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Sensor-Driven Online Coverage Planning for
Autonomous Underwater Vehicles

Liam Paull, Sajad Saeedi, Mae Seto and Howard Li

Abstract—At present, autonomous underwater vehicle (AUV)
mine countermeasure (MCM) surveys are normally pre-planned
by operators using ladder or zig-zag paths. Such surveys are
conducted with side-looking sonar sensors whose performance is
dependant on environmental, target, sensor, and AUV platform
parameters. It is difficult to obtain precise knowledge of all of
these parameters to be able to design optimal mission plans
offline.

This research represents the first known sensor driven online
approach to seabed coverage for MCM. A method is presented
where paths are planned using a multi-objective optimization.
Information theory is combined with a new concept coined
branch entropy based on a hexagonal cell decomposition. The
result is a planning algorithm that not only produces shorter
paths than conventional means, but is also capable of accounting
for environmental factors detectedin situ. Hardware-in-the-loop
simulations and in water trials conducted on the IVER2 AUV
show the effectiveness of the proposed method.

Index Terms—autonomous underwater vehicles, coverage path
planning, information gain, hardware-in-the-loop, mine counter-
measure, sidescan sonar, adaptive mission planning

I. I NTRODUCTION

Sensor-driven path planning refers to a strategy for gathering
sensor measurements that support a sensing objective. When
sensors are installed on robotic platforms, an objective could
be to plan the platform’s path based on sensor readings
to achieve a specific goal. Various approaches have been
proposed for planning the paths of mobile robots with on-
board sensors to enable navigation and obstacle avoidance in
unstructured dynamic environments. These methods are not
directly applicable to robotic sensors whose primary goal is to
support a sensing objective, rather than to navigate a dynamic
environment as part of a goal. Traditional mission planning
methods focus on how sensor measurements best support the
robot mission, rather than robot missions that best support
the sensing objective. In the case of area coverage for mine
countermeasures (MCM), the sensing objective defines the
mission and therefore must be treated with adequate priority.

Autonomous underwater systems technology is lagging be-
hind ground and aerial robotics systems. The main reasons
are the rapid attenuation of high-frequency signals, and the
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costly and challenging development environment. These ob-
stacles must be overcome as the US Navy has referred to
underwater mine removal as the most problematic mission
facing unmanned undersea vehicles and the Navy at large [1].
Defining efficient paths for AUVs performing area coverage
for MCM is particularly challenging because the sonar sensor
performance can vary greatly depending on factors which in
general cannot be perfectly predicted before the start of the
mission.

In this research, we propose an online approach to au-
tonomously achieve underwater seabed coverage for MCM.
Sensor objectives for the coverage task are particularly hard
to define because of the uncertainty of sensor measurements
so information gain is exploited as a goodness criterion [2].
However, it is shown that the information gain method alone is
not sufficient to achieve global goals when there is incomplete
prior knowledge about the environment. To compensate, the
concept of branch entropy is proposed. Although the proposed
research can be applied to diverse missions or sensors, it is
particularly well-suited to AUV MCM missions where the
seabed is scanned using a side-looking sensor (SLS).

Prior to this work, few if any research proposed online
strategies to underwater area coverage. Usually AUVs are pre-
programmed with waypoints that specify a structured path,
such as a zig-zag or lawn mower [3]. In this case, performance
will rely heavily on the accuracy of information about the
workspace and vehicle localization. In the approach taken here,
path planning is achieved through reconciling behaviors that
represent the multiple objectives defined for efficient mission
completion as the vehicle navigates through the workspace.
The proposed approach has the advantages that:

1) The total paths and times required to cover a workspace
are shorter in many cases.

2) There is no need for pre-programmed waypoints.
3) The AUV will maintain heading for better data mosaic-

ing in the presence of currents or erratic waypoint track-
ing behavior caused by poor navigation or controller
performance.

4) It is adaptive to any changes in environmental conditions
that can be detectedin situ.

5) It is able to generate paths for complex and non-convex
environment shapes such as would typically found in
harbours.

6) Preference is given to viewing seabed from different in-
sonification angles, which is beneficial for target recog-
nition [4].

The performance of the approach is evaluated via hardware-
in-the-loop (HWIL) simulation and implementation on the
IVER2 AUVs developed by OceanServer Inc.

The remainder of the paper is organized as follows: Section
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II will provide background and literature review. Section III
describes the proposed solutions, including the information
gain and branch entropy behaviors, Section IV describes
the experimental setup and the HWIL simulation framework.
Section V shows simulation and experimental results, whilea
more in-depth discussion is performed in Section VI. Section
VII makes general conclusions and discusses potential future
work.

II. BACKGROUND OFRESEARCH

This section will review previous results in the areas of
AUV path planning and path planning for coverage as well
as discuss the operation of the sidescan sonar sensor. For
a tutorial on basic robotics motion planning, the reader is
referred to [5].

A. AUV path planning

Traditionally, the task of path planning has been to find
a curve in the configuration space,C that connects a start
location to an end location in some ‘optimal’ way.

Significant research has been done on start point to goal
point path planning for AUVs. In most cases, an optimal
path is found by some metric subject to holonomic or other
constraints.

