Decentralized Cooperative Trajectory Estimation for Autonomous Underwater Vehicles

Liam Paull^{1,2}, Mae Seto^{2,3} and John Leonard¹

¹MIT CSAIL, ²University of New Brunswick, ³Defense R&D

Canada

Challenges and Potential Benefits

Challenges:

- High latency
- Low bandwidth
- Unacknowledged (broadcast)
- Unreliable

Challenges and Potential Benefits

Challenges:

- High latency
- Low bandwidth
- Unacknowledged (broadcast)
- Unreliable

Potential Benefits:

- Vehicles surface for GPS fix less frequently
- Collected data more accurately localized through trajectory smoothing

Problem: Too much data to send through Acomms

Advantages of Proposed Approach

Guaranteed connectedness of pose graph

Data throughput scales linearly with team size

Data throughput constant with time

No requirements on team hierarchy

2 AUVS, One Surfacing for GPS

Different Packet Loss Rates

