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Abstract

Autonomous underwater vehicle (AUV) navigation and lazation in underwater environments is particularly
challenging due to the rapid attenuation of GPS and radiguiacy signals. Underwater communications are low
bandwidth and unreliable and there is no access to a glols#igring system. Past approaches to solve the AUV
localization problem have employed expensive inertiaees) used installed beacons in the region of interest, or
required periodic surfacing of the AUV. While these methads useful, their performance is fundamentally limited.
Advances in underwater communications and the applicaifosimultaneous localization and mapping (SLAM)
technology to the underwater realm have yielded new pdibiin the field.

This paper presents a review of the state of the art of undenaatonomous vehicle navigation and localization,
as well as a description of some of the more commonly usedadstin addition, we highlight areas of future
research potential.

. INTRODUCTION

The development of autonomous underwater vehicles (AUég)ah in earnest in the 1970s. Since then, ad-
vancements in the efficiency, size, and memory capacity ofpeers have enhanced that potential. As a result,
many tasks that were originally achieved with towed arraysnanned vehicles are being completely automated.
AUV designs include torpedo-like, gliders, and hoveringd dheir sizes range from human-portable to hundreds
of tons.

AUVs are now being used for a variety of tasks, including eoggiaphic surveys, demining, and bathymetric
data collection in marine and riverine environments. Aateilocalization and navigation is essential to ensure the
accuracy of the gathered data for these applications.

A distinction should be made between navigation and loattin. Navigational accuracy is the precision with
which the AUV guides itself from one point to another. Lozation accuracy is the error in how well the AUV
localizes itself within a map.

AUV navigation and localization is a challenging problemedwrimarily to the rapid attenuation of higher fre-
guency signals and the unstructured nature of the undens@amment. Above water, most autonomous systems rely
on radio or spread spectrum communications and globaliposiy. However, underwater such signals propagate
only short distances and acoustic based sensors and cogations perform better. Acoustic communications still
suffer from many shortcomings such as:

« Small bandwidth, which means communicating nodes have hiadé time division multiple access (TDMA)
techniques to share information,

« Low data rate, which generally constrains the amount of tfetcan be transmitted,

« High latency since the speed of sound in water is only 150@sidsv compared with the speed of light),

« Variable sound speed due to fluctuating water temperatutesalinity,

« Multi-path transmissions due to the presence of an uppee (furface) and lower (sea bottom) boundary
coupled with highly variable sound speed

« Unreliability, resulting in the need for a communicationstem designed to handle frequent data loss in
transmissions.
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Notwithstanding these significant challenges, researchUN navigation and localization has exploded in the
last ten years. The field is in the midst of a paradigm shifinfrold technologies, such as long baseline (LBL)
and ultra short baseline (USBL), which require pre-deptbgiad localized infrastructure, towards dynamic multi-
agent system approaches that allow for rapid deploymentflaribility with minimal infrastructure. In addition,
simultaneous localization and mapping (SLAM) techniquesetbped for above ground robotics applications are
being increasingly applied to underwater systems. Theltrésuhat bounded error and accurate navigation for
AUVs is becoming possible with less cost and overhead.

A. Outline

AUV navigation and localization techniques can be categariaccording to Fig. 1. This review paper will be
organized based on this structure.
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Fig. 1. Outline of underwater navigation classificationse3e methods are often combined in one system to provideaised performance.

In general, these techniques fall into one of three maingcaies:

« Inertial / Dead Reckoning: Inertial navigation uses accelerometers and gyroscapeisdreased accuracy to
propagate the current state. Nevertheless, all of the rdsthothis category have position error growth that
is unbounded.

« Acoustic transponders and modemsTechniques in this category are based on measuring thedtfiflight
(TOF) of signals from acoustic beacons or modems to perfaaigation.

« Geophysical Techniques that use external environmental informat®regerences for navigation. This must be
done with sensors and processing that are capable of aeeickentifying, and classifying some environmental
features.

Sonar sensors are based on acoustic signals, howeveratiamigiith imaging or bathymetric sonars are based on

detection, identification, and classification of featureshie environment. Therefore, navigation that is sonaethas



falls into both the acoustic and geophysical categoriessfintttion is made between sonar and other acoustic based
navigation schemes, which rely on externally generatedigtosignals emitted from beacons or other vehicles.

The type of navigation system used is highly dependent oryibe of operation or mission and that in many
cases different systems can be combined to yield increasddrmance. The most important considerations are
the size of the region of interest and the desired locatimagiccuracy.

Past reviews on this topic include [1], [2], and [3]. Sigrdiit advances have been made since these reviews both
in previously established technologies, and in new ar@agatticular, the development of acoustic communications
through the use of underwater modems has lead to the devetgwhnew algorithms. In addition, advancements
in SLAM research has been applied to the underwater domannaomber of new ways.

Il. BACKGROUND

Most modern systems process and filter the data from the settsderive a coherent, recursive estimate of the
AUV pose. This section will review some of the most commonemdter sensors, popular state estimation filters,
the basics of SLAM, and the foundations of cooperative retidg.

A. Commonly Used Underwater Navigation Sensors
Tables I-V describe some commonly used sensors for undernmavigation.

Description Performance Cost
A compass provides a globally bounded heading referencgpiéal magnetic| Accuracy On the order
compass does so by measuring the magnetic field vector. yigesof compass within 1° | of hundreds

is subject to bias in the presence of objects with a strongetagsignature ang to  2°  for | of dollars
points to the earth’s magnetic north pole. More common inimesatpplications| a  modestly| US.

a gyrocompass measures heading using a fast spinning distharrotation| priced unit.
of the earth. It is unaffected by metallic objects and pototsrue north.

TABLE |
COMPASS

Description Performance Cost
Underwater depth can be measureflince the pressure gradient is much steeper underwater $100 —
with a barometer or pressure sgnflOm = 1 atmosphere) we can achieve high accuracy200USD
sor. 0.1m.

TABLE Il
PRESSURESENSOR
Description Performance Cost
The DVL uses acoustic measurements to capture bottom mgckihd| Nominal ~ $20k - 80k
determine the velocity vector of an AUV moving across thebsea It | standard usD
determines the AUV surge, sway, and heave velocities bysiniting | deviation on

acoustic pulses and measuring the Doppler shifted retvons these pulsesthe  order  of
off the seabed. DVLs will typically consist of 4 or more bearfisheams| 0.3cm/s-0.8cm/s,
are needed to obtain a 3D velocity vector .