For example, one of the first known papers to discuss
path planning of AUVs was published by Warren in 1990
[6]. Potential fields are used to avoid obstacles and local
minima are avoided by considering the global path. In [7]
an optimal kinematic control scheme is proposed where the
cost function to be minimized is the integral of a quadratic
function of the velocity components. A mixed integer linear
programming method has also been used in [8] to find paths
for adaptive sampling that maximize the line integral of the
uncertainty of sensor readings along the proposed path. This
type of algorithm is used as an alternative to static buoys
for collecting oceanic data such as temperature and salinity.
The approach taken is somewhat similar to the path planning
algorithm proposed here, except that the metric for benefit
in the objective function is a maximum sum of probabilities
and paths planned are greedy. Information has been used for
AUV path planning, for example [9] uses mutual information
as the benefit metric in the objective function, combined
with a recursive greedy planner. However, the proposed grid
decomposition results in very constricted paths.

B. Path planning for coverage

In the coverage task, instead of navigating to a goal the
objective now becomes to pass a sensor or end effector over
every point in a workspace.

As described in Choset’s survey of complete coverage meth-
ods [10], there are heuristic, random, and cell decomposition
techniques. A heuristic defines a set of rules to follow that will
result in the entire environment being covered. For example, in
[11], complete coverage is achieved based on sensing critical
points [11], and in [12], a method of building corridors is
used based on maximizing some quality function. A key
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Fig. 1. An example of the AUV trajectory and corresponding area covered
by its SSS.

facet of these approaches is having obstacles to be able to
generate the rules. Cell decomposition is used to divide up
the environment into a manageable number of cells or areas
that can be searched like a graph or tree. Once all cells have
been covered, then the entire workspace has been covered.
Decomposition can be approximate [2], semi-approximate, or
exact [10].

These approaches have been applied to AUV coverage path
planning in various forms. For example, in [13] a coverage
algorithm for MCM with a SLS is proposed that uses cell
decomposition and exploits the limiting assumption that mines
are normally placed in lines.

The term Boustrophedon search is used in ground robotics
to describe a path that follows a simple back and forth motion
[14]. In [15], a Boustrophedon decomposition is combined
with the Generalized Voronoi Diagram to derive paths for
coverage of a highly unstructured or non-convex environment.
However, this algorithm presumes that absolute knowledge of
the environment is knowna priori and all planning is done
offline. The Boustrophedon search is often referred to as the
lawn mower pattern in AUV survey planning, and will be used
as a method of comparison in this work.

If it is assumed that the AUV will follow parallel tracks then
the location of these tracks can be further optimized using a
process as described in [16]. The metric for optimality is max-
imizing the mean probability of detection over the workspace.
The dependance of probability of detection on seabed type
and range is described. While the proposed method is very
useful, the planned paths are constricted to parallel tracks and
planning is done offline.

C. Sidescan Sonar Sensor

Many underwater MCM missions are conducted with a
side-looking sensor: either a synthetic aperture sonar (SAS)
or a sidescan sonar sensor (SSS). In this research the SSS
has been used. The SSS uses the returns from emitted high
frequency sound to generate an image of the seabed. An
object sitting on the seabed will cast a sonar shadow that
can be analyzed to determine if the shape is suggestive of
a mine. The onboard SSS gathers data as the AUV moves
forward in rectilinear motion and leaves a narrow channel
of unscanned seabed directly beneath it. An AUV path and
corresponding SSS coverage swath are shown in Fig. 1. SSS
returns are combined with onboard navigation data to provide
geo-referenced mosaics of the seabed (Fig. 2). When the sonar
makes sharp turns, areas on the outside of the turn are missed
completely due to the finite ping rate of the sonar, and areas on
the inside of the turn can become completely distorted. In both
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Fig. 2. P(y) curves for three different seabed conditions (left) and sample
geo-referenced SSS data (right)

cases, it becomes very difficult for automatic target recognition
(ATR) systems that rely on template matching to identify
targets in these areas [17]. The angle of incidence of the sonar
beam with the seabed has a significant effect on the size of
the shadow cast by an object and therefore the probability of
successful mine detection and classification. The Extensible
Performance and Evaluation Suite for Sonar (ESPRESSO) is
a tool developed by the NATO Undersea Research Centre to
evaluate the sonar performance characteristics for a specific
set of environmental conditions [18]. The program generates
a P(y) lateral range curve that indicates the probability that
a target at a specified lateral range from a sonar’s track will
be detected. Parameter values that affect the generation ofthe
P(y) curve are described in Table I along with the general
way in which these parameters are determined.

Category Parameters Method of Detection

Environmental,E

Seabed type Sonar or camera imagery
Water salinity and
temperature CT sensor

Water clarity Camera
Water depth Sonar

Target,F Mine type, size and
configuration

Only available through
prior surveys of the area

Sonar,S Frequency and
range of sensor

Known beforehand from
sensor specifications

Vehicle V
AUV speed Doppler velocity log

(DVL)
AUV depth Pressure sensor

Navigational error Output from inertial navi-
gation system

TABLE I
PARAMETERS AFFECTING SONAR PERFORMANCE CHARACTERISTICS

Fig. 2 shows theP(y) curves generated by ESPRESSO for
three different seabed types: cobble, sand, and clay, all ata
depth of 10 m. The meaning of “confidence” on the y-axis
will be formally defined in Section III.

It should be explicitly stated that the purpose of this work
is not to verify the ESPRESSO model, but rather to plan
paths based on the model. Any underwater sonar sensor’s
performance will be affected by some or all of the parameters
described in Table I and it cannot be assumed in general
that all of these parameters are known beforehand. In this
work we evaluate the benefit of potential actions using the
ESPRESSO model to represent the sensor characteristic but
without assuming known parameters.

