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Abstract— At present, autonomous underwater vehicle (AUV)
mine countermeasure (MCM) surveys are pre-planned by
operators using ladder or zig-zag paths. Such surveys are often
conducted with side-looking sonar sensors whose performance
is dependant on a number of environment factors, as well as
lateral range from the AUV track.

This research presents a sensor driven online approach to
seabed coverage for MCM. A method is presented where paths
are planned adaptively using a multi-objective optimization.
Information theory is combined with a new concept coined
branch entropy based on a hexagonal cell decomposition. The
result is a planning algorithm that often produces shorter paths
than conventional means and is also capable of accounting for
environmental factors detected in situ. Hardware-in-the-loop
simulations and in water trials conducted on the IVER2 AUV
show the effectiveness of the proposed method.

I. INTRODUCTION

Sensor driven path planning refers to a strategy for gather-
ing sensor measurements to support a sensing objective. Var-
ious approaches have been proposed for planning the mobile
robots’ paths with on-board sensors to enable navigation and
obstacle avoidance in unstructured dynamic environments.
Traditional mission planning methods focus on how sensor
measurements best support the robot mission, rather than
robot missions that best support the sensing objective. In the
case of area coverage for mine countermeasures (MCM), the
sensing objective defines the mission.

Autonomous underwater systems technology is lagging
behind ground and aerial robotics systems. Underwater
robotics is particularly challenging because of the rapid atten-
uation of high-frequency signals, and the unstructured nature
of the environment. These difficulties must be overcome
as the U.S. Navy has referred to underwater mine removal
as the most problematic mission facing unmanned undersea
vehicles and the U.S. Navy at large [1].

In this research, we propose an online approach to au-
tonomously achieve underwater seabed coverage for MCM.
Sensor objectives for the coverage task are particularly hard
to define because of the uncertainty of sensor measurements,
so information gain is exploited as a goodness criterion
[2]. However, it is shown that the information gain method
alone is not sufficient to achieve global goals when there
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is incomplete prior knowledge about the environment. To
compensate, the concept of branch entropy is proposed. The
approach can be applied to diverse missions and sensors, but
is demonstrated on an AUV performing an MCM mission
using a side-looking sensor (SLS).

Prior to this work, few if any research proposed online
strategies to underwater area coverage. Usually, AUVs mis-
sion plans are pre-programmed with waypoints that specify
a structured path, such as a zig-zag or lawn mower. In
the approach taken here, path planning is achieved through
reconciling behaviors that represent the multiple objectives
defined for efficient mission completion. The proposed ap-
proach has the advantages that:

1) The total path and time required to cover a workspace
is often shorter,

2) There is no need for pre-programmed waypoints,
3) The AUV is adaptive to any changes in environmental

conditions that can be detected in situ,
4) The AUV is able to generate paths for complex and

non-convex environment shapes such as would typi-
cally found in harbors.

The performance of the approach is evaluated via
hardware-in-the-loop simulation and implementation on the
IVER2 AUV developed by OceanServer Inc.

The remainder of the paper is organized as follows: Sec-
tion II will provide some background and literature review,
Section III describes the proposed solutions, including the
information gain and branch entropy behaviors, Section IV
discusses the simulation framework, the hardware setup,
and shows the results, and Section V makes some general
conclusions.

II. BACKGROUND OF RESEARCH

Path planning for coverage has many important applica-
tions, such as floor cleaning, harvesting, mine hunting, lawn
mowing, and others. As described in Choset’s 2001 survey of
complete coverage methods, there are heuristic, random, and
cell decomposition techniques [3]. A heuristic defines a set
of rules to follow that will result in the entire environment
being covered. For example, Acar and Choset’s complete
coverage algorithm based on sensing critical points [4], and
Wein’s [5] method of building corridors based on maximizing
some quality function. A key facet of these approaches
is having obstacles to be able to generate the rules. Cell
decomposition is used to divide up the environment into a
manageable number of cells or areas that can be searched like
a graph or tree. Once all cells have been covered, then the
entire workspace has been covered. Decomposition can be
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Fig. 1. An example of the AUV trajectory and corresponding area covered
by its SSS.

approximate [2], semi-approximate, or exact [3]. The shape
of the cells and type of decomposition can have a significant
impact on the performance of the search algorithm.