TABLE 11l
DOPPLERVELOCITY LOG
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Description Performance Cost
A sonar is a device for remotely detecting andlong-track image resolution for an imagingPrices  vary
locating objects in water using sound. Passiv@de-scan sonar is a function of many factorsidely from
sonars are listening devices that record thmich as range, sonar frequency, and water ¢df20k —
sounds emitted by objects in water. Actiyalitions, however cross-track resolution is inde200kUSD or
sonars are devices that produce sound wavesndent of range. For example, a Klein 500thore. [4]
of specific, controlled frequencies, and listeside-scan operating at 455kHz can achieve an
for the echoes of these emitted sounds returnatbng track resolution of 10cm at 38m range
from remote objects in the water. Active sonarand 61cm at the maximum 250m range angd a
can be categorized as either imaging soraikdein 5900 sidescan operating at 600kHz gan
that produce an image of the seabed, or rangehieve along track resolution 5cm at 10m gnd
ing sonars which produce bathymetric map£0cm resolution at the maximum 100m range.
More details of specific active sonar devicet both cases nominal cross-track resolution is

are presented in Table IV in Sec. V-B. 3.75cm Resolution for a bathymetry sonar|is
on the order of~ 0.4° — 2° along track and
~ 5 — 10cm cross track [4].
TABLE IV
SONAR
Description Performance Cost
Global Positioning| Many factors can influence the accuracy of a GPS readingydimay | From

Systems can be usgdype of GPS technique used, atmospheric conditions, nuroberhundreds
for surface vehicles| satellites in view, and others. Precisions for differenS&ystems aref to thousands
Position is estimated common commercial off-the-shelf GPS - 10m, Wide Area Défaral | of dollars.
using the time-of-| GPS (WADGPS) - 0.3-2m, Real-Time Kinematic (RTK) - 0.05+0,5
flight of signals from| Post processed - 0.02 - 0.25m.
synchronized satellites.

TABLE V
GLOBAL POSITIONING SYSTEM

B. State Estimation

The basis of any navigation algorithm is state estimation.

Consider a robot whose pose at tihé given by;.

The goal of recursive state estimation is to estimate theefbdistribution of the stater; denoted bybel(x;)
given by:

bel(xt) = p(w¢|uig, 21:1) @

wherew is some control input or odometry andis a measurement used for localization.
The propagation of the state is given by some general n@aliprocess equation:

Ty = f(CUt—h Ut, Et) (2)
wheree; is process noise. The state is observable through some reesst function:
z = h(z,6t), 3)

whered; is measurement noise. Typically, the state at tinmi® recursively estimated through an approximation of
the Bayes’ filter which operates in a predict-update cyctedRetion is given by [6]:

bel(zy) = Zp(wt]wt_l,ut)bel(xt_l) (4)

Tt—1



Description Performance Cost
Use a combination of accelerometers and gyroscopes (andtiso@s magner Gyroscope Extremely

tometers) to estimate a vehicle’s orientation, velocityl gravitational forces. | - Drift | variable.
o Gyroscope: Measures angular rates. For underwater appfisathe follow- ext_remely From
ing two categories are widely used: variable from| hundreds

— Ring Laser / Fibre Optic: Light is passed either through deseof | 0-0001°/hr | of = dollars
mirrors (ring laser) or fibre optic cable in different diriects. The| (RLG) to | for a
angular rates are determined based on the phase change lighhe 60°/hr or | MEMS
after passing through the mirrors or fibre. more for| IMU  to

— MEMS: An oscillating mass is suspended within a spring systeMEMS  [5]. | hundreds
Rotation of the gyroscope results in a perpendicular Cieriirce on| Accelerom- | of

the mass which can be used to calculate the angular rate séisen | €t€r - Bias| thousands
Since a gyroscope measures angular rates, there will beftaimdrthe range  from| of = dollars
estimated Euler angles as a result of integration. (()l\/(l)éﬂl\;gS) o f;(rariizflom-
o Accelerometer: Measures the force required to accelergieoaf mass. .
Common designs include pendulum, MEMS, and vibrating beamng 0.001mg grade ring-
others. (Pendulum) | laser or
[5]. fibre optic
system.
TABLE VI
INERTIAL MEASUREMENTUNIT
and update is given by:
bel(x) = np(z¢|zy)bel (x). (5)

wheren is a hormalization factor. Implicit in this formulation ib¢ Markov assumption, which states that only the
most recent state estimates, control and measurementdméedconsidered to generate the estimate of the next
state.

Some of the more popular state estimation algorithms arerguired in Table VII. For further details, see for
example [6].

All of the filters described in Table VII have been used in AUsVigation algorithms that will be described in
the following sections. Some implementations differ by weriables are maintained in the state space as relevant
to the navigation problem. For example, tide level [8], watgrrent [9], [10], the speed of sound in water [11], or
inertial sensor drift [11] can all be estimated to improveigation. There are also popular variants of these clalssica
filters. For example, since acoustic propagations areivelatslow compared to radio frequency communications
it is often necessary to implement a delayed-state filtercttant for the delay. Examples include [12] where a
delayed state EIF is used and [13] which implements a delajetd EKF.

Often state estimation is decomposed into two parts: déitueading and reference system (AHRS) and inertial
navigation system (INS) as shown in Fig. 2 . All sensors the¢ gnformation about Euler angles or rates are
inputs into the AHRS, which produces a stable estimate ofclelorientation. The stabilized roll, pitch, and yaw
are then used by the INS in combination with other sensorsdive information about vehicle position, linear
velocity, or linear acceleration to estimate the vehiclsifon.

C. Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is the preceka robot autonomously building a map of its
environment and, at the same time, localizing itself witthiat environment. SLAM algorithms can be either
onling, where only the current pose is estimated along with the mafull where the posterior is calculated over
the entire robot trajectory [6] . Analytically, online SLAlvolves estimating the posterior over the momentary
pose,z;, and the mapyn given all measurements;.;, and inputsu;.;

talso referred to as concurrent mapping and localization



State Estimator

Description

Bayes’ Filter

Optimal but computationally intractable for all but the piest of estimation
problems.

Kalman Filter (KF)

State distribution assumed to be Gaussian and parametdyzenean,u, and
covariancey.. Requires (2) and (3) to be linear. Optimal conditional oru§san
and linearity assumptions.

Extended Kalman Fil-
ter (EKF)

Extension of the Kalman filter to accommodate non-linearcess and mea

surement models. On each iteration, (2) and (3) are linedrabout the mean.

Prediction operation is fast, but measurement update \i¢ &oit requires matrix
inversion.

Unscented Kalman Fil
ter (UKF)

Reduces the linearization errors of the EKF at the expenbkegb&r computation
Instead of just mean and covariance being mapped throughathdinear func-
tions, multiple ‘sigma’ points are mapped and then the duipte-parameterize
as Gaussian.

Extended Information

Filter (EIF)

State distribution assumed Gaussian but parameterizedfbymation matrix,
I = ¥~! and the information vecto, = X~'x. Sometimes referred to as th
canonical representation. Allows for processing of midtimeasurements at orj
time easily though addition. Prediction step can be slowtasquires matrix
inversion, but measurement update step is fast. Also caimtse donsuming tg
recover the mean and covariance. However, in some casegttaim @dvantage
over the EKF.

Particle Filter (PF)

Non-parametric representation of state distributiontdad distribution is rep
resented by discrete particles with associated weights. ddi@antage that nor
Gaussian distributions and non-linear models can be imcated. Computatior
scales with the number of particles in the particle set.

Least Squares Regre
sion

5-Obtaining the MaximumA Posteriori state estimate can be formulated as

D

least squares optimization [7] which can be solved analijyicThis formulation
has the advantage that past states are maintained whichecaselful for full

trajectory optimization or simultaneous localization andpping.

IMU, compass

TABLE VI
SOME COMMON STATE ESTIMATION TECHNIQUES

stabilized
roll, pitch,
yaw

Attitude Heading and Inertial Navigation

—— position

Reference System System

GPS, LBL, USBL,
SBL, SLAM, DVL,
acoustic range,
depth sensor,
ADCP, others

Fig. 2. Position estimation with an attitude heading anénerice system and an inertial navigation system.
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Fig. 3.