III. PROPOSEDMETHODS

The backbone of the proposed approach is an objective
function that is evaluated over the domain of all possible
desired headings:ψd = {0..360}. The general form of the
function is given by:

R(ψd) = wBB(ψd) + wGG(ψd) + wJJ(ψd), (1)

whereR is the total utility,B is the information gain,G is
the branch entropy,J is the benefit of maintaining the current
heading, andwB , wG, and wJ are the respective weights.
All functions will be explicitly defined, but, in general, the
functionB(ψd) prioritizes headings that cover the most area
in the short term, the functionG(ψd) prioritizes over headings
that will help the agent complete its coverage mission in the
longer term, and the functionJ(ψd) prioritizes over headings
closest to the current heading so that obtained SSS data is
valid. The functionsB andG will be described in detail in
Section III-A and III-B respectively.

It should be noted that this desired heading is used as a
reference to an inner loop controller that produces the desired
control plane values. As such, it is reasonable to evaluate (1)
over a domain of angles that includes sharp turns. There is no
violation of dynamic constraints since these will be imposed
in the inner loop.

The optimization takes place over heading reference only
and it is assumed that desired speed and depth are generated
by some other method. In this case speed and altitude reference
are held constant and tracked by inner loop PID controllers.
The reference depth can be calculated from the reference
altitude using known bathymetry or data from onboard sensors.

Tuning of the weights is an important consideration. In the
present implementation, trial and error has been used to tune
the weights, however, it would be simple to optimize them
with some meta heuristic method such as genetic algorithms
or particle swarm optimization.

The evaluation of the multi-objective function is done using
Interval Programming (IvP) through the MOOS-IvP frame-
work [19], [20]. Each term in the objective function is defined
as a behavior which generates a piecewise linear objective
function at each iteration of the outer-loop controller. Accuracy
of the underlying objective functions can be traded off against
computation time by specifying the number of pieces in the
piecewise linear approximation. As a result, the domain is
discretized. However, the discretization does not need to be
consistent over all objective functions and also need not be
uniform.

Each objective function is scaled such that the maximum
utility is 100. As a result, the units of the individual functions
can be disregarded.

A. The Information Gain Behavior

Information theory will be used to quantify utility over the
short term to define the functionB from 1.

The mutual information, or expected entropy reduction
(EER):

Ī(X,Z) = H(X)− H̄(X |Z), (2)
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defines a scalar quantity that represents thea priori expected
amount of information about stateX contained in observation
Z. To evaluateH̄(X |Z) we take the expectation over the
measurementZ:

H̄(X |Z) = Ez{H(X |Z)}

= −

∫
P (Z)

∫
P (X |Z) logP (X |Z)dxdz.

(3)

P (Z) is the probability of obtaining measurementZ.
The essential aspect of this definition is that it specifies a

way of combining the potential benefits of sensor measure-
mentsadditively. Consider some control action at timet to
be Ut. If the ratio of the control frequency to the sensor
frequency isn then each control actionUt will result in a
set ofn independent measurements{Z1, Z2, ..., Zn}. The total
expectedinformation gainof Ut can be expressed as:

B(Ut) =

n∑
k=1

Ī(X,Zk). (4)

To define the information gain objective function, infor-
mation gained must be formulated as a function of desired
headingψd. This is achieved by defining a track starting at the
AUVs current location,(x, y), and traveling a fixed distance,
r, at every potential headingψd. The measurements that will
be made can be predicted and then (4) can be used to evaluate
the expected information gained from traveling along the given
track.

Define the variableMij ∈ {0, 1} to represent the actual
presence of a target at the point(i, j) in the discretized
workspace,W . Then, consider the variablemij ∈ {0, 1} to
be our belief about the presence of a mine at location(i, j).
The confidence at location(i, j), denoted bycij , represents the
confidence that if a mine exists it will be detected. Therefore,
we can define a binary RVTij such that:

P (Tij = 1) = P (mij =Mij) = cij

P (Tij = 0) = P (mij 6=Mij) = 1− cij
(5)

Then the entropy ofTij can be represented as:

H(Tij) = −cij log(cij)− (1− cij) log(1− cij) (6)

From (6) it follows that

lim
cij→1

H(Tij) = 0. (7)

This implies that maximizing the confidence over the environ-
ment minimizes the entropy ofTij for all i, j. As a result, the
information gain objective function can be defined in terms of
gaining information aboutTij .

1) The probability of mine detection:From the above
formulation it is possible to derive the probability that a mine
actually exists given that we detected one at location(i, j).
If the number of mines in a given areaA can be known or
estimated asN , then the probability that a mine exists at any
given location(i, j), denotedpij can be approximated by:

pij ≈
N

A
, (8)

Target Belief, mij

Sonar 

Parameters, S

Environmental 

Parameters, Eij

Vehicle 

Parameters, V

Target 

Parameters, F

Target Presence, 

Mij

Fig. 3. Bayesian network representing target detection. Arrows represent
conditional probabilities.

then, from Bayes’ formula

P (Mij = 1|mij = 1) =
cijp

ij

2cijpij − cij − pij + 1
(9)

defines the probability that a mine actually is present giventhat
we think one is present. This relation can be used to validate
the assumptions used in this paper such as the validity of the
sensor models and the target recognition systems.

Let the proposed path to be evaluated be represented by
C. The path begins at the AUV’s current location,(x, y) and
moves a distancer at headingψd:

C : [0, 1]→ Cfree, s→ C(s)

C(0) = (x, y)

C(1) = (x+ r cos(ψd), y + r sin(ψd))

(10)

Let the proposed action,Ut from (4) be defined as exactly
following the proposed track. Sincer, x, andy are assumed
constant, the information gain resulting from following the
proposed track can be defined as a function of the desired
heading,ψd. It should be noted that these tracks could not be
followed in reality due to dynamic constraints of the robotics
platform. However, this framework can be used to evaluate
the expected benefit of potential desired headings and as such
removes the horizon constraint of information gain approaches
that operate over actual control actions such as [21]. These
desired headings are used as a reference input to an inner loop
controller that defines the control plane values. The confidence
over the environment is updated based on the actual heading,
not the desired heading. As a result, the actual trajectory will
be smoother with less variations in actual heading.

