sparse approximate infor-
mation matrices, which show a similar structure, however,
the dense one contains less than half the number of non-
zero entries.

We would agree that there are certainty other node se-
lection strategies could have an application-specific purpose.
However, we have provided a method to evaluate the cost of
the particular node selection scheme so that a user may weigh
the benefits of the chosen scheme against the penalty being
paid compared an optimal node selection. It could also be
possible to devise a node selection strategy that is a hybrid of
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Fig. 6: The intel dataset. Top: The dense dataset (blue lines) and
400 selected nodes based on our proposed method (the end point of
the Fig. 5). Bottom Left: The dense information matrix (39292 non-
zero entries) Bottom Right: The sparse approximate information
matrix (18576 non-zero entries).

the proposed scheme and any other. For example, one could
select nodes that minimize KLD biased towards nodes with
maximal Euclidean distance separation.

VII. CONCLUSION

We have presented a unified framework for resource-
constrained graph reduction in SLAM. This approach (encap-
sulated by Problem 4) formulates the node removal decision
as a subset selection problem whose objective function is
the minimum penalty (in terms of KLD) that is paid to
subsequently sparsify the graph after marginalization. As
such it is able to encapsulate three major constraints in
one single framework: the memory constraint (number of
nodes), the computation constraint (density of graph), and
the bandwidth constraint (number of edges to be transmitted
in distributed system).

The next step for mobile robotics is operation in unknown
large environments over extended or indefinite time scales.
Achieving this objective requires an approach where resource
consumption remains constant on average.
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