In addition, SLAM implementations can be classifiedfeature basedwhere features are extracted (detection,
identification and classification) and maintained in thdestpace, oview basedwhere poses corresponding to

(a) Feature based SLAM, (b) View based SLAM.

measurements are maintained in the state space.

As Fig. 3-a shows, in feature based SLAM features are extdcbm sensor measurements. For example, at pose

P; the robot sees three features, Lo and Ls. These features together with the pose of the robot are aiagt

in the state space. At the next po$&, only newly observed featureg, and L; are added to the vector and the
pose is replaced with the previous pose. This process oat@wach new pose. In view based SLAM (Fig. 3-b), at
each pose the whole view without extracting any featuresosgssed usually by comparing it with the previous
view. For example, at posB;, V3 is compared withi; to find the view based odometry. State vectors in this case

can be composed by one or more of the poses at each time.

SLAM method Pros Cons AUV
Application
EKF SLAM [14] | Works well when features argAdding new features to state spacgl5] [16] [17]
present and distinct (which can baequires quadratic time. [18] [19] [20]
challenging underwater ). [21] [22]

SEIF SLAM [23]

Performs updates in constant tim
Due to additivity of information, it
is a good choice for multiple-robg
SLAM.

elnformation matrix has to be ag
tively ‘sparsified’. Recovering ma
trequires matrix inversion.

-[24] [25] [26]
D

post-processing of data.

variances are hard to recover (i
formation form).

FastSLAM [27] Logarithmic time in number Ability to close loops depends on[28] [29] [30]
of features. No dependance orparticle set. [31] [32]
parametrization of motion models.

GraphSLAM [33]| Previous poses are updated foMore computation required. Ca-[34] [35]

n-

Al SLAM

Efficient, because it mimics th

eRequires training or parameter tu

n{36]

way animals brain work.

ing.

Filtering (online) approaches to SLAM make use of a statenadion algorithm such as those presented in Table
VII. Smoothing (full SLAM) methods, also known as GraphSLABRB], minimize the process and observation

TABLE VI
STRENGTHS ANDWEAKNESSES OFSOME COMMON SLAM TECHNIQUES

constraints over the whole trajectory of the robot. Some@gghes use a combination of methods.

Some of the most popular categories of SLAM approaches aeribed here with their pros, cons, and AUV




navigation references provided in Table VIII. The categation is based on [6] with some additions:

« EKF SLAM : EKF-SLAM linearizes the system model using the Taylor exgan. It applies recursive predict-
update cycle to estimate pose and map. Its state vectordieglpose and features [14]. It is applicable to
both view based SLAM [37] and feature based SLAM [38]. Fogéeamaps, EKF-SLAM is computationally
expensive since computation time scat®g:?) wheren is the number of features.

« SEIF SLAM: Sparse extended information filter (SEIF) [23] and exasfigrse extended information filters
(ESEIF) [39] are two well-known approaches for SLAM using timformation filter. They both maintain a
sparse information matrix which preserves the consist@idpe Gaussian distribution; however, accessing
the mean and covariance requires a computationally exgeteige matrix inversion. Both approaches need
the information matrix to be actively ‘sparsified’ by a spfication strategy. ESEIF maintains an information
matrix with the majority of elements beirgxactlyzero which avoids the overconfidence problem of [23].

o FastSLAM: FastSLAM is based on the patrticle filter. Particle filteringproaches are nonlinear filtering
solutions; therefore, the system models are not approgithdn FastSLAM, poses and features are represented
by particles (points) in the state space [27]. FastSLAM s ¢imly solution which performs online SLAM
and full SLAM together, which means it estimates not only tiuerent pose, but also the full trajectory. In
FastSLAM, each particle holds an estimate of the pose anfeatlires; however, each feature is represented
and updated through a separate EKF. Similar to other metlitadsapplicable to both view based SLAM [40]
and feature based SLAM [6].

o GraphSLAM: In GraphSLAM methods, the entire trajectory and map argneséd [33]. GraphSLAM also
uses approximation by Taylor expansion, however it diffeven EKF-SLAM in that it accumulates information
and therefore is considered to be an off-line algorithm {Bgnerally, in GraphSLAM, poses of the robot
are represented as nodes in a graph. The edges connectieg admodeled with motion and observation
constraints. These constraints need to be optimized taleddc the spatial distribution of the nodes and
their uncertainties [6]. Different solutions exist for GffSLAM such as relaxation on a mesh [41], multi-level
relaxation [42], iterative alignment [43], square root gitiong and mapping (SAM) [7], incremental smoothing
and mapping (iISAM) [44] and works by Grisetti et. al in [4546], and hierarchical optimization for pose
graphs on manifolds (HOGMAN) [47]. In principle, they ard similar, but differ in how the optimization
is implemented. For instance, iISAM solves the full SLAM pegb by updating a matrix factorization while
HOGMAN's optimization is performed over a manifold.

« Atrtificial Intelligence (Al) SLAM : These methods of SLAM are based on fuzzy logic and neuralorks.
ratSLAM [48] is a technique that models rodents’ brain usiegiral networks. In fact this method is neural
network-based data fusion using a camera and an odomed¢ugés self organizing maps (SOM) to perform
SLAM with multiple-robots. The SOM is a neural network whiishtrained without supervision.

The choice of the method for estimating the poses of robotisthe map depends on many factors such as the
available memory, processing capability and type of sgnsdormation.

SLAM techniques have been used for acoustic (Sec. V) antcptarly geophysical (Sec. V) underwater
navigation algorithms as will be described.

D. Cooperative Navigation

In cooperative navigation (CN), AUV teams localize using@mioceptive sensors as well as communications
updates from other team members.

CN finds its origin in ground robotics applications. In thanéeal paper by Roumeliotis and Bekey [50], it
is proven that a group of autonomous agents with no acceskl@lgpositioning can localize themselves more
accurately if they can share pose estimates and uncert@aintyell as make relative measurements. In [51], the
scalability of CN is addressed, and it is shown that an uppent on the rate of increase of position uncertainty
is a function of the size of the robot team. Other importasults have been proven, such as that the maximum
expected rate of uncertainty increase is independent ohtlseracy and number of inter-vehicle measurements
and depends only on the accuracy of the proprioceptive semsothe robots [52]. In addition, applications of
Maximum A Posteriori[53], [54], EKF [55] and nonlinear least squares [56] estna have been developed for
general robotics CN. A complexity analysis is also presgirigd57]. Special considerations must be made to apply
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Fig. 4. Cooperative navigation for AUVs: relative ranges determined from TOF of acoustic communication packets.

many of these algorithms to underwater CN since the acoastitmunications channel is limited. Further detall
will be presented in Sec. IV.

A graphical depiction of multiple AUV CN is shown in Fig. 4. @ais transmitted through the acoustic channel.
Upon reception of a data packet, the receiver, vehjictan use the time-of-flight of the acoustic signal to detaami
its range,R;;, from the sender, vehiclé If the vehicles possess well synchronized clocks, thes tange can
be determined from the one-way travel time (OWTT) of the a&tiousignal, otherwise an interrogation-reply is
performed to determine a round-trip range (RTR).