Based on the parameters affecting sonar performance given
in Table I, target detection can be expressed as the Bayesian
network [2] given in Fig. 3.

We can express the joint probability as:

P (mij , Eij , S, F, V,Mij) =

P (mij |Eij , S, F, V )P (F |Mij)P (Eij)P (S)P (V )P (Mij)
(11)

However, since we are only interested in estimating the
confidence over the workspace and not the actual presence
of mines, (5) can be used to rewrite the right hand side of
(11) as:

P (Tij |Eij , S, F, V )P (Eij)P (S)P (F )P (V ). (12)

Define Zij
k = {Eij , S, F, V } as the set of all param-

eters at timek. Then we can further simplify (12) to
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P (Tij |Z
ij
k )P (Zij

k ) where it is assumed that environmental,
sensor, target, and vehicle parameters are independent. The
probability P (Tij |Z

ij
k ) is given by aP(y) curve generated

with the ESPRESSO model wherey is the orthogonal distance
of location(i, j) from the AUV track.P (Zij

k ) is the probability
that we are using the correctP(y) curve to evaluate the
confidence at location(i, j). In this case, we do not assume
perfect information about the parameters that are contained
within Zij

k , however we can use (3) to define the expected
entropy ofTij conditional on the measurement represented by
Zij
k as:

H̄(Tij |Z
ij
k ) = Ezk{H(Tij|Z

ij
k )}

= −
∑
Z

ij

k

P (Zij
k )[−ckij log c

k
ij

− (1− ckij) log (1− c
k
ij)]

(13)

whereckij is the confidence at location(i, j) after measurement
Zij
k .
If there is no knowledge of environmental conditions be-

forehand, the distribution ofZ can be initialized as uniform
across all possible parameter values. As the AUV traverses
the workspace, some unknown parameters can be measured
in situ using sensors as described in Table I. Once these
measurements are made in the field, the distribution ofZ used
for calculating the expected entropy using (13) can be updated
for the rest of the mission.

The new confidence determined fromP (Tij |Z
ij
k ) should be

combined with the existing confidence at(i, j), cij using the
process described in Sec. III-C, to produce the new confidence
at that locationckij .

The EER at location(i, j) caused by measurementZk then
follows from (2) as:

Ī(Tij , Z
ij
k ) = H(Tij)− H̄(Tij |Z

ij
k ) (14)

Define the line that is perpendicular toC and aligns with
SSS readingZk as C⊥. The EER over the entire workspace,
W , brought about by a measurementZk is then the sum of
the EER along the lineC⊥.

Ī(W,Zk) =
∑

(i,j)on C⊥

Ī(Tij , Z
ij
k ) (15)

Given that there is no overlap between subsequent sonar
pings from a SSS, the total expected information gain brought
about by moving along the pathC can be expressed as:

B(ψd) =

n∑
k=1

Ī(W,Zk) (16)

wheren is the number of sensor observations.
As theP(y) curve does not have a closed form represen-

tation, gradient-based optimizations are not possible. For this
reason, IvP is suitable.

It should also be noted that the seabed environment that
is being sensed is assumed static. As a result, information is
never lost only gained by sensing the environment.

An AUV is shown in an environment in Fig. 8. The IvP
functions at the stop time are shown in Fig. 9. Note that

Compute Branch Entropy for Each Neighbour of Current Cell

Generate Directed Acyclic Graph

Perform Exact Hexagon Decomposition

Compute Objective Function

W, H(W)

G(ψd)

Fig. 4. Flow diagram depicting the generation of the branch entropy objective
function.

the highest utility for the information gain objective function
in this case is approximately90o, the direction that is being
traveled, and the lowest utility is the reverse direction,270o,
because almost no new information would be gained from
moving over the path that was just traveled.

B. Branch Entropy

In this section, theG(ψd) term of the objective function (1)
will be motivated and derived.

1) Motivation: The information gain method has been
shown to be effective for solving the path planning problem
when a priori knowledge of the environment, obstacles, and
targets is available [2]. However, the approach taken here
removes this requirement. In the sensor-driven approach, the
information gainB is useful for evaluating the benefits of each
of the potential next moves, but when complete coverage is
the goal, this approach reduces to a greedy-first search (GFS).

It is necessary to include a parameter in the objective
function that helps the AUV achieve its global goal. The
benefits of including the branch entropy (BE) in the objective
function are:

• It helps the AUV finish sections before it leaves them.
• It allows the AUV to find the areas of the workspace that

are not covered.
• It acts as a tie-breaker so the AUV does not enter infinite

loops and converges to complete coverage.
2) Overview of Approach:A block diagram showing an

overview of the proposed approach is shown in Fig. 4. The
inputs are the workspace,W , and the entropies over the entire
workspace,H(W ). The output is the BE objective function,
G(ψd).

The workspace is decomposed into equal sized hexagon
cells. The average entropy of the cells is used to determine
which areas of the environment are not covered. A formula is
derived whereby each neighbour of the cell currently occupied
by the AUV is given a value representing the benefit of
heading towards that particular cell. The value is determined
by how much entropy there is down that branch of the directed
acyclic graph, with priority given to high entropy areas that
are nearby. The result is that, by simply applying a formula
on the decomposition and without performing an exhaustive
search, the AUV can determine what areas of the map are left
to be explored.

