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Abstract—At present, autonomous underwater vehicle (AUV) costly and challenging development environment. These ob-
mine countermeasure (MCM) surveys are normally pre-plannel  stacles must be overcome as the US Navy has referred to
by operators using ladder or zig-zag paths. Such surveys are hqanwater mine removal as the most problematic mission

conducted with side-looking sonar sensors whose performas is faci d und hicl d the N 0l 1
dependant on environmental, target, sensor, and AUV plation ~ 'a¢INg unmanned undersea venicies and the Navy at large [1].

parameters. It is difficult to obtain precise knowledge of al of ~Defining efficient paths for AUVs performing area coverage
these parameters to be able to design optimal mission plansfor MCM is particularly challenging because the sonar senso

offline. performance can vary greatly depending on factors which in

This research represents the first known sensor d_riven onlie general cannot be perfectly predicted before the start ef th
approach to seabed coverage for MCM. A method is presented mission

where paths are planned using a multi-objective optimizatn. . .
Information theory is combined with a new concept coined N this research, we propose an online approach to au-
branch entropy based on a hexagonal cell decomposition. The tonomously achieve underwater seabed coverage for MCM.
result is a planning algorithm that not only produces shorte  Sensor objectives for the coverage task are particulantg ha
paths than conventional means, but is also capable of accoting  to define because of the uncertainty of sensor measurements
for environmental factors detectedin situ. Hardware-in-the-loop so information gain is exploited as a goodness criterion [2]

simulations and in water trials conducted on the IVER2 AUV o : . . .
show the effectiveness of the proposed method. However, it is shown that the information gain method alane i

| ndex T q hicl h not sufficient to achieve global goals when there is incoteple
ndex Terms—autonomous underwater vehicles, coverage path i, knowledge about the environment. To compensate, the
planning, information gain, hardware-in-the-loop, mine counter-

measure, sidescan sonar, adaptive mission planning concept of branch entropy is proposed. Although the praphose
research can be applied to diverse missions or sensors, it is
particularly well-suited to AUV MCM missions where the
. INTRODUCTION seabed is scanned using a side-looking sensor (SLS).
, ) , Prior to this work, few if any research proposed online
Sensor-driven path planning refers to a strategy for ga9er i ategies to underwater area coverage. Usually AUVs are pr
sensor measurements that support a sensing objective. Wﬁ%rammed with waypoints that specify a structured path,
sensors are installed on robotic platforms, an objectiudd:(_) such as a zig-zag or lawn mower [3]. In this case, performance
be to plan the platform’s path based on sensor readingg rely heavily on the accuracy of information about the
to achieve a specific goal. Various approaches have b&gg<hace and vehicle localization. In the approach taleze,h
proposed for planning the paths of mobile robots with Onsaih pianning is achieved through reconciling behavioet th
board sensors to enable navigation and obstacle aVO'danC?ebresent the multiple objectives defined for efficient iniss

u_nstructureq dynamic env_ironments. These methods are EBanletion as the vehicle navigates through the workspace.
directly applicable to robotic sensors whose primary gedbi 1o proposed approach has the advantages that:

support a sensing objective, rather than to navigate a dynam 1) The total paths and times required to cover a workspace
environment as part of a goal. Traditional mission planning are shorter in many cases.

methods focus on how sensor measurements best support ths There is no need for pre-programmed waypoints.

robot mission, rather than robot missions that best SUPPOr) Tha AUV will maintain heading for better data mosaic-
the sensing objective. In the case of area coverage for mine ing in the presence of currents or erratic waypoint track-
countermeasures (MCM), the sensing objective defines the ing behavior caused by poor navigation or controller
mission and therefore must be treated with adequate priorit performance.