In the underwater applications, [6] presents a coverage
algorithm for MCM with an SLS is that uses cell decompo-
sition and exploits the supposed fact that mines are normally
placed in lines. In [7], a Boustrophedon decomposition is
combined with the generalized Voronoi diagram to derive
paths for coverage of a highly unstructured or non-convex
environment. However, this algorithm presumes that absolute
knowledge of the environment is known a priori and all
planning is done offline. In [8], a coverage algorithm for
MCM with an SLS is proposed that optimizes the spacing
between parallel tracks. The metric for optimality is the
mean probability of detection of the environment and the
dependance of the probability of detection on seabed type
and range is described. While the proposed method is very
useful, the planned paths are constricted to parallel tracks
and planning is done offline. Also closely related to our
work, Jakuba and Yoerger use a coverage grid approach for
AUVs searching for chemical plumes [9]. Coverage can also
be achieved in higher dimensions, for example in [10] an
algorithm is developed for sensor coverage of a ship’s hull
with an AUV.

In our case, seabed is to be scanned with a sidescan sonar
sensor (SSS). The SSS uses the returns from emitted high
frequency sound to generate an image of the seabed. An
object sitting on the seabed will cast a sonar shadow that can
be analyzed to determine if the shape is suggestive of a mine.
The on-board SSS gathers data as the AUV moves forward in
rectilinear motion and leaves a narrow channel of unscanned
seabed directly beneath it. An AUV path and corresponding
SSS coverage swath are shown in Fig. 1. SSS returns are
combined with onboard navigation data to provide geo-
referenced mosaics of the seabed. The angle of incidence of
the sonar beam with the seabed has a significant effect on the
resolution of the shadow cast by an object and therefore the
probability of successful mine detection and classification.
The Extensible Performance and Evaluation Suite for Sonar
(ESPRESSO) is a tool developed by the Canadian Navy to
evaluate the sonar performance characteristics for a specific
set of environmental conditions [11]. The program generates
a P(y) lateral range curve that indicates the probability that
a target at a specified lateral range from a sonar’s track
will be detected. Parameter values that affect the generation
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Fig. 2. P(y) curves for three different seabed conditions

of the P(y) curve include: environmental factors such as
seabed type, target properties, sonar attributes, and platform
variables such as speed, depth and navigation error. Fig. 2
shows the P(y) curves generated by ESPRESSO for three
different seabed types: cobble, sand, and clay, all at a depth
of 10 m for the Klein 5500 SSS.

III. PROPOSED METHODS

In the proposed approach, desired headings, ψd are gen-
erated by evaluating an objective function over the domain
of all possible desired headings: ψ = {0..360}. The general
form of the function is given by:

ψd = arg max
ψ
{R(ψ)} (1)

R(ψ) = wBB(ψ) + wGG(ψ) + wJJ(ψ), (2)

where R is the total utility, B is the information gain, G
is the branch entropy, J is the benefit of maintaining the
current heading, and wB , wG, and wJ are the respective
weights. B prioritizes headings that cover the most area in
the short term, G prioritizes headings that will help the agent
complete its coverage mission in the longer term, and J(ψ)
prioritizes headings closest to the current heading so that the
AUV will tend to move in straight tracks. The function J is
the simplest and can take the form:

J(ψ) ∝ −|ψc − ψ|+ 100 (3)

where ψc is the current AUV heading.
The functions B and G are generated using the cover-

age map which is updated as the AUV moves about the
workspace. Details will be described in Sections III-A and
III-B respectively. Note that optimization takes place over
heading only and that it is assumed that desired speed
and depth are generated some other way (most likely held
constant). It should also be noted that this desired heading is
used as a reference to an inner loop controller that produces
the desired control plane values. As such, it is reasonable
to evaluate (2) over a domain of angles that includes sharp
turns. There is no violation of dynamic constraints since
these will be imposed in the inner loop. The optimization
is evaluated over discretized domains using interval pro-
gramming (IvP) [12]. In IvP, underlying objective functions
are approximated as piecewise linear functions where the
accuracy of the representation can be traded off against the



computation time by specifying the number of pieces in
the approximation. Tuning of the weights is an important
consideration. In the present implementation, trial and error
has been used to tune the weights, however, it would be
simple to optimize them with some meta heuristic method
such as genetic algorithms or particle swarm optimization.