Each of the blocks in Fig. 4 will be described in detail in
the subsequent sections.



6

1

{0,1,2}

1

{0,1,5}

1

{0,4,5}

1

{3,5}

1

{2,4}

1

{1,2,3}

2

{1,2}

2

{1,2,3}

3

{}

2

{}
2

{1,2}

3

{1}

4

{}

3

{1,2}

4

{}

3

{2}

2

{0,1,2}

3

{0}

3

{1}

4

{}

2

{0,1}

3

{}

2

{0,1,5}

3

{}

3

{}

2

{0,5}

3

{}

2

{0}

2

{}

Level

{Children}

0

1

2

3

4

5

Fig. 5. A workspace with a hexagon cell decomposition. The cells that will
be in branch 0 have been outlined.

3) Exact Hexagon Decomposition:Cell decomposition is
an effective way to reduce the path planning problem into the
searching of a tree [14]. Normally, the cells are either exactly
or approximately decomposed into rectangloids (i.e. a grid
decomposition), although other polygonal shapes have been
proposed [22]. However, these decompositions assume that
once the robot moves into a cell, that it is efficiently covered.
This assumption is not applicable to the the SSS geometry so
a new decomposition method is proposed. A main benefit of
the hexagon decomposition is that the distance from the center
of any cell to the center of any adjacent cell is the same.

A hexagon decomposition is performed such that the union
of all cells,Ck, k = 1..N covers the entire workspace:

W ⊆
N⋃

k=1

Ck. (17)

Associated with each cell is an average entropy,Ĥk, which
represents a measure of the average uncertainty over the area
of the workspace that falls within that cell:

Ĥk =
1

η

∑
(i,j)∈Ck

⋂
W

H(Tij), (18)

whereη is the number of grid cells in hexagon cellCk. Each
cell is also assigned a level,l, which is the minimum number
of cells that must be traversed to reach the presently occupied
cell Cp, and a list of children, which are all neighbours in
level l + 1.

A hexagon decomposition of a workspace is shown in Fig.
5. The workspace is the shaded area underneath the hexagons.
The hexagon on the right shows the numbering convention for
the neighbours. The cells in branch 0 are indicated by the bold
outline.

4) The Directed Acyclic Graph:The directed acyclic graph
(DAG) uses the levels and children of each cell to build an
alternate data structure. Every cellCi appears only once in
the graph, and is at levell. There can be several paths from

Cp to Ci but they must all be the same minimum length. The
hexagon decomposition geometry is exploited such that every
cell at levell is the same distance from the current cell.

Each neighbour ofCp becomes a child in the graph. The
neighbours of those nodes become children provided they
are not already in the graph at higher a level. This process
continues until all cells are in the DAG.

Algorithm 1 details the process of building the DAG. The
inputs areCp, the current cell, andC, the set of all other cells.

Algorithm 1 Build DAG(C,Cp)

DoneList← Cp

level← 1
while DoneList 6= C do
level← level+ 1
for n← Each node inlevel− 1 do
CurrentList← ∅
n.children← ∅
for k ← All neighbours ofn do

if k /∈ DoneList then
n.children← n.children ∪ k
k.value← Ck.entropy
if k /∈ CurrentList then
CurrentList← CurrentList ∪ k

end if
end if

end for
end for
DoneList← DoneList ∪ CurrentList

end while

5) Derivation of Branch Entropy:The BE is used to
evaluate how much entropy there is down each branch of the
DAG in order that preference will be given to the move that
takes the AUV towards an unfinished area ofW . Also, priority
will be given to moves that have more unfinished area nearer
to the current position so that the AUV does not leave an area
before it is finished.

There will be a value of BE for each neighbour of the
current cellCp as each neighbour has its own branch in the
DAG. In order for the BE to provide the benefits desired,
cells that are at higher levels in the graph must be given more
weight. For each neighbour,k = 0..5, of Cp, the BE,gk, for
a DAG with a total ofL levels is given by:

gk =

L∑
l=2

(L− l + 1)

mlk∑
i=1

Ĥi

mlk

L−1∑
l=1

l

. (19)

where mlk is the number of nodes in levell of branch
k. In (19), the closer cells are weighted higher using an
inverse linear function. Other weighting functions, such as
exponential decay could have been used, and would produce
similar results.
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0.2
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Fig. 6. A transformation from cell to DAG. (numbers in cells/nodes represent
average cell entropy)

6) Simple Example:Fig. 6 shows the transformation from
hexagon cells to DAG. The cell labeledCp is the cell that the
AUV is currently in, and the values in all of the other cells
represent their average entropies. The corresponding BE for
each of the three neighbours are calculated as:

g4 = 1/3((2)(0.6) + (1)(0.1)) = 0.433,

g3 = 1/3((2)(0.5) + (1)(0.1)) = 0.367,

g2 = 1/3((2)(0.2) + (1)(1/2)(0.95 + 0.90)) = 0.442.

In this caseg2 is the highest.
7) Building the Branch Entropy Objective Function:The

values of branch entropy are treated as samples of the under-
lying objecting function and are connected linearly to generate
the full objective function. The 6 desired headings,ψd of
known utility are 60ko, k = 0..5, which corresponds to the
headings that pass through the midpoints of the neighbouring
hexagon faces. The corresponding points used to generate the
objective function forG(ψd) are (60k, gk), k = 0..5. The
known points are then connected with straight lines based on
the piecewise linear framework of IvP. A general equation for
the objective function,G(ψd) is derived that parameterizes
each of the connecting lines:

G(ψd) =
1

60
(gk − gk+1)ψd + gk(1− k) + gk+1. (20)

where
k = ⌊

ψd

60
⌋. (21)

Note that for consistency defineg6 = g0.
An AUV is shown in an environment in Fig. 8. The IvP

functions at the stop time are shown in Fig. 9. The branch
entropy behavior is maximum at0o and180o as these headings
point to the areas of the map that have unfinished areas.