_Autonomous underyvater sy;tems technology is Igggmg be-yy Jtis adaptive to any changes in environmental conditions
hind ground and aerial robotics systems. The main reasons” 14t can be detectdd situ

are the rapid attenuation of high-frequency signals, a®d th 5y | is aple to generate paths for complex and non-convex

_ _ _ environment shapes such as would typically found in
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Il will provide background and literature review. Sectidh |
describes the proposed solutions, including the inforomati
gain and branch entropy behaviors, Section IV describes
the experimental setup and the HWIL simulation framework.
Section V shows simulation and experimental results, waile
more in-depth discussion is performed in Section VI. Sectio

/%é‘ﬁ;i‘————*/
VII makes general conclusions and discusses potentiatefutu

work. Fig. 1. An example of the AUV trajectory and correspondingaacovered
by its SSS.
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Il. BACKGROUND OFRESEARCH facet of these approaches is having obstacles to be able to

This section will review previous results in the areas afenerate the rules. Cell decomposition is used to divide up
AUV path planning and path planning for coverage as welie environment into a manageable number of cells or areas
as discuss the operation of the sidescan sonar sensor. that can be searched like a graph or tree. Once all cells have
a tutorial on basic robotics motion planning, the reader een covered, then the entire workspace has been covered.
referred to [5]. Decomposition can be approximate [2], semi-approximate, o
exact [10].

A. AUV path planning The_se gpproa_lches have been applied tq AUV coverage path
planning in various forms. For example, in [13] a coverage

Traditionally, the task of path planning has been to fingigorithm for MCM with a SLS is proposed that uses cell
a curve in the configuration spacé, that connects a start yecomposition and exploits the limiting assumption thatesi
location to an end location in some ‘optimal’ way. are normally placed in lines.

Significant research has been done on start point to goalrhe term Boustrophedon search is used in ground robotics
point path planning for AUVs. In most cases, an optimah describe a path that follows a simple back and forth motion
path is found by some metric subject to holonomic or oth¢f4]. In [15], a Boustrophedon decomposition is combined
constraints. with the Generalized Voronoi Diagram to derive paths for

For example, one of the first known papers to discuggverage of a highly unstructured or non-convex envirortmen
path planning of AUVs was published by Warren in 199@iowever, this algorithm presumes that absolute knowledge o
[6] Potential fields are used to avoid obstacles and quﬁle environment is knowm priori and all p|anning is done
minima are avoided by considering the global path. In [@ffline. The Boustrophedon search is often referred to as the
an optimal kinematic control scheme is proposed where thgyn mower pattern in AUV survey planning, and will be used
cost function to be minimized is the integral of a quadratig§s 3 method of comparison in this work.
function of the velocity components. A mixed integer linear |f it is assumed that the AUV will follow parallel tracks then
programming method has also been used in [8] to find patit |ocation of these tracks can be further optimized using a
for adaptive sampling that maximize the line integral of thgrocess as described in [16]. The metric for optimality iscma
uncertainty of sensor readings along the proposed patis. Tiphizing the mean probability of detection over the workspac
type of algorithm is used as an alternative to static buoyhe dependance of probability of detection on seabed type
for collecting oceanic data such as temperature and salingnd range is described. While the proposed method is very

The approach taken is somewhat similar to the path planniggeful, the planned paths are constricted to parallel srackl
algorithm proposed here, except that the metric for benefianning is done offline.

in the objective function is a maximum sum of probabilities
and paths planned are greedy. Information has been usedéor

AUV path planning, for example [9] uses mutual information o )
as the benefit metric in the objective function, combined Many underwater MCM missions are conducted with a

with a recursive greedy planner. However, the proposed gfltfie-looking sensor: either a synthetic aperture sonaiS{SA
decomposition results in very constricted paths. or a sidescan sonar sensor (SSS). In this research the SSS

has been used. The SSS uses the returns from emitted high
_ frequency sound to generate an image of the seabed. An
B. Path planning for coverage object sitting on the seabed will cast a sonar shadow that
In the coverage task, instead of navigating to a goal tlan be analyzed to determine if the shape is suggestive of
objective now becomes to pass a sensor or end effector osemine. The onboard SSS gathers data as the AUV moves
every point in a workspace. forward in rectilinear motion and leaves a narrow channel
As described in Choset's survey of complete coverage metif-unscanned seabed directly beneath it. An AUV path and
ods [10], there are heuristic, random, and cell decompuwsiticorresponding SSS coverage swath are shown in Fig. 1. SSS
techniques. A heuristic defines a set of rules to follow thiflit wreturns are combined with onboard navigation data to peovid
result in the entire environment being covered. For exaniple geo-referenced mosaics of the seabed (Fig. 2). When the sona
[11], complete coverage is achieved based on sensingatritimakes sharp turns, areas on the outside of the turn are missed
points [11], and in [12], a method of building corridors icompletely due to the finite ping rate of the sonar, and areas o
used based on maximizing some quality function. A kethe inside of the turn can become completely distorted. th bo