Ranges are usually projected onto the plane to obtaianer since the depths of both vehicles,and z;, are
observable with pressure sensors:

RY = (R} — (2 — 2)")/2. 8)
The range measurement modklis given by:
hij(Xi, X)) = (xi — )% + (yi — y))V? +or (9)

whereX; and X; are the states of vehiclésand;j with positions(z;,y;) and(z;,y;) respectively. The noise term
vr ~ N(0,0%) is zero-mean Gaussian noise. The measurement model imeanknd assumes that error in the
range measurementg, is independent of range. Some previous work has validaisdassumption to some extent
[58]. In [35], it is assumed thatr = 3m is a reasonable value if using OWTT, ang = 7m is reasonable for
RTR.

An important consideration for AUV CN, as with any CN alghnt, is to track the cross-correlations that are
induced from inter-vehicle measurements in order to aveit@nfidence in the estimate.

1. I NERTIAL

When the AUV positions itself autonomously, with no acougibsitioning support from a ship or acoustic
transponders, it dead reckons. With dead reckoning (DR)AtHV advances its position based upon knowledge of
its orientation and velocity or acceleration vector. Ttiadial DR is not considered a primary means of navigation
but modern navigation systems, which depend upon DR, arelwitgsed in AUVs. The disadvantage of DR is that
errors are cumulative. Consequently, the error in the AUY¥itmn grows unbounded with distance traveled.



10

One simple method of DR pose estimation, for example if head available from a compass and velocity is
available from a DVL , is achieved by using the following kinatic equations:

T =vcosy + wsiny
y = vsiny + w cos P (20)

P =0
where(z,y, ) is the displacement and heading in the standard NorthiBast coordinate system, and andw
are the body frame forward and starboard velocities. In iiiglel it is assumed that roll and pitch are zero and
that depth is measured accurately with a depth sensor.

An inertial system aims to improve upon the DR pose estimdiipintegrating measurements from accelerometers
and gyroscopes. Inertial proprioceptive sensors are alpeavide measurements at a much higher frequency than
acoustic sensors that are based on the TOF of acoustic sighk&la result, these sensors can reduce the growth
rate of pose estimation error, although it will still growtidut bound.

One problem with inertial sensors is that they drift overdim®ne common approach, for example used in [11],
is to maintain the drift as part of the state space. Slower sahsors are then effectively used to calibrate the
inertial sensors. In [11], the authors also track other iptessources of error such as the variable speed of sound
in water to reduce systematic noise. These noise sourcegrapagated using a random walk model, and then
updated from DVL or LBL sensor inputs. Their INS is implemeshiwith an IMU that runs at 150Hz.

The basic kinematics model (10) is incomplete if the locatevaurrent is not accounted for. The current can
be measured with an acoustic Doppler current profiler (ADE®y implementations with ADCP see [9] [10]. A
DVL is usually able to calculate the velocity of the wateratele to the AUV,v, and the velocity of the seabed
relative to the AUV,v,. Then the ocean current can be calculated easily.as v, - v, . The ocean current can
also be obtained from an ocean model, for example in [59] eloeean currents are predicted using the regional
ocean modeling system [60] combined with a Gaussian praegsession [61]. If access to the velocity over the
seabed is not available, then the current can be estimaieddrtransponder on a surface buoy as in [62]. In [62],
the authors analyzed the power spectral density to remavdoth frequency excitation on the buoy due to the
waves to estimate the underwater current.

In [8], an algorithm based on particle filtering is proposkdttexploits known bathymetric maps - if they exist.
It is emphasized that the tide level must be carefully maadoto avoid position errors, particularly in areas of
low bathymetric variation. This approach is referred to &srain-aided navigation”, and the method is compared
for DVL, and multi-beam sonars as the bathymetric data inpomcluding that both are viable options.

The performance of an INS is largely determined by the qualitits inertial measurement units. In general, the
more expensive the unit, the better its performance. Houyélve type of state estimation also has an effect. The
most common filtering scheme is the EKF, but others have bsed 10 account for the linearization and Gaussian
assumption shortcomings of the EKF. For example, in [63] @&Uused and in [64] a PF application is presented.

Improvements can also be made to INS navigation by modiffigg(10) to provide a more accurate model of
the vehicle dynamics. The benefits of such an approach aestigated in [65], particularly in the case that DVL
loses bottom lock, for example.

Inertial sensors are the basis of an accurate navigatioensehand have been combined with other techniques
described in subsequent sections. In certain applicatioagigation by inertial sensors is the only option. For
example, in extreme depths where it is impractical to serfac GPS, an INS is used predominantly, as described
in [66].

The best INS can achieve a drift of 0.1% of the distance teal/¢B5], however, more typical and modestly
priced units can easily achieve a drift of 2-5% of the distatraveled.

V. ACOUSTIC TRANSPONDERS ANDBEACONS
In acoustic navigation techniques, localization is achielry measuring ranges from the TOF of acoustic signals.
Common methods include:

« Ultra Short Baseline (USBL): Also sometimes called super short baseline (SSBL). Thesthacers on the
transceiver are closely spaced with the approximated inaseh the order of less thai centimeters. Relative
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Fig. 5. (a) Short Baseline (SBL) (b) Ultra-Short BaselineS@L) (c) Long Baseline (LBL)

ranges are calculated based on the TOF and the bearing idatatt based on the difference of the phase of
the signal arriving at the transceivers. See Fig. 5-b.

« Short Baseline(SBL): Beacons are placed at opposite ends of a ship’s hi#. Baseline is based on the size
of the support ship. See Fig. 5-a.

o Long Baseline (LBL) and GPS intelligent Buoys (GIBs) Beacons placed over a wide mission area.
Localization is based on triangulation of acoustic sign&ee Fig. 5-c. In the case of GIBs, the beacons
are at the surface whereas for LBL they are installed on thbexk

« Single Fixed BeaconLocalization is performed from only one fixed beacon.

« Acoustic Modem The recent advances with acoustic modems have allowedef@rtachniques to be devel-
oped. Beacons no longer have to be stationary, and full AUMreamy can be achieved with support from
autonomous surface vehicles, equipped with acoustic msgeniy communicating and ranging in underwater
teams.

Due to the latency of acoustic updates, state estimatorisnptemented where the dead reckoning proprioceptive

sensors provide the predictions and then acoustic measutsrprovide the updates.

A. Ultra Short and Short Baseline

Ultra short baseline (USBL) navigation allows an AUV to lbza itself relative to a surface ship. Relative range
and bearing are determined by TOF and phase differencirgsa@n array of transceivers, respectively. A typical
setup would be to have a ship supporting an AUV. In short lrees€EBL), transceivers are placed at either end of
the ship hull and triangulation is used.

The major limitation of USBL is the range and of SBL is that ph&sitional accuracy is dependent on the size
of the baseline, i.e. the length of the ship.

In [67] an AUV was developed to accurately map and inspectdxdigam. A buoy equipped with an USBL and
differential GPS helps to improve upon dead reckoning ofAk/ which is performed using a motion reference
unit (MRU), a fibre optic gyro (FOG) and a DVL. An EKF is used tesé the data and a mechanical scanning
imaging sonar (MSIS) tracks the dam wall and follows it usampther EKF. For this application, the USBL is
a good choice because the range required for the missionadl. sthe method proposed in [12] augments [67]
by using a delayed-state information filter to account far titme delay in the transmission of the surface ship
position.