C. Combining Measurements From Different Insonification
Angles

Automatic or manual target identification is greatly im-
proved if the object of interest can be viewed multiple times
from different angles of insonification [4], particularly in the
case of non-symmetric targets as shown in Fig. 7, or rippled
seabed types. As such, it is preferable to scan areas with non-
parallel tracks. In other research, it has been assumed that
measurements should be either dependent [16] or independent
[23] regardless of insonification angle. Our approach accounts
for the angles of insonification of the multiple views when
combining subsequent observations of the same seabed loca-
tion.

Let two confidences obtained from subsequent passes of
location (i, j) be c1ij and c2ij with corresponding angles of

Target on 

Seafloor 

Sonar 

Shadows

AUV 

Tracks 
αα

Fig. 7. Different views of asymmetric targets will provide different shadows.
It is desirable for target recognition to view targets at different angles [4].

Fig. 8. A simulated path (left) with confidence map (right)

insonificationθ1 and θ2. Without loss of generality, we can
assume thatc1ij ≥ c2ij . α is calculated as the acute angle of
the intersection of two lines with directionsθ1 andθ2 as shown
in Fig. 7.

In the case that the two measurements are parallel, then
α = 0 and the two confidences are considered to be dependant:

ctotij = max(c1ij , c
2
ij) = c1ij . (22)

In the case that the two measurements are perpendicular,
thenα = π/2 and the two confidences are considered to be
independent:

ctotij = 1− ((1 − c1ij)(1 − c
2
ij)). (23)

If the angle0 < α < π/2 then it is assumed that the resulting
confidence,ctotij should be determined using:

ctotij =
2αc2ij
π

(1− c1ij) + c1ij , (24)

which describes a linear relation between dependence and
independence based on the value ofα.

The conditional entropy defined in (13) therefore incor-
porates the angles of insonification in the computation of
ckij . As a result, the information gain objective function will
preferentially select paths that result in views of the workspace
from different aspects.

D. The Collective Objective Function

According to (1), the final utility,R, is the weighted sum
of the objective functions. In Fig. 9 the objective functions at
a snapshot are shown together with the collective withwB =
1.0, wG = 1.0, andwJ = 0.8. In this case, the collective
objective function selects the heading at94o to be the best
desired heading.
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Fig. 9. The information gain, branch entropy, maintain heading, and collective
objective functions corresponding to the path shown in Fig.8

DVLINS

Sensor Drivers

Front Seat / Inner Loop Control

Back Seat /
Outer Loop Control

Navigation &
Localization

Actuator
Drivers

DC/Servo
Motors

Base Station

Other
AUVs

AUV Hardware or
Dynamics Simulator
(HWIL)

High Level
Planning

AUV

Autonomy

Water

Base

Acoustic

Sonar

Mine Detection

Acoustic

GPS Compass

Fig. 10. System structure of the hardware-in-the-loop simulator

IV. EXPERIMENTAL SETUP

In order to test the control algorithms, a hardware-in-the-
loop (HWIL) simulator with the Mission Oriented Operating
Suite (MOOS) [20] is developed and shown in Fig. 10. A
description of all hardware simulated components and real
hardware is also given in Table. II. Also onboard the AUV
but not simulated in the HWIL simulation was a Neil Brown
CT sensor to gather water conductivity and temperature infor-
mation.

The hardware implementation is done on the IVER2 AUV
shown in Fig. 11. The IVER2’s onboard computer (frontseat)
contains navigation and inner loop control algorithms. These
algorithms can be overwritten and raw sensor data can be fused
using the iOceanServerComms application [25] which
sends data to the backseat and commands to the frontseat using
a serial connection. In the actual implementation, navigation
and outer loop control were performed on the backseat using
MOOS, while inner loop control remains on the frontseat.

Component Hardware
Simulation

Real Experiment

GPS Sensor iGPS [24] UBlox LEA-5H
Compass Sensor iCompass [24] OS5000-USG
Depth Sensor iDepth [24] MSI Depth sensor
Sonar Sensor pConfidenceMap Yellowfin Dual-

Frequency 330/800
kHz Side-scan

DVL iDVL [24] SonTek/YSI DVL
Sensor Drivers “iSensor”

applications [24]
IVER2 frontseat

Inner Loop Control pMarinePID [24] IVER2 frontseat
Actuator Drivers included in iActua-

tion [24]
IVER2 frontseat

Actuator iActuation [24] 130 Watt, 4000 RPM
Brushless DC motor

Frontseat Computer Dell Dual Core
3GHz

Intel 1.6 GHz ATOM
processor

Frontseat - Backseat
Communication

pMOOSBridge [24] iOceanServerComms
[25]

Backseat Computer Dell Dual Core
3GHz

Intel 1.6 GHz ATOM
processor

Outer Loop Control IvP Helm [26] IvP Helm [26]
Navigation and Lo-
calization

pEKF pEKF

High Level Planning Behaviors Behaviors
Base Station Dell Dual Core

3GHz
Windows Netbook

Backseat - Base Sta-
tion Communication

pAcommsHandler &
iModemSim [27]

WHOI µModem

TABLE II
DESCRIPTION OF COMPONENTS USED FORHWIL SIMULATION AND REAL

HARDWARE TRIALS

Fig. 11. The path planned by the proposed planner for a for a square
workspace with constant anda priori known parameters (left). The IVER2
AUV made by OceanServer Technology used for trials (right).