Sidescan Sonar Sensor
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cases, it becomes very difficult for automatic target redagn

IIl. PROPOSEDMETHODS

The backbone of the proposed approach is an objective
function that is evaluated over the domain of all possible
desired headingsy, = {0..360}. The general form of the
function is given by:

R(ta) = wpB(a) + weG(Ya) +wyd (Ya), (1)

where R is the total utility, B is the information gain( is

the branch entropy/ is the benefit of maintaining the current
heading, andwg, wg, and w; are the respective weights.
All functions will be explicitly defined, but, in general, géh
function B(v4) prioritizes headings that cover the most area
in the short term, the functio@(v4) prioritizes over headings

(ATR) systems that rely on template matching to identif{hat will help the agent complete its coverage mission in the
targets in these areas [17]. The angle of incidence of tharsofpnger term, and the functiosi(y4) prioritizes over headings
beam with the seabed has a significant effect on the sizecgsest to the current heading so that obtained SSS data is
the shadow cast by an Object and therefore the probabmw\(ﬁlld The functionsB and G will be described in detail in
successful mine detection and classification. The Exténsitpection Ill-A and Ill-B respectively.

Performance and Evaluation Suite for Sonar (ESPRESSO) idt should be noted that this desired heading is used as a
a tool developed by the NATO Undersea Research Centreréderence to an inner loop controller that produces thereigsi
evaluate the sonar performance characteristics for a fapecgontrol plane values. As such, it is reasonable to evalugte (
set of environmental conditions [18]. The program generateéver a domain of angles that includes sharp turns. There is no
a P(y) lateral range curve that indicates the probability thagolation of dynamic constraints since these will be impgbse

a target at a specified lateral range from a sonar’s track will the inner loop.

be detected. Parameter values that affect the generatitieof The optimization takes place over heading reference only
P(y) curve are described in Table | along with the generand it is assumed that desired speed and depth are generated
way in which these parameters are determined.

Category Parameters Method of Detection
Seabed type Sonar or camera imagery
. Water salinity and
Environmental,.E temperature CT sensor
Water clarity Camera
Water depth Sonar

Target, F M|n¢ type, size and Only available  through
configuration prior surveys of the area
Frequency and| Known beforehand from
Sonar,S P
range of sensor sensor specifications
AUV speed (DDO\?IE))ler velocity  log
Vehicle V AUV depth Pressure sensor

Navigational error

Output from inertial navi-
gation system

TABLE |

PARAMETERS AFFECTING SONAR PERFORMANCE CHARACTERISTICS

by some other method. In this case speed and altitude referen
are held constant and tracked by inner loop PID controllers.
The reference depth can be calculated from the reference
altitude using known bathymetry or data from onboard sensor

Tuning of the weights is an important consideration. In the
present implementation, trial and error has been used ® tun
the weights, however, it would be simple to optimize them
with some meta heuristic method such as genetic algorithms
or particle swarm optimization.

The evaluation of the multi-objective function is done gsin
Interval Programming (IvP) through the MOOS-IvVP frame-
work [19], [20]. Each term in the objective function is defihe
as a behavior which generates a piecewise linear objective
function at each iteration of the outer-loop controllercAacy
of the underlying objective functions can be traded off aghi
computation time by specifying the number of pieces in the
piecewise linear approximation. As a result, the domain is
discretized. However, the discretization does not needeto b

