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I. INTRODUCTION

The area coverage problem is an ideal candidate for multi-
robot systems since it is inherently parallelizable. In a naive
implementation, a team of N robots should be able to cover
an area A roughly N times faster if the area to be covered
can be easily decomposed into sub-areas of size A/N.

One often-overlooked issue in the context of area coverage
planning is the uncertainty of the sensor platform. In some
cases this can be neglected, but in many cases it can not.
In the case that platform uncertainty is significant, if the
agents can communicate and make relative measurements of
each other, then they can improve their respective trajectory
estimates. This results is further potential benefits for the
multi-robot approach to area coverage.

This work propose a framework for cooperative area cov-
erage within a multi-robot system that is: 1) robust to robot
platform uncertainty, 2) applicable to severely unreliable and
bandwidth constrained communication links. The result is
the first known work that considers robotic area coverage
planning, cooperative state estimation, and communication
through a possibly constrained channel as one coupled and
fully integrated system, as shown in Fig. [T}

A. Autonomous Underwater Minehunting as an Area Cover-
age Problem

We specifically consider the underwater minehunting sce-
nario as a safety-critical motivating example of the generally
applicable principles. In this case, a team of AUVs is
deployed to scan an area of seabed with sideways looking
sonars. As a vehicle traverses in rectilinear motion, the
returns from the sonar are compiled and mosaicked into an
image of the seabed which is later examined for possible
mine-like objects (MLOs) (See Fig. [2). Recently, some
effort has been made to characterize the performance of
these mine-hunting sonars [1], which is highly dependent on
environmental conditions, altitude of the platform, seabed
type, and other factors. For example, the models, or P(y)
curves, for three sample seabed types are shown in Fig. 2] -
bottom, where the horizontal axis is the lateral distance from
the vehicle track, and the vertical axis is the “confidence” or
probability of correctly detecting a mine if one exists.

This model presupposes that the location of the vehi-
cle, which defines the ‘0’ point on the horizontal axis, is
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Fig. 1. In the proposed approach area coverage planning, cooperative esti-
mation, and communication through a constrained channel are all considered
as one coupled and integrated system.

accurately known. Typically, a vehicle will obtain a GPS
fix at the surface and then submerge and propagate its
position estimate through a combination of Doppler and
inertial sensors (for a full overview of AUV localization and
navigation methods see the recent review [2]). As a result,
the vehicle estimate will drift while it is submerged. Consider
Fig. |3| where more “covered” (higher confidence) areas are
more red and less covered areas are blue. In this case,
there is a drastic discrepancy between the desired, estimated,
and actual area coverage obtained, which is unacceptable
for decision-makers who are trying to evaluate the risk of
moving personnel or other high-valued assets through the
area.

The literature is extremely scarce with respect to coverage
algorithms that even acknowledge the fact that platform
location estimation is probabilistic (examples of publications
where vehicle uncertainty is mentioned in passing include
[31, [4]). Perhaps most related is the ‘probably approximately
correct’ formulation for stochastic coverage defined by Das
et al. [5]. This measure defines the probability of coverage of
a given fraction of the workspace based on the platform pose
uncertainty. However, this approach assumes that platform
localization error is constant. In this work, we explicitly
connect the sensor platform uncertainty with the coverage
uncertainty by mapping the coverage sensor pose posterior
through the coverage sensor function (in this case the P(y)
curve).

B. Underwater Cooperative Localization

Underwater, communications over any appreciable dis-
tance is restricted to the acoustic channel, which is chal-
lenging due to its high latency (signals travel at speed of
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Fig. 2.  Sidescan sonar for area coverage. Top: The sidescan sonar
operates by emitting sonar pings in the direction orthogonal to the direction
of AUV motion and measuring the time-of-flight of the returns. Middle:
The resulting data are compiled into a single high-resolution image of
the seabed which is used to search for mine-like objects. Bottom: The
performance of the sidescan sonar for finding mines is highly dependent
on many environmental factors. Here, we show three sample models, called
P(y) curves, for three different seabed types.
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Fig. 3. (a) Plot of environment to be covered (yellow) with desired tracks

(green), estimated path (red), and actual path (blue). (b) Desired coverage.
(¢) Estimated coverage from output of an extended Kalman filter. (d) Actual
coverage based on ground truth position data.

sound =~ 1500m/s), reduced throughput (= 10-100 bytes/s),
reduced bandwidth (channel sharing with time division mul-
tiple access) and low reliability (= 20-50% dropout rate).

Although many works on terrestrial cooperative localiza-
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Fig. 4. Conceptual figure showing acoustic communications amongst three
AUVs in a time division multiple access scheme. Green AUV transmits
at time ¢1, followed by the blue one at time t2, and finally the red one
at time t3. Each reception enables the receiver to obtain a relative range
measurement of the sender based on the travel time of the packet and reduce
its location uncertainty in the direction of the sender (gray ellipse to black
ellipse).

tion with communication constraints [6]—[8] cite the under-
water case as a potential application, they all make assump-
tions that violate the true nature of the acoustic channel.

A conceptualization of underwater cooperative localization
based on acoustics is shown in Fig. @] Each vehicle takes
a turn broadcasting an acoustic transmission. Any vehicle
that makes a reception can also make a range measurement
relative to the sender by calculating the time-of-flight of
the packet and using precisely synchronized onboard clocks.
Several other works [9]-[13] have used a similar setup for
underwater cooperative localization. Here, we propose a
smoothing-based and non-hierarchical approach and apply
it to the task of distributed area coverage.

II. PROPOSED APPROACH

In overview, the approach has the following components:

1) We use a probabilistic framework to model the area
coverage problem. Within this framework we explicitly
link the uncertainty of the robotic platform to the
ability to perform area coverage.