A. The Information Gain Behavior

The mutual information I or expected entropy reduction
(EER):

I(X,Z) = H(X)− H̄(X|Z), (4)

defines a scalar quantity that represents the a priori expected
information about a state X contained in an observation Z.
H(X) = E[logP (X)] is the Shannon entropy of X and
represents in some way the compactness of the distribution
[13]. To evaluate H̄(X|Z) we take the expectation over the
measurement Z:
H̄(X|Z) = Ez{H(X|Z)}

= −
∫
P (Z)

∫
P (X|Z) logP (X|Z)dXdZ.

(5)

where P (Z) is the probability of obtaining measurement Z.
The essential aspect of this definition is that it specifies a

way of combining sensor measurements additively. Consider
some control action at time t to be U(t). If the ratio of the
control frequency to the sensor frequency is n then each
control action, U(t) will result in a set of n independent
measurements {Z1, Z2, ..., Zn}. The total expected informa-
tion gain of U(t) can be expressed as:

B(U(t)) =

n∑
k=1

I(X,Zk). (6)

To define the information gain objective function, infor-
mation gained must be formulated as a function of heading
ψ. This is achieved by defining a track starting at the AUVs
current location, (x, y), and traveling a fixed distance, r, at
every potential heading in the domain of the search. The
measurements that will be made can be predicted and then
(6) can be used to evaluate the expected information gained
from traveling along the given track.

Define the variable Mij ∈ {0, 1} to represent the actual
presence or absence of a target at the point (i, j) in the
discretized workspace, W . Then, consider the variable mij ∈
{0, 1} to be our belief about the presence or absence of a
mine at location (i, j). The confidence at location (i, j), cij
represents the probability that if a mine exists that it will
be detected. Therefore, we can define a binary RV Tij such
that:

P (Tij = 1) = P (mij = Mij) = cij

P (Tij = 0) = P (mij 6= Mij) = 1− cij
(7)

Then the entropy of Tij can be represented as:

H(Tij) = −cij log(cij)− (1− cij) log(1− cij) (8)

From (8) it follows that

lim
cij→1

H(Tij) = 0. (9)

This implies that maximizing the confidence over the en-
vironment minimizes the entropy of Tij . From (2), the
information gain objective function B has to be defined
as a function of headings ψ. This function is generated
by simulating paths from the AUVs current location in the
direction of ψ and evaluating the expected entropy reduction
over the coverage grid variables Tij . Let the proposed path
to be evaluated be represented by C. The path begins at the
AUV’s current location, (x, y) and moves a distance r at
heading ψ:

C : [0, 1] → Cfree, s→ C(s) (10)
C(0) = (x, y) (11)
C(1) = (x+ r cos(ψ), y + r sin(ψ)) (12)

Let the proposed action, U(t) from (5) be defined by the
proposed track. Since r, x, and y are assumed constant, the
information gain resulting from following the proposed track
can be defined as a function of only the heading, ψ.

Assume that following this track will result in a se-
ries of n SSS returns that represent measurements Z =
{Z1, Z2, ..., Zn}. Then, (5) can be used to compute the
expected entropy at location (i, j) in the workspace as a
result of any individual measurement Zk, k = 1..n.

H̄(Tij |Zk) = Ezk{H(Tij |Zk)}

= −
∑
Zk

P (Zk)[−c′ij log c′ij

− (1− c′ij) log (1− c′ij)]

(13)

where c′ij is the posterior confidence at location (i, j) after
measurement Zk.