Fig. 2 shows theP(y) curves generated by ESPRESSO fogonsistent over all objective functions and also need not be
three different seabed types: cobble, sand, and clay, &l atniform.
depth of 10 m. The meaning of “confidence” on the y-axis Each objective function is scaled such that the maximum
will be formally defined in Section Il
It should be explicitly stated that the purpose of this workan be disregarded.
is not to verify the ESPRESSO model, but rather to plan

paths based on the model. Any underwater sonar sens%'s

utility is 100. As a result, the units of the individual functions

The Information Gain Behavior

performance will be affected by some or all of the parameters

described in Table | and it cannot be assumed in generalnformation theory will be used to quantify utility over the
that all of these parameters are known beforehand. In ti§ort term to define the functioB from 1.

work we evaluate the benefit of potential actions using the The mutual information, or expected entropy reduction
ESPRESSO model to represent the sensor characteristic (RER):

without assuming known parameters.

I(X,Z) = H(X) - H(X|Z2), )



defines a scalar quantity that representsahmgiori expected Envi .

. . i ) i nvironmental Target Belief. m, Vehicle
amount of information about staf€ contained in observation Parameters, £; arge » My Parameters,
Z. To evaluateH(X|Z) we take the expectation over the
measuremeng: / T

H(X|Z) =FE.{H(X|Z)} Sonar Target Target Presence,
(3) Parameters, S Parameters, F M;

= —/P(Z)/P(X|Z)1ogP(X|Z)dxdz.

. . o Fig. 3. Bayesian network representing target detectiomows represent

P(Z) is the probability of obtaining measuremeit conditional probabilities.
The essential aspect of this definition is that it specifies a

way of combining the potential benefits of sensor measu
mentsadditively Consider some control action at timeto
be U,. If the ratio of the control frequency to the sensor
frequency isn then each control actiod®/; will result in a
set ofn independent measuremexits,, Z», ..., Z,, }. The total
expectednformation gainof U, can be expressed as:

"Fen, from Bayes’ formula

J J 201‘,7‘]7” —Cij — pl] +1

defines the probability that a mine actually is present gthan
we think one is present. This relation can be used to validate
n the assumptions used in this paper such as the validity of the

B(Uy) = Z (X, Z). (4) sensor models and the target recognition systems.

k=1

Let the proposed path to be evaluated be represented by
., The path begins at the AUV’s current locatidn;, y) and
oves a distance at headingy,:

To define the information gain objective function, infor—c
mation gained must be formulated as a function of desir
headingy,. This is achieved by defining a track starting at the

AUVs current location(z, y), and traveling a fixed distance, C:[0,1] = Cfree, s = C(s)
r, at every potential heading,;. The measurements that will C(0) = (z,%) (10)
be made can be predicted and then (4) can be used to evaluate C(1) = .
. ; . . . =(z+ Y+
the expected information gained from traveling along thvei (1) = (@ +rcos(a), y + rsina))
track. Let the proposed actiorl/, from (4) be defined as exactly

Define the variablel;; € {0,1} to represent the actualfollowing the proposed track. Sinee z, andy are assumed
presence of a target at the poifit j) in the discretized constant, the information gain resulting frqm foIIowmgeth_
workspace V. Then, consider the variable,; € {0,1} to propqsed track can be defined as a function of the desired
be our belief about the presence of a mine at location). head|ng,1_pd. It s_hould be noted that these _tracks could not be
The confidence at locatid, j), denoted by, represents the followed in reality due to dynamic constraints of the robsti

confidence that if a mine exists it will be detected. ThereforPlatform. However, this framework can be used to evaluate
we can define a binary R}, such that: the expected benefit of potential desired headings and &s suc

removes the horizon constraint of information gain appheac
that operate over actual control actions such as [21]. These
desired headings are used as a reference input to an inmer loo
controller that defines the control plane values. The contide
Then the entropy of’;; can be represented as: over the environment is updated based on the actual heading,
_ not the desired heading. As a result, the actual trajectalty w
H(Tj) = —eijlogley) = (1= eig)log(l —cij) - (6) ' ther with less variations in actual heading.