2) We present a cooperative trajectory estimation scheme
that is permissible in the severely bandwidth-
constrained acoustic communications case. This
method is particularly well-suited to the area coverage
application since area covered is a function of the
entire vehicle trajectory, rather than the instantaneous
(filtered) estimate.

3) We propose a feedback control scheme that can in-
corporate the most up-to-date trajectory estimates and
dynamically exploit the reduction in trajectory covari-
ance that results from an acoustic packet reception and
range measurement.

A. Probabilistic Area Coverage

Here we summarize our approach to accounting for vehicle
uncertainty which is presented in more detail in [14]. The
workspace to be covered is discretized into cells whose size
is commensurate with the resolution of the sensor/actuator
being used for area coverage. A random variable W is
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Fig. 5. The distribution of the cell in the sensor frame (bottom right) is
mapped through the P(y) curve (top right) to obtain a coverage distribution
(top left).

initialized for each cell. The distribution p(W} = w) is
estimated through an iterative process consisting of the
following steps at each time ¢ for each cell ¢' in the sensor
swath:

1) Project ¢’ into the uncertain sensor frame.

2) Estimate the resulting coverage by projecting the un-
certain cell location through the coverage sensor func-
tion (in this case the P(y) function shown in Fig.[2] -
bottom) as shown in Fig. 5}

3) Combine the coverage with previous “covers” of the
corresponding cell through application of the proba-
bilistic M AX function.

The result is a recursive probabilistic coverage estimation
framework that scales constantly with time and the size of
the workspace to be covered. The probabilistic coverage map
is used in combination with some user-specified metric for
complete coverage by the adaptive planner described in Sec.

m-a

B. Communication Constrained Cooperative Trajectory Es-
timation

The approach to cooperative trajectory estimation is sim-
ilar to the approach we previously proposed in [15]. We
employ a graph-based approach and leverage recent results
in efficient iterative graphical SLAM solvers (e.g. [16])
to formulate the full multi-vehicle trajectory optimization
problem. However, to meet the requirements of the acous-
tic communications channel, we remove all poses between
measurement/communication times as shown in Fig. [6} In
addition, a bookkeeping method is used to ensure that all
local decentralized graphs remain connected and consistent.
The result is a real-time decentralized cooperative trajectory
scheme where each vehicle estimates their own trajectory at
a dense time resolution (e.g. 4Hz) and the poses of other
vehicles only at communication/relative measurement times.

Fig. 6. Decentralized cooperative trajectory estimation rop: Centralized
factor graph with compass (blue), GPS (green), DVL-derived odometry
(yellow), and relative range (red) factors. bottom: intermediate poses be-
tween communication/measurement times are removed and replaced with
one combined factor (purple).

C. Uncertainty-Aware Adaptive Coverage Planning

We propose a feedback tracking controller to track the
value of d shown in Fig. [/l The value of d is calculated to
maximize coverage while guaranteeing complete coverage in
the survey direction, as indicated in the figure. When vehicle
position uncertainty is high, the tracks will need to be spaced
more closely in order to guarantee coverage, which is poten-
tially inefficient. Upon reception of an acoustic packet, the
entire vehicle trajectory is updated with reduced uncertainty,
and consequently the value of d, which corresponds to the
spacing of the current track, can be increased resulting in
faster coverage. This improves over the standard method of
guaranteeing coverage which requires pre-placing of tracks
in an overly conservative manner.

III. PRELIMINARY RESULTS

The system is tested using a combination of open source
tools, including incremental smoothing and mapping (iSAM)
[16] for graph optimization, mission-oriented operating sys-
tem with interval programming (MOOS-IvP) [17] for vi-
sualization and vehicle simulation and control, lightweight
communications and marshaling (LCM) [18] for message
passing and 3-D visualization, and Goby [19] for acoustic
message encoding and decoding.

A snapshot of the system is shown in Fig. |8 In this case
two vehicles are simulated, with both estimated position and
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Fig. 7. The optimal value of d is calculated such that the vehicle achieves
maximal coverage while still guaranteeing full coverage in the survey
direction. A feedback controller is used to update the transect location in
real-time to track the desired value of d.

ground truth position shown for each vehicle. The coverage
grids are shown for each vehicle using the same color scheme
as above: more blue indicates less covered and more red
indicates more covered. The decentralized pose graphs of
the two vehicles are shown at the bottom of Fig. [§]

We have performed a preliminary analysis in simulation to
compare the cooperative and non-cooperative cases and show
the benefits of the proposed approach. The paths for the two
cases for the mission shown in Fig. [§] are shown in Fig.
[ and the traces of the instantaneous position uncertainties
(i.e. not the smoothed estimates) are shown in Fig. @ Since
the position uncertainty is lower, as shown in Fig. [I0] the
adaptive planner can make the tracks further apart resulting
in one fewer transects being necessary to cover the entire area
up to the pre-specified confidence level. The path lengths are
shown in Table [, and as we can see there is a reduction of
about 17% in the path lengths resulting from the proposed
approach.

TABLE I
PATH LENGTHS

Cooperative | Not Cooperative
AUV 1 1757m 2112m
AUV 2 1755m 2113m
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Fig. 9. The paths taken to cover the workspace by AUV 1 on the left hand
side of Fig. in the cooperative (red) and non-cooperative (blue) cases. In
the cooperative case, the adaptive path planner is able to make paths more
spaced out and consequently the vehicle is able to complete the mission
with one fewer transects.
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Fig. 10. The trace of the instantaneous covariances (02, + a%u) for the
cooperative (red) and non-cooperative (blue) cases.
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