Evaluation of (13) requires knowledge of the distribution
of Zk. This distribution represents the probability of obtain-
ing the set of environmental conditions that would produce
a given P(y) lateral range curve. If there is no knowledge of
environmental conditions beforehand, this distribution can be
initialized as uniform across all environment parameters. As
the AUV traverses the workspace, unknown environmental
conditions such as seabed type can be determined and the
distributions can be updated based on the new knowledge.

The distribution P (Tij |Zk) is determined by the ap-
propriate lateral characteristic curve determined using the
ESPRESSO model. Sample curves are shown in Fig. 2. The
perpendicular distance of point (i, j) to the path C can be
found using a simple orthogonal projection, and is the lateral
range used to sample the curve. The new confidence obtained
from measurement Zk should be combined with the existing
confidence at (i, j), cij to produce the new confidence at that
location c′ij [14].

The EER at location (i, j) caused by measurement Zk then
follows from (4) as:

I(Tij , Zk) = H(Tij)− H̄(Tij |Zk) (14)

Define the line that is perpendicular to C and aligns
with the SSS reading Zk as C⊥. The EER over the entire



workspace, W , brought about by a measurement Zk is then
the sum of the EER along the line C⊥.

I(W,Zk) =
∑

(i,j)on C⊥
I(Tij , Zk) (15)

Given that there is no overlap between subsequent sonar
pings from a SSS, the total expected information gain
brought about by moving along the proposed path C can
be expressed as:

B(ψ) =

n∑
k=1

I(W,Zk) (16)

An AUV is shown in an environment in Fig. 5. The IvP
functions at the stop time is shown in Fig. 6. Note that the
highest utility for the information gain objective function in
this case is approximately 90o, the direction that is being
traveled, and the lowest utility is the reverse direction, 270o,
because almost no new information would be gained from
moving over the path that was just traveled.

B. Branch Entropy

The information gain method has been shown to be
effective for solving the path planning problem when a
priori knowledge of the environment, obstacles, and targets
is available [2]. However, it is common that this information
will not be available, or will not be completely accurate. In
the sensor-driven approach, the information gain B is useful
for evaluating the benefits over a short horizon, but when
complete coverage is the goal, this approach reduces to a
greedy-first search (GFS).

It is necessary to include a function G, termed the branch
entropy, in the objective function (2) that helps the AUV
achieve its global goal.

To compute the G, the workspace is first decomposed
into N equally-sized hexagon cells such that the cells cover
the entire workspace. The average entropy of the cells are
updated as the AUV moves about the environment. On
each evaluation of the outer loop controller, each cell Ci
is assigned a level, l, which is the minimum number of cells
that must be traversed to reach that cell from the presently
occupied cell Cp. In addition, each cell maintains a list of
children, which are all neighbors in level l + 1. A directed
acyclic graph (DAG) is built using the levels and children
of each cell where every cell Ci appears only once in the
graph, and is at level l. There can be several paths from Cp
to Ci but they must all be the same minimum length. Each
neighbor of Cp is referred to as a branch and the branch
entropy G quantifies how much uncovered area exists down
that particular branch of the DAG.

A hexagon decomposition of a workspace is shown in
Fig. 3. The workspace is the shaded area underneath the
hexagons. The hexagon on the right shows the numbering
convention for the neighbors. The advantage of using a
hexagon decomposition is that each cell at level l is guaran-
teed to be the same distance from current cell Cp.

There will be a value of BE for each neighbor of the
current cell Cp as each neighbor has its own branch in the
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Fig. 3. An environment with a cell decomposition. The cells that will be
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DAG. For each neighbor, k = 0..5, of Cp, the BE, gk, for
a DAG with a total of L levels is given by (17). mlk is the
number of nodes in level l of branch k and Ĥi is the average
entropy of cell Ci.

gk =

L∑
l=2

(L− l + 1)

mlk∑
i=1

Ĥi

mlk

L−1∑
l=1

l

. (17)

In (17), the closer cells are weighted higher using an inverse
linear function so that the AUV will tend to choose branches
with uncovered area nearby. Other weighting functions, such
as exponential decay could have been used, and would
produce similar results.