In [68], sensor based integrated guidance and control isgsed using a USBL positioning system. The USBL
is installed on the nose of the AUV while there is an acoustingponder installed on a known and fixed position
as a target. While homing, the USBL sensor listens for thespander and calculates its range and the bearing
based on the time difference of arrival (TDOA). In [69], USBlused for homing during the recovery of an AUV
through sea ice.

In [70], two methods are presented to calibrate inertial BMIL sensors. The inertial navigation system data
from the AUV is sent to the surface vehicle by acoustic meansne method a simple KF implementation is used
which maintains the inertial sensor drift errors in theetgpace. In the other method, possible errors of the USBL
in the sound velocity profile are incorporated and the EKFsisduto fuse data. No real hardware implementation is
performed. In [71], the method is extended to multiple AUVWsusing an “inverted” setup where the the transceiver
is mounted on the AUV and the transponder mounted on thecaughip.
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In [72], data from an USBL and an acoustic modem is fused by récpafilter to improve dead reckoning.
As a result, the vehicle operates submerged longer as GPS date be less frequent. The simulation and field
experiments verify the developed technique.

In [73], a ‘tightly-coupled’ approach is used where the gddhformation of the acoustic array is exploited to
correct the errors in the INS.

B. Long Baseline / GPS Intelligent Buoys

In LBL navigation, localization is achieved by triangutagi acoustically determined ranges from widely spaced
fixed beacons. In most cases, the beacons are globally metatdoefore the start of the mission by a surface ship
[74], a helicopter [75], or even another AUV [76]. In normalavation, an AUV would send out an interrogation
signal, and the beacons would reply in a predefined sequé@hestwo way travel time (TWTT) of the acoustic
signals is used to determine the ranges. However, there e implementations in which synchronized clocks
are used to support one-way travel time (OWTT) ranging [77].

GIBs remove the need for the LBL beacons to be installed as#aloor which can reduce installation costs
and the need for recovery of these beacons.

One of the limitations of LBL is the cost and time associatathwgetting up the network. However, this can
be mitigated to some extent if the beacon locations are raitadlly referenced and either self-localize [78], or the
AUV can localize them by performing SLAM. For example, [34eas a nonlinear least squares implementation,
whereas [79] uses a patrticle filter version of SLAM to detemnthe location of the fixed beacons during the
mission.

A major consideration in an LBL localization network is tmedatment of outliers. Methods to account for outliers
in LBL systems include hypothesis grids [80] and graph paring [81]. Generally, range measurements can fall
into one of three categories: direct path (DP), multi-pa#P), or outlier (OL). From experience, range errors
are not Gaussian distributions. The quality of range dat@eendent on the location within the survey area. In
[80], a hypothesis grid is built to represent the belief thatire measurements from a particular cell will be in
a particular category (i.e. DP, MP, OL). In graph partitimi outliers are rejected using spectral analysis. A set
of measurements is represented as a graph, then the grattfompiag algorithm is applied to identify sets of
consistent measurement [81].

Another consideration is the TDOA of the acoustic respomddabe network [82], [83]. The change in vehicle
pose between the initial interrogation request and all efshbsequent replies must be explicitly handled. This is
often done with a delayed state EKF.

Each range difference measurement between two receivestrams the target to a annulus (in 2D) or a sphere
(in 3D). Annuluses are intersected to find the location of theet. However, when the data is corrupted by
noise, there is not necessarily an intersection point. &atipl quadratic programming [84] is used to perform the
constrained optimization. The target position estimatéssame as the traditional maximum likelihood estimate.

Major drawbacks of LBL are the finite range imposed by the eaofjithe beacons, and the reliance on precise
knowledge of the local sound velocity profile of the wateruroh based on temperature, salinity, conductivity,
and other factors [74]. However, the LBL systems do overctimese shortcomings to be one of the most robust,
reliable, and accurate localization techniques availdbbe that reason it is often used in high-risk situationshsuc
as under-ice surveys [75], [85]. Other implementationsuitke: alignment of Doppler sensors [86] and deep water
surveys [87]. An extensive evaluation of the precision ofLLiB provided in [88].

As a surveying implementation example, in [87] a techniguesed for deep sea near bottom survey by an AUV
which relies on LBL for navigation. LBL transponders are Gfeferenced before the start of the survey.

In [86], two techniques foin situ 3 degrees-of-freedom calibration of attitude and Doppteras sensors are
proposed. LBL and gyrocompass measurements are source®whation for alignment.

C. Single Fixed Beacon

A downside of LBL systems is the cost and time required fotailliag the beacons and geo-referencing them. It
is possible to reduce these infrastructure requiremernaslif a single fixed beacon is used instead of a network of
them. The concept is that the baseline is simulated by padpapthe ranges from a single beacon forward in time
until the next update is received. This technique has bdemree to as virtual LBL (VLBL) and has been simulated
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Fig. 6. An AUV localizing with a single fixed beacon at knowrcéion. Uncertainty grows in between updates from the beaGm
reception of an update from the beacon, uncertainty is estliic the dimension coinciding with the location of the beaco

on real world data in [89]. It is noted that the AUV trajectdmgs a significant effect on the observability of the
vehicle state. Long tracks directly towards or away from sirgle fixed beacon will cause unbounded growth in
position error. As a result, tracks or paths for the surveyiale being localized in this manner should be planned
to be tangential to range circles emanating from the tramdgio

A visual representation of single beacon navigation is shawFig. 6. It assumes that the vehicle has prior
knowledge of the beacon location. In the figure the vehickeikes 3 acoustic pings from the beacon at the
bottom. Each time, reception of a ping results in a reductibancertainty in the direction of the beacon.

An important consideration when the baseline is removed$eo/ability of the state space. As detailed in [90],
and elaborated upon in [91] and [92], if the states are estidhhy a linearized filter, such as an EKF or EIF,
then observability is lost if repeated range updates com fthe same relative bearing. However, if the states
are estimated with a nonlinear filter, then the conditionlésis of observability changes to repeated range updates
coming from the same relative bearing and the same range.résudt of the nonlinear nature of the range update
model, it is beneficial to use a nonlinear state estimatanfam observability standpoint. This is derived in detail
in [91] and [92] using Lie derivatives to generate the obability matrix.

Single beacon navigation has also been used for homingx&mple in [93]. This task is particularly challenging
because the AUV will preferentially move in a track diredthyvards the beacon, violating the observability criterion
As a result, path planning must be designed to avoid thistsita. This can be particularly useful for recovering
an AUV that has become inoperable, but is still able to tranpings.

D. Acoustic Modem

Advances in the field of acoustic communications have hadjarreéfect on underwater navigation capabilities.
The acoustic modem allows simultaneous communication dllspackets and ranging based on TOF. If the
position of the transmitter is included in the communicatédrmation, then the receiver can bound its position to
a sphere centered on the transmitter. This capability resdve need for beacons to be fixed or localized prior to
the mission. In addition, it allows for inter-AUV communtan, which means teams of AUVs can cooperatively
localize.

Popular acoustic modem are manufactured by Woods Hole @geaphic Institute [94], Teledyne Benthos [95],
and Evologics [96] among others . In general communicatam ather use frequency shift keying with frequency
hopping (FH-FSK), which is more reliable but provides lovadata rates, or variable rate phase-coherent keying
(PSK). Some models also include precise pulse-per-sed®R8)(clocks (eg [97]) to allow synchronous ranging.
Typically, due to the limited bandwidth underwater, the ocoumication channel is shared using a time-division
multiple access (TDMA) scheme. In TDMA, each member in theugris allotted a time slot with which to
broadcast information. The major detractor of such a schisrtieat the total cycle time grows with group size. At
present, achievable bit rates range from 32 bytes per 10epadith FSK, to several kbit/s in optimal conditions
with PSK.

