Decentralized Cooperative Trajectory Estimation for Autonomous Underwater Vehicles

Liam Paull\textsuperscript{1,2}, Mae Seto\textsuperscript{2,3} and John Leonard\textsuperscript{1}

\textsuperscript{1}MIT CSAIL, \textsuperscript{2}University of New Brunswick, \textsuperscript{3}Defense R&D Canada
Challenges and Potential Benefits

Challenges:
• High latency
• Low bandwidth
• Unacknowledged (broadcast)
• Unreliable
Challenges and Potential Benefits

Challenges:
• High latency
• Low bandwidth
• Unacknowledged (broadcast)
• Unreliable

Potential Benefits:
• Vehicles surface for GPS fix less frequently
• Collected data more accurately localized through trajectory smoothing
Underwater Cooperative Localization
Centralized Multi-AUV Pose Graph
Centralized Multi-AUV Pose Graph

GPS measurements
Centralized Multi-AUV Pose Graph

Compass measurements
Centralized Multi-AUV Pose Graph

DVL derived odometry
Centralized Multi-AUV Pose Graph

Inter-vehicle range measurements
Centralized Multi-AUV Pose Graph

Problem: Too much data to send through Acomms
Decentralized Multi-AUV Pose Graph

New factor connects other vehicle nodes at times of contact
Advantages of Proposed Approach

• Guaranteed connectedness of pose graph

• Data throughput scales linearly with team size

• Data throughput constant with time

• No requirements on team hierarchy
2 AUVS, One Surfacing for GPS
Different Packet Loss Rates

\[ \sigma^2_{x_t} + \sigma^2_{y_t} \]

- 100% Failure
- 80% Failure
- 50% Failure
- 20% Failure
- 0% Failure

time(s)

0 100 200 300 400 500

0 20 40 60 80 100 120