Fig. 4 shows the transformation from hexagon cells to
DAG. The cell labeled Cp is the cell that the AUV is
currently in, and the values in all of the other cells represent
their average entropies. The corresponding BE for each of
the three neighbors are calculated as:

g4 = 1/3((2)(0.6) + (1)(0.1)) = 0.433,

g3 = 1/3((2)(0.5) + (1)(0.1)) = 0.367,

g2 = 1/3((2)(0.2) + (1)(1/2)(0.95 + 0.90)) = 0.442.



Fig. 5. A simulated path.

In this case g2 is the highest.
The values of branch entropy are treated as samples of

the underlying objecting function and are connected linearly
to generate the full objective function. The six potential
headings of known utility are 60o × k, k = 0..5, which
corresponds to the headings that pass through the midpoints
of the neighboring hexagon faces. The corresponding points
used to generate the objective function for G(ψ) are (60o×
k, gk), k = 0..5. The known points are then connected with
straight lines. A general equation for the objective function,
G(ψ) is derived that parameterizes each of the connecting
lines:

G(ψ) =
1

60
(gk − gk+1)ψ + gk(1− k) + gk+1,

k = b ψ
60
c.

(18)

Note that for consistency define g6 = g0.
An AUV is shown in an environment in Fig. 5. The IvP

functions at the stop time are shown in Fig. 6. The BE
behavior is maximum at 0o and 180o as these headings point
to the areas of the map that have the largest unfinished areas.

C. The Collective Objective Function

According to (2), the final utility, R, is the weighted sum
of the objective functions. In Fig. 6 the objective functions
at a snapshot are shown together with the collective. In this
case, the collective objective function selects the heading at
94o to be the best desired heading.

IV. RESULTS

In order to test the control algorithms, a Hardware-In-The-
Loop (HWIL) simulator was developed using the Mission
Oriented Operating Suite (MOOS) [15]. This provided seam-
less transition to real hardware trials on the Oceanserver Inc.
IVER2 (Fig. 7).

A. Simulation

A Monte Carlo style simulation is conducted to compare
the performance for information gain alone, information
gain with branch entropy, and a random walk algorithm
by repeating the simulation 36 times with random initial
conditions. The results are tested against the deterministic
typical lawn mower pattern for a simple yet non-convex
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environment. Results for three different levels of desired
confidence are shown in Table I, where values for random,
IG and IG/BE are reported as µ[σ] where µ and σ correspond
to the mean and the standard deviation of the 36 trials and
all values are in meters.

Desired Confidence
.90 .95 .98

Search
Method

Lawn Mower 1275 1545 2355
Random 1279 [446] 1915 [460] 2299 [677]

IG 1488 [362] 2429 [817] 3307 [730]
IG/BE 1088 [105] 1458 [150] 1761 [160]

TABLE I
PERFORMANCE OF LAWN MOWER, RANDOM WALK, INFORMATION

GAIN AND INFORMATION GAIN WITH BRANCH ENTROPY ALGORITHMS

FOR DIFFERENT CONFIDENCE THRESHOLDS.

The simulation results in Table I show that the paths
planned by the planner with IG and BE are shorter on average
than the paths generated by the lawn mower planner. The
authors make no claim that the lawn mower plots tested are
necessarily optimal, but they are very reasonable. It should be
emphasized the benefits of the proposed online sensor driven
planner extend far beyond just the benefits of shorter path
lengths, which cannot necessarily be guaranteed. As stated,
the proposed planner requires no waypoints and in capable of
adapting its mission based on the actual coverage obtained.
As such, it is guaranteed to converge to complete coverage,
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which is not possible for offline planners in reality.

B. In-Water Trials

The vehicle is equipped with an Inertial Navigation Sys-
tem (INS), a Doppler Velocity Log (DVL), a GPS, and a
dual frequency 330/880 Hz Yellowfin sidescan sonar.

The AUV was able to successfully cover two environments
within the limited operating region. Plots for two different
environments are overlayed on the final confidence maps in
Fig. 8 and Fig. 9. The runs were stopped when confidence
values reached 95%.

A comparison lawn mower mission was also performed
on the environment used for Fig. 8 (path not shown).

The path lengths for each of the three trials are shown in
Table II.