1) Manned Surface SupporThe ability of a modem at the surface to transmit its locatmthe survey vehicles
provides two important benefits over past navigation methdd it removes the necessity to geo-reference the
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beacons prior to starting the mission, and 2) It allows thecbas to move during the missions. The first advantage
saves time and money, and the second allows the mission tartme extended as necessary without re-deploying
the sensor network. Many methods have been recently pebligiat exploit one or both of these benefits.

The moving long baseline (MLBL) concept was first demonstiah [98] using a Sonardyne AvTrack acoustic
navigation system. Two manned surface vehicles were usatpjoort one AUV. This concept has proved particularly
useful for mapping rivers, such as [99]. In this project, thaats are used to continuously define a cross-section
of the river to be mapped near the location of the AUV.

This approach has been extended to a single moving sourceared surface ship can localize itself with
GPS and bound the error of one or more survey AUVs by broaidcgiss position. Such an approach is attractive
because there is no need for calibration or recovery of beacthe approach is similar to that presented in Sec.
IV-C except the mission range can be much larger becauseutfece vehicle can move.

In [100] and [13], a deep water validation was performed fe single moving beacon concept. It should be
noted that localization is done in post-processing. In tteppsed approach, an EKF maintains an estimate of the
survey vehicle as well as the support ship. In a deep watdicagipn, the time taken for the acoustic transmission
should be accounted for in the filtering algorithm. Heres tilsirepresented as a delayed state EKF. It is accurately
noted that the TOF measured is the range between the cuiwsitiop of the receiver and a previous position of
the sender. In [13], the performance of the single beacoigaton is compared against an LBL system. Also,
there is a more rigorous discussion on sources of error inisicorange measurements such as errors in sound
velocity estimation, acoustic multi-path, and errors iilpgBPS. Similarly, in [101] a deep diving AUV is localized
in post-processing. In this case, the survey vehicle isirequo execute a known closed path after it dives to a
depth of 6000m. A similar approach is presented in [102] tq rtee magnetic signature of a moving vessel.

If the survey vehicles are acting as passive listeners UOMGT T for range measurement, then the system
naturally scales well with number of survey vehicles assgnthey stay within range of the surface vehicle. In
[103] and [104], a maximum likelihood sensor fusion teclueids presented to localize survey vehicles to within
1m over a 100km survey. It is also noted in this paper that eMdeng survey, the drift of the PPS clock will have
a significant effect on the localization performance.

2) Autonomous Surface Craft©nce it is established that AUVs can navigate with the helmahned surface
vehicles, a natural progression to increase autonomy is deentowards unmanned surface vehicles. The first
known implementation of autonomous surface crafts (AS@gduo support AUVs is presented in [58], which is
an extension of the MLBL concept presented in [98]. Two AS@s used to support one Odyssey Il AUV in a
series of experiments in 2004 and 2005. In [105], two ASCsused and a general framework is developed for
cooperative navigation.

Following previous trends, the logical progression was ¢ofggm AUV navigation and localization with only
one ASC. This has been experimentally shown in [91] and [106§ approaches taken were similar, but in [106],
no actual AUVs were used in the implementation, instead af€ A%s used as a surrogate. In both cases, the
authors implemented a nonlinear least squares (NLS) aplprdia [91], the experimental validation is done using
an ASC and an AUV to compare the performance of the EKF, PFaandLS optimization. It is shown that the
NLS performs the best, particularly after off-line postpessing. The observability is carefully considered irhbot
cases. In [91], it is shown that the observability criterisnless stringent if the states are being estimated with
a nonlinear filter. In addition, the ASCs autonomy includesib heuristics for supporting the survey AUV and
maintaining observability by performing different motidmehaviors. In addition, in [91], an error analysis of the
range updates is performed, and the noise found to be ®atilose to normally distributed and independent of
range.

Path planning of the ASC to maintain observability is alsomsidered explicitly in [107]. More recently, an
observability analysis was done for an ASC/AUV team underdases that position, and that position and velocity,
are transmitted from the ASC to the AUV [108]. A method for lgdly asymptotically stable observer design is
also presented. In [109], an AUV is able to localize relatva surface ship or a drifter whose position is estimated
with the use of an ocean current model. Furthermore, the AdJabie to obtain relative range and bearing estimates
by detecting the surface ship or buoy using an upward-lagpkionar. A theoretical analysis of the benefits of such
an approach as well as performance bounds are derived.

It is expected that in the coming years, ASCs, such as the \ghder [110], will be capable of providing
extremely long-term autonomous navigation capabiliti@se such example scenario is presented in [111] where a
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wave glider is used to localize an active acoustic source.

3) Heterogeneous AUV TeamB) some cases, certain AUVs are outfitted with more expersavesors and/or
make frequent trips to surface for GPS position fixes. Theddcles support the other survey vehicles and have
been referred to as communications/navigations aids (FNA® application would be to have inferior navigation
sensors on a fleet of survey vehicles and expensive navigaginsors on only a small number of vehicle whose
job is to support that fleet [112]. Upon reception of a CNA smaission the receiver’s position estimate can be
restricted to an annulus if each vehicle has a good estinfategih (which can easily be obtained from a pressure
sensor), and if the receiver can estimate its range to the ,GdlAexample through either one-way TOF of the
acoustic signal (requires synchronized clocks) or two-W&F . This annulus can be intersected with a vehicle’s
own covariance ellipse as shown in Fig. 7.

Survev AUV
Ak |

-.'_ﬂ‘l

LN q
-‘w] 2
CNA AUV .

Fig. 7. A CNA AUV supporting a survey AUV [112]. The blue area® the vehicle uncertainty ellipses. The yellow area isujheéated
uncertainty of the survey ellipse from a range measurenvemgh is shown in pink.

The framework for cooperative navigation developed by Bama others is presented in [113], [105], [114],
[115] and is applicable to general AUV teams. Referring tg. F, each annulus is propagated forward in time
until the next update is received from the CNA. In betweenaigs, the uncertainty grows based on the quality of
the DR estimation. The importance of careful book-keepimg maintenance of cross-correlations between survey
and CNA AUVs is stressed to avoid over-confidence and to ezéhélme quality of outlier rejection. While the
developed framework is to be used for pure AUV systems, allite show the use of ASCs as “surrogate AUVS”.

An altogether different approach to CN is presented in [MbBgre a hovering type AUV can physically dock
to the torpedo type AUV in order to exchange information.

4) Homogeneous AUV Team®hen a homogeneous team performs CN, each member of the setrgaied
equally. Position error will grow slower if the AUVs are alite communicate their relative positions and ranges.
Similarly to the heterogeneous case, if any vehicle susfdoe a position fix, then the information can be shared
with the rest of the team to bound the position error.

The first known experimental implementation of such a systers in 2007 [117]. In this approach, the vehicle
states are maintained with an EKF but cross covariancesargamsmitted in the communications packet due to
bandwidth limitations. The communication latency is actted for in the EKF implementation.