V. RESULTS

A. Simulation

The system is tested using the HWIL setup. The first
simulation done is on a simple square environment with fixed
and known environmental parameters. The resulting path is
shown in Fig. 11.

As can been seen from the figure, the planner converges
to a spiral-type path that efficiently covers the entire area.
The spiral-type path is more efficient than the Boustrophedon
or lawn mower path in this case because the AUV has to
perform less turns and consequently will expend less energy. It
is important to note that without any disturbance in parameters
or oddly shaped environment that the planner does converge
to a structured path.

Since in general the system is stochastic, a Monte Carlo
style simulation is conducted to compare the performance
for a developed random track algorithm, the information gain
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behavior alone (IG), and information gain with branch entropy
(IG/BE) by repeating the simulation 36 times with random ini-
tial conditions. The results are tested against the deterministic
typical lawn mower pattern for a simple environment. Results
for three different levels of desired confidence are shown in
Table III, whereµ and σ correspond to the mean and the
standard deviation of the 36 trials.

Desired Confidence
.90 .95 .98

Search
Method

Lawn Mower 1275 1545 2355
Random 1279 [446] 1915 [460] 2299 [677]

IG 1488 [362] 2429 [817] 3307 [730]
IG/BE 1088 [105] 1458 [150] 1761 [160]

TABLE III
PERFORMANCE OFLAWN MOWER, RANDOM WALK , INFORMATION GAIN

AND INFORMATION GAIN WITH BRANCH ENTROPYALGORITHMS FOR

DIFFERENTCONFIDENCETHRESHOLDS.

In the generation of the results in Table III, it is assumed that
environmental and target parameters for the ESPRESSO model
are unknown beforehand. As a result, the lawn mower tracks
are based on the most pessimistic assumption of the unknown
parameters. The lawn mower path length required to obtain
98% coverage is significantly higher because the tracks must
be placed closely enough that the areas that are missed directly
underneath the tracks are covered by subsequent tracks.

It is clear from the results that the information gain approach
alone is not sufficient. The mean path lengths are considerably
longer. Also note that the variances are also much larger,
particularly for the 95% confidence case. This is characteristic
of a greedy approach because sometimes it will get ‘lucky’ and
find a good path very quickly, but when it is ‘unlucky’ it has a
very difficult time completing the mission and the path length
becomes very long.

It can also be challenging to design lawn mower paths in
the case that the workspace is oddly shaped. For example
consider Fig. 12. In this case parameters are considered fixed
and known. For the case of low desired confidence thresholds,
the lawn mower planner performs well. However, in the case
that high confidence is desired, which is common, the lawn
mower tracks must be designed so that the channel left by
one track is covered by the next. Indeed this has been noted
in the past as a shortcoming of the lawn mower method [3].
The IG/BE planner proposed produces a path with more path
overlap, but less total sensor swath overlap allowing it to
achieve high coverage faster than the lawn mower pattern.
As the workspace shape becomes more irregular, the benefit
of the proposed planner will increase.

In the case that the environmental parameters are known
but vary over the workspace, the simplest way to construct
the lawn mower path is to place tracks closely enough that
coverage will be obtained even in the worst case over the
environment. In Fig. 13 the parameters are assumed to be
known beforehand where the seabed type varies between
cobble, sand, and clay. TheP(y) curves for the three areas
of the environment are shown in Fig. 2. In order to ensure
coverage, the lawn mower tracks must be placed closely
enough to guarantee coverage in the case that the seabed

(A) (B)

(D)

(C)

(E)

Fig. 12. A slightly more complex environment shape is simulated. Total
area of environment is41250m2 . (a) Path planned by BE/IG planner for final
confidence greater than 99%. Path length 1154.25m.(b) Path planned by IG
planner alone for final confidence greater than 99%. Path length is 1639.34m.
(c) Path planned by random track planner for final confidence greater than
99%. Path length is 1826.90m.(d) Deterministic lawn mower path for final
confidence of 97%. Path length is 683.33m.(e) Deterministic lawn mower
path for final confidence of 99%. Path length is 1221.64m. In order for the
lawn mower path to obtain coverage greater than 97%, the valleys under the
AUV track must be covered resulting in high sensor swath overlap between
subsequent tracks in the lawn mower survey.

 

 
Clay Seabed
Cobble Seabed
Sand Seabed

(A)

(B) (C)

Fig. 13. (a) A 300m by 300m square workspace with variable parameters,
in this case three different types of seabed, which are assumed to be known
a priori. (b) The path planned by the proposed IG/BE planner. Path length
to achieve 97% confidence is 1085.90. The AUV automatically devotes more
time to the areas of seabed with poorer sensor performance(c) Deterministic
path for a lawn mower pattern. Path length to achieve 97% is 1185.90. Note
that if a higher coverage threshold was desired then the tracks would have to
be significantly closer as described in Fig. 12.

is cobble, which is the worst case. The proposed IG/BE
planner maintains the confidence map as the AUV traverses
the workspace and is therefore better able to capitalize on the
better sonar performance obtained in the case that the seabed
type is clay.

The algorithm scales in constant time with the size of the
workspace after an initialization since computations required
for the information gain or branch entropy behaviors are all
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Fig. 14. Path taken by AUV in real trial (left), resulting confidence map
(middle), and comparison lawn mower path (right).

Fig. 15. Path taken by AUV in non-convex environment in real trial (left)
and resulting confidence map (right)

done incrementally as the vehicle traverses the workspace.