V. CONCLUSION

This research presents an online sensor driven robotics
path planner with particular application to seabed coverage
with a sidescan sonar sensor on an autonomous underwater
vehicle. The approach combines information theory with
a new concept coined branch entropy to efficiently cover
areas of seabed. Simulation results and real water trials

Path Length Workspace Area
Proposed planner (Fig. 8) 1203 m 28 000 m2

Lawn mower 1580 m
Proposed planner (Fig. 9) 1661 m 41 250 m2

TABLE II
SAMPLE PATH LENGTHS FOR PATHS PLANNED DURING HARDWARE

TRIALS

illustrate the benefit of this approach over standard lawn
mower planners. These advantages are: the total path length
and time to cover an environment are shorter, there is no
need for predetermined waypoints, environmental factors can
be accounted for, and the planner is able to autonomously
handle very complex shaped environments. The method has
been tested on a HWIL simulation and on real hardware.
The result is an efficient path planner with a higher level of
autonomy that standard preprogrammed structured mission
plans.

REFERENCES

[1] U.S. Navy, “The navy unmanned undersea vehicle (UUV) master
plan,” Tech rep. a847115, U.S. Navy, 2004.

[2] Cheghui Cai and Silvia Ferrari, “Information-driven sensor path
planning by approximate cell decomposition,” IEEE Transactions on
Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 39, no. 3,
pp. 672–689, Jun. 2009.

[3] Howie Choset, “Coverage for robotics - a survery of recent results,”
Annals of Mathematics and Artificial Intelligence, vol. 31, pp. 113–
126, 2001.

[4] Ercan U. Acar and Howie Choset, “Sensor-based coverage of unknown
environments: Incremental construction of morse decompositions,”
International Journal of Robotics Research, vol. 21, pp. 345–367,
2002.

[5] Ron Wein, Jur van den Berg, and Dan Halperin, “Planning high-quality
paths and corridors amidst obstacles,” The International Journal of
Robotics Research, vol. 27, pp. 1213–1231, 2008.

[6] J.R. Stack and C.M. Smith, “Combining random and data-driven
coverage planning for underwater mine detection,” in OCEANS 2003.
Proceedings, Sep. 2003, vol. 5, pp. 2463–2468.

[7] Cheng Fang and S. Anstee, “Coverage path planning for harbour
seabed surveys using an autonomous underwater vehicle,” in OCEANS
2010 IEEE - Sydney, May 2010, pp. 1–8.

[8] D.P. Williams, “On optimal AUV track-spacing for underwater
mine detection,” in Robotics and Automation (ICRA), 2010 IEEE
International Conference on, May 2010, pp. 4755–4762.

[9] M. Jakuba and D.R. Yoerger, “Autonomous search for hydrothermal
vent fields with occupancy grid maps,” in Proceedings of the
Australasian Conference on Robotics and Automation, 2008.

[10] B. Englot and F. Hover, “Inspection planning for sensor coverage
of 3d marine structures,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Oct. 2010, pp. 4412–4417.

[11] G. Davies and E. Signell, “Espresso scientific user guide,” Nurc-sp-
2006-003, NATO Underwater Research Centre, 2006.

[12] M.R. Benjamin, J.A. Curcio, and P.M. Newman, “Navigation of
unmanned marine vehicles in accordance with the rules of the road,” in
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, May 2006, pp. 3581–3587.

[13] Ben Grocholsky, Information-Theoretic Control of Multiple Sensor
Platforms, Ph.D. thesis, Australian Centre for Field Robotics, Univer-
sity of Sydney, 2002.

[14] L. Paull, S. Saeedi, H. Li, and V. Myers, “An information gain based
adaptive path planning method for an autonomous underwater vehicle
using sidescan sonar,” in IEEE Conference on Automation Science
and Engineering (CASE), Aug. 2010, pp. 835 –840.

[15] Michael Benjamin, Paul Newman, Henrik Schmidt, and John Leonard,
“An overview of MOOS-IvP and a brief users guide to the IvP Helm
autonomy software,” MIT-CSAIL-TR-2009-028, Jun. 2009.