More recently, an implementation of CN was presented in [[1H&re, the issue of book-keeping is explicitly
addressed. A multi-vehicle ledger system is used so up@atesnly made to the multi-vehicle EKF when all up
to date data has been obtained. Experiments were perforitledayaks acting as AUV surrogates, where OWTT
ranging was done with the synchronized clocks in a 30s cgeleh of the three vehicles having a 10s slot to make
a transmission.

V. GEOPHYSICAL

Geophysical navigation refers to any method that utilizaésr@al environmental features for localization. Almost
all methods in this category that achieve bounded positicor @se some form of SLAM. Categories include:

2This term has also been applied to surface vehicles supgoAUV survey teams
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« Magnetic: It has been proposed to use magnetic field maps for localizaflthough no recent publications
have been found, a team at the University of Idaho has beepintaphe magnetic signatures of Navy vessels
[119], [120].

« Optical: Use of a monocular or stereo camera to capture images ofetlieed and then match these images
to navigate.

« Sonar. Used to acoustically detect then identify and classifyifess in the environment that could be used
as navigation landmarks. With bathymetric sonar featuees e extracted almost directly from assembled
returns. With sidescan (imaging) sonar, feature extradsoachieved through processing of imagery.

A. Optical

Visual odometry is the process of determining the robot gmgenalyzing subsequent camera images. This
can be achieved through optical flow or structure from mo{8RM). Invariant extraction and representation of
features is an important consideration. Many previousritlgns have been proposed and applied in ground and air
robotics, such as scale-invariant feature transform (B[EZ1], speeded up robust feature (SURF) [122], amongst
many otherd Images can be captured with either stereo or monocular resm8tereo cameras have the added
advantage that full 6 degree-of-freedom transformatiogisvéen consecutive image pairs can be found. Vision-
based SLAM can also be performed with the methods presemt&abile VIII. The major challenge is closing loops
in the trajectory by associating non-consecutive imagéschvis necessary to bound localization error.

Limitations for optical systems in underwater environnseintlude the reduced range of cameras, susceptibility
to scattering, and inadequacy of lighting. As a result,blésiwvavelength cameras are more commonly installed on
hovering AUVs because they can get close to objects of istele addition, visual odometry and feature extraction
relies on the existence of features. Therefore optical wmater navigation methods are particularly well-suited to
small-scale mapping of feature-rich environments. Exasclude ship hulls or shipwreck inspections.

In [16] and [17], Eustice et al. present an implementatiorunflerwater vision-based SLAM called visually
augmented navigation (VAN). The multi-sensor approachl@oes the benefits of optical and inertial navigation
methods and is robust to low overlap of imagery. The appraach view based version of EKF-SLAM, where
camera-derived relative pose measurements provide thielspanstraints for visual odometry and loop closure. In
[24] and [25], the VAN approach is converted to the inforraatform and it is proven that the view based ESEIF
SLAM maintains a sparse information matrix without approations or pruning. This approach was applied to
deep water surveying of the RMS Titanic in [24] . The issueeaxfovering the mean and the covariance from the
information form is also addressed. SIFT and Harris extagboints are used to match images. The VAN method
has also been applied to ship-hull inspection for the US Na2¢]. Both [44] and [125] were inspired by the
VAN method. However, these two methods improved upon theagmh using a smoothing and mapping problem
formulation and doing efficient matrix factorizations to &fele to efficiently recover the means and covariances. In
recent work, [126] uses features from both a profiling somar @ monocular camera in full pose graph formulation
for a hovering AUV performing ship hull inspections. Odomyeis derived relative to the ship hull using a DVL
locked onto the ship. An approach to tackle the problem cd dasociation in feature-poor areas of a ship hull is
explored in [127] using a novel online bag-of-words apphotic determine inter-image and intra-image saliency.

Feature based approaches to underwater SLAM have also loaen lor example, in [18], an augmented EKF
is used to generate a topological representation. Norrtiomsecutive images are compared and loop closures
are made based on observation mutual information. FeatsedobEKF SLAM is also applied to the underwater
environment in [19] and [20].

A byproduct of accurate localization is that accurate magman be achieved. Several authors have shown the
ability to compute 2D and 3D reconstructions of the undegwanvironment based on optical underwater SLAM.
For example, in [128], an SFM model together with SLAM arecdus® photomosaic the RMS Titanic as well as
a hydrothermal vent area in the mid-Atlantic. In [129], 3[2zeastructions of an underwater environment are done
using SLAM with a combination of multi-beam sonar and stecamera.

Future research will likely involve incorporating multplehicles. Recently, some publications involving simu-
lations report on this [130], [131]. Overcoming communicas constraints will be a major challenge.

3For a review and comparison of some methods, see [123].
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Pure visual odometry based methods that do not require SLAMbe used for applications such as pipeline
tracking [132].

B. Sonar

Sonar imaging of the ocean pre-dates AUVs by decades. Asudt,risis a fairly robust technology. Several
types of sonars are used for seabed and structure mappiag.céh be categorized as imaging-type which provide
an image of the seabed (see Table IV) and ranging-type whiotiuge range or bathymetric data (see Table X).

Sonar Description Pros Trade-Off Application
Sidescan multiple beams that measurecan work at rela- resolution [133] [35] [134]
intensity of returns to create fatively high speeds inversely [135]
2D image of sea bed; beamq10kt) to give high| proportional
are directed perpendicular toarea coverage. to range, e.g. 1.8
travel direction. MHz produces
40 m range.
Forward similar in principle to a side{ obstacle avoidance, limited distance to| [26] [136]
Look scan sonar only beams are dlialso as a nadir gapdepth ratio ( 6:1
(imaging rected forward. filler. max); single angle
type) of view.
Synthetic coherent processing of com-range independentoptimal at low| [137] [138]
Aperture secutive displaced returns foresolution speeds and deepef139]
synthesize a virtual array. water.
Mechanical | One beam with actuator thatCheaperthan multiy Slow.  Accuracy| [15], [21],
Scanned scans a swath. beam. depends on AUV [140], [141],
Imaging attitude. [142], [143],
Sonar [22]
TABLE IX
IMAGING-TYPE SONAR DEVICESUSED FORUNDERWATER NAVIGATION
Sonar Description Pros Trade-Off Application
Echo single, narrow beam yield representation of point measurements in gen{144],
Sounder used to determing sea bed and targetserally one direction. [145]
depth  below theg between transducer to
transducer. seabed.
Profiler low-frequency  echq information on subsuri penetration depth inversely[146]
sounders that penetrateface features. proportional to resolution.
the seabed.
Multi- time-of-flight from | gathers echo soundingresolution inversely proport [28] [29]
Beam returns to assembledata more efficiently than tional to frequency; may not [30] [31]
bathymetric maps. a single beam. always capture the first ping.

TABLE X
RANGING-TYPE SONAR DEVICESUSED FORUNDERWATERNAVIGATION

Sonars are designed to operate at specific frequencies ffepgnding on the range and resolution required . In
all cases, the performance of the SLAM algorithm is depenhdarthe number and quality of the features present
in the environment.

1) Imaging Sonar:The insonified swath of the sidescan sonar is shown in Fig.T8a intensity of the acoustic
returns from the seabed of this fan-shaped beam also depentte bottom type and is recorded in a series of
cross-track slices. When mosaicked together along thetatire of travel, these assembled slices form an image
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Fig. 8. Sonar sensor swaths: (a) Sidescan (b) MultibeamdwpgFe looking (d) Mechanical scanning and imaging (e) Sgtithaperture.

of the seabed within the swath of the beam. Hard objectsuttiig from the seabed send a strong return which
is represented as a dark image. Shadows and soft areas, suchdaand sand, send weaker returns which are
represented as lighter images.