B. In-Water Trials

Tests were performed on OceanServer’s IVER2 AUV in
Aug. 2011 in Bedford Basin, Nova Scotia, Canada.

The AUV was able to successfully cover two environments
within the limited operating region. A plot of a sample path
taken in a simple convex environment and the corresponding
final confidence map are shown in Fig. 14. The runs were
stopped when confidence values reached 95%. A comparison
lawn mower mission was also performed.

When comparing the two paths from Fig. 14, it is interesting
to note that, although the desired tracks for the lawn mower
are straight lines, the actual path oscillates across thesedesired
paths. This is largely due to the inability of the frontseat
controller to stabilize the heading in the presence of currents.
It should be noted that the currents on the day when this trial
was conducted (Sept. 1 2011) were extremely small, on the
order of 0.2 knots at most. Because the proposed planner
is designed to maintain headings, the outputted sonar data
will be of higher quality thereby improving data mosiacing
during post-processing and allowing targets to be identified
more easily.

A more complex non-convex environment test was also
conducted with results shown in Fig. 15. By comparison with
Fig. 12, it is shown that the results from simulation and from
water trials are very similar, confirming the validity of the
simulations.

The path lengths for the trials are shown in Table IV.

VI. D ISCUSSION

As discussed, the status quo for AUV sidescan seabed
surveys is to perform a structured search, either a lawn mower

Path Length Workspace Area
Proposed planner (Fig. 14) 1203 m

28 000m2

Lawn mower (Fig. 14) 1580 m
Proposed planner (Fig. 15) 1661 m 41 250m2

TABLE IV
SAMPLE PATH LENGTHS FORPATHS PLANNED DURING HARDWARE

TRIALS

or zig-zag type pattern. The waypoints that define the path
are either input by a human operator or somehow optimized
beforehand using a method such as [16]. The method proposed
here is drastically different than this approach. The simulation
and experimental results illustrate that the proposed planner is
able to find shorter paths under many conditions. However,
the benefits of the approach extend beyond simply shorter
path lengths. In order to further compare the method presented
against the standard lawn mower method, an empirical com-
parison is presented in Table V.

VII. C ONCLUSION AND FUTURE WORK

This research presents an online sensor-driven robotics path
planner with particular application to seabed coverage with a
sidescan sonar sensor and an autonomous underwater vehicle.
The approach combines information theory with a new concept
coined branch entropy to efficiently cover areas of seabed.
Simulation results and real water trials illustrate the benefit
of this approach over standard lawn mower planners. These
advantages are: the total path length and time to cover an
environment are shorter in many cases, heading is better
maintained for data mosaicing, there is no need for predeter-
mined waypoints, factors affecting sensor performance canbe
accounted for, the planner is able to autonomously handle very
complex shaped environments, and the planner preferentially
views the seabed from different insonification angles, which
is preferable for target recognition.

In future work, the proposed approach will be extended
to multiple searchers. This is particularly challenging given
the difficult communication environment underwater. This will
involve combining novel multi-AUV navigation techniques
with a decentralized searching and planning approach. In
addition, algorithms should be developed to optimize the
selection of weights either statically or dynamically. Lastly,
in order to increase the benefit of this algorithm to real-world
applications, it is necessary to better formulate the ATR and
sonar geo-referencing algorithms such that the confidence can
be used to make accurate predictions of mine detection rates.
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Proposed Planner Lawn Mower Approach

Coverage overlap

While it is acknowledged that there is some overlap
as the path sometimes crosses itself, the actual amount
of coverage overlap is reduced evidenced by the fact
that coverage swaths can be more accurately estimated
and accounted for online.

Guaranteeing high coverage requires tight spacing of
lawn mower tracks which results in high coverage
overlap, but in some cases when desired coverage is
sufficiently low, overlap can be minimized.

Level of autonomy Extremely high. One button solution.

Usually requires operator to specify waypoints to de-
fine tracks. In complex environments the performance
is subject to the judgement and skill of the survey
designer.

Total energy consumption Fairly low since trajectories are smooth.
Requires sharp turns at the end of tracks and also high
energy requirements to follow the track as shown by
the jagged path in Fig. 14.

Online vs. offline

All planning takes place online. The main advantage
as has been stated is that mission plans can be adap-
tive to environmental parameters and stochastic sensor
measurements.

All planning is done offline. There is an inherent
assumption with this type of planning that the vehicle
trajectory will exactly follow the plan and that all
environmental parameters will be as predicted.

Deterministic vs. stochastic Stochastic in that it is capable of adapting to the
stochastic nature of state estimation and sensor input.

Deterministic.

Completeness
Probabilistically complete - due to the BE behavior,
the AUV is guaranteed to find the areas of the map
that are not covered.

Although the motion plan can have a guarantee of
completeness, there is no actual guarantee of that the
entire workspace will be covered in reality.

Path tracking
Optimizes an objective function over heading so paths
are not tracked.

Required to follow track between waypoints.

Level of feedback Closed loop - sensor feedback used to update plan. Open loop.

Computational requirements
High - requires simulation over headings for IG be-
havior but only a simple numerical calculation for the
BE behavior.

Low.

Overall performance
Results in path with shorter path in general if environ-
mental parameters are not knowna priori and partic-
ularly in the case of complex environment geometries.

Paths tend to be longer if worst case environmental
conditions are assumed. However, in ideal case with
full prior knowledge, simple environment geometry
and low required confidence threshold can provide
better solution.

TABLE V
COMPARISON OFPROPOSEDMETHOD AND STANDARD LAWN MOWER
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