SLAM with the sidescan was first presented in [133] using agnanted EKF and the Rauch-Tung-Striebel
smoother. The value of smoothing in the pose estimation jgshaisized since all previous poses should be updated
when a loop closure event is detected. It is noted that autmnfeature detection (which is not trivial) and
data association are necessary to achieve autonomy facsaidesonar SLAM. In [35], the approach in [133] is
improved using iISAM for smoothing and incorporates rangéatgs from a CNA. This is the only known research
that combines a sonar based SLAM method with acoustic modegirrg. In [134], sidescan sonar SLAM is posed
as an interval constraint propagation problem. In [14835]1 the problem was approached using a submap joining
algorithm called the selective submap joining SLAM. The kvior [135] uses a cascaded Haar classifier for object
detection from sidescan imagery and is demonstratedrafdin a gathered dataset. A discussion of which type of
features are appropriate for sidescan sonar SLAM is predent[149]. All of the proposed approaches to sidescan
sonar SLAM require post-processing to detect the featwesléta association. Presently, this is just becoming
achievable on-board AUVSs.

A depiction of the forward looking sonar (FLS) is shown in F&c. Based on the transducer geometry, the
primary function of this type of sonar device is to map vettifeatures. As such it is commonly deployed on a
hovering AUV capable of approaching man-made underwatactstres at very low speeds. Feature based SLAM
based on ESEIF has also been implemented with a FLS for shiiinepections [26]. The issue of online feature
extraction from FLS images is addressed in [136].

The mechanical scanning imaging sonar (MSIS) is shown in &ig. Its operation is similar to the FLS except
that instead of multiple beams, a single beam is rotateditiiréhe desired viewing angle. Consequently, the update
rate is slow. It cannot be assumed that the AUV pose is confiiam@n entire sensor scan cycle, which increases
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the complexity of mapping algorithms.

The group at the University of Girona has done significantkmaith the MSIS as presented in [15], [21],
[140], [141], [142], [143], [22]. In [15], [22], online feate extraction and data association and an EKF SLAM
implementation is performed. In addition, a submap metBagsied to reduce computational complexity. Given that
the algorithm is based on line feature extraction, the nteiBowell-suited to man made environments with well
defined edges and boundaries. In [21], the slow update rated¥1SIS is accounted for with a delayed state EKF
SLAM algorithm. In [142], [141], [140], [143], a probabitis scan matching algorithm is presented that exploits
the overlap in the images from the MSIS.

A figure depicting the synthetic aperture sonar (SAS) is showFig. 8-e. Synthetic aperture is a methodology
that enables high resolution through coherent procesditgrsecutive displaced returns. Instead of using a large
static array of transducers, it uses the sensor’s alorff-tissplacement to create a large virtual array. The rewylti
resolution is on the order of the transducer dimensions arute importantly, independent of the range between
the sensor and the target. Since there is no need to have hagregure the frequency used can be considerably
lower which enables a longer range since lower frequenai@sagate further in water. This is at the cost of more
complex image processing and the requirement for a tighthsqribed speed. The micronavigation required to
attain the tightly prescribed speed and trajectory, in ttes@nce of seas, is an active area of research.

Applications of SAS to AUV navigation represent an area divadnvestigation. Both [137] and [138] describe
a displaced phase center antenna micronavigation techniging SAS and that is good at estimating sway, but
poor at estimating yaw. In [139], a constant time SLAM alfuon is developed for use with a SAS. The approach
uses a submap approach to maintain scalability. Data ad&otis done off-line and comparisons with ground truth
provided by LBL show good results. An additional commentw@h®AS for navigation is that although it offers
remarkable detection capabilities, the SAS payload camifgigntly change the hydrodynamics and controllability
of a small AUV [139].

2) Ranging Sonar:A depiction of the multi-beam sensor swath is shown in Figp. 8Yith multi-beam instead
of just one transducer pointing down there are multiple be&mmm arrays of transducers arranged in a precise
pattern on an AUV hull. The sound bounces off the seafloor frdnt angles and is received by the AUV at
slightly different times. The signals are then processdibard the AUV, converted into water depths, and arranged
as a bathymetric map. The multi-beam resolution achieveemtts on its transducer quality, operating frequency,
and altitude from the seabed. Multi-beam bathymetry systhave been routinely used to map out large areas of
seafloor. Each survey line that the AUV transits collects @idor of data known as a swath. The multi-beam sonar
yields 2.5D bathymetric features (elevation map) wheréassidescan sonar produces 2D imagery. The former
better facilitates feature based navigation as evidentéhe literature [28], [29].

Barkby et al. have proposed a bathymetric SLAM algorithmecaBPSLAM that is based on a featureless
FastSLAM implementation [28] [29] [30] [31]. In their apmoh, the need for feature extraction is removed; each
particle maintains an estimate of the current vehicle siatkthe two-dimensional bathymetric map. An important
issue with employing a patrticle filter based system with sadhrge state space is the computational expense of
copying particles’ maps during the resampling processs phoblem is solved by “distributed particle mapping”
where a particle ancestry tree is maintained. Copying digi@amaps is avoided by having new particles generated
during the resampling process point to their parents’ magiger than copying them. Maps of leaf nodes in the tree
are reconstructed by recombining the maps of all ancedtof28], the need to store each particle’s map is removed
completely by storing just the particle’s trajectory amiklng poses to an entry in a log of bathymetry observations.
Maps are then reconstructed as needed using Gaussian pregesssion, and, as a result, loop closures can be
achieved even in the case where there is little or no overdwden sonar images since the regression process is
able to make predictions about areas of seabed that haveerotdirectly observed.

Similar to optical SLAM, the higher the quality of the naviiga algorithm, the higher the quality of the data. A
convenient way of representing 3D data is in octree form g82h In this work, an active localization framework
is presented where actions are selected to reduce the gutrpparticles. The vehicle pose is estimated with particle
filter SLAM.

Using phase only matched filtering for comparing subsegimages is presented in [150] and later [151]. It
is shown that this method outperforms the standard iteratlesest point method to find 6 degree-of-freedom
transformations between subsequent multi-beam scansmiasiapproach using planar surface registration is
presented in [152].
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VI. CONCLUSION

A review of recent advances in underwater localization aadgation has been performed. In addition, some
basic methods of state estimation and simultaneous lat@liz and mapping (SLAM) have been presented. The
algorithms are subdivided based on the technical apprcasisors used, and level of collaboration as shown in
Fig. 1. We have also highlighted some areas for future worthé@nfield.

Recent advances in acoustic communications and SLAM héweed for rapid development of new underwater
localization algorithms. The acoustic modem is realizing possibility of underwater collaboration and sonar and
optical sensors performing SLAM can achieve bounded Ipatitin. While some of these methods are still not
well formalized or tested, it is clear that the limitationslegacy systems such as LBL, USBL and others can be
overcome with these new techniques.

The harsh and unstructured nature of the underwater emagnh causes significant challenges for underwater
autonomous systems. However, with recent advances, thdsidi@rogressing at an unprecedented rate.
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