P(Ty; =1) = P(mij = My;) = ci;

P(TU = 0) = P(mij 75 ]\/[U) =1- Cij (5)

From (6) it follows that Based on the parameters affecting sonar performance given
in Table |, target detection can be expressed as the Bayesian
11131H(Tij) =0. (7) network [2] given in Fig. 3.
Cij

We can express the joint probability as:
This implies that maximizing the confidence over the environ
ment minimizes the entropy d;; for all i, j. As a result, the P(mij, Eij, 8, F,V, Mij) =
information gain objective function can be defined in terriis o £ (mi;|Eij, S, F, V) P(F|Mi;) P(Ei;) P(S)P(V)P(M;;)
gaining information abouf;. (11)

1) The probability of mine detectionFrom the above However, since we are only interested in estimating the
formulation it is possible to derive the probability that @ confidence over the workspace and not the actual presence

actually exists given that we detected one at locatigri). of mines, (5) can be used to rewrite the right hand side of
If the number of mines in a given are& can be known or (11) as:

estimated asV, then the probability that a mine exists at any

given location(i, j), denotedy”’ can be approximated by: P(T35|Eij, S, F,V)P(Ey; ) P(S)P(F)P(V).  (12)
N Define Z;) = {E;,S,F,V} as the set of all param-

pY = A (8) eters at timek. Then we can further simplify (12) to



g y o _ W, HW)
P(Ti;1Z7)P(Z;”) where it is assumed that environmental, "

sensor, target, and vehicle parameters are independeat. Th \ Perform Exact Hexagon Decomposition |
probability P(T;;|Z,’) is given by aP(y) curve generated !
with the ESPRESSO model whegés the orthogonal distance | Generate Directed Acyclic Graph |

of location(4, j) from the AUV track.P(Z}?) is the probability

that we are using the corred?(y) curve to evaluate the ‘ComputeBranch Entropy for Each NeighbourofCurrentCeII‘

confidence at locatioff, j). In this case, we do not assume \ Compute Objective Function \
perfect information about the parameters that are cordaine I
within Z;7, however we can use (3) to define the expected Gy
entropy of7;; conditional on the measurement represented b
1tropy K P F}é. 4. Flow diagram depicting the generation of the brandhopy objective

lecj as: function.
H(T;;|Z7) = B, {H(T;;| 27 . . . . o
(Tis12)) AH (T2} the highest utility for the information gain objective fuiom

== P(Z))][-cjlogc}; (13) in this case is approximatel§0°, the direction that is being
Al traveled, and the lowest utility is the reverse directid)°,
— (1= log (1 — )] because almost no new information would be gained from

moving over the path that was just traveled.
Wherecfj is the confidence at locatidn, j) after measurement

z. B. Branch Entropy

; Ifr:he:je tlﬁ ng_ If[n_(l;wtlgdgezof envl;ror_lrr_l_er:_tal dcond|t|o_?s be- In this section, th&7(1)4) term of the objective function (1)
orehand, the distribution of can be initialized as uniform | .\ " oo derived.

across all possible parameter values. As the AUV traverse Motivation: The information gain method has been

the workspace, some unknown parameters can be Measi§&ivn to be effective for solving the path planning problem

In situ usmgtsensors das_ dfhsczc'.b?dd tlr? ?T?b l't' %ncse ctjh fiena priori knowledge of the environment, obstacles, and
measurements are made in fne hield, e distributior ase targets is available [2]. However, the approach taken here
for calculating the expected entropy using (13) can be L‘ﬂaml"’ltremoves this requirement. In the sensor-driven approdeh, t

for the rest of the mission. . . i . ;
. _ ” information gainB is useful for evaluating the benefits of each
o7, |27
The new confidence determined frafi(T;;| Z;’) should be of the potential next moves, but when complete coverage is

comblneg W'thbthg .eX|Sst|ng|”ccc):nft|den03 @t )t’hcij using t?g the goal, this approach reduces to a greedy-first search)(GFS
p:ciﬁefsl e?_cn ,? N Sec. Hli-L, to produce the new contelenc |, g necessary to include a parameter in the objective
at that locatiore;;. function that helps the AUV achieve its global goal. The

The EER at locatiorii, j) caused by measuremedfit then e o including the branch entropy (BE) in the objeztiv
follows from (2) as: function are:

[Ty, Z27) = H(T;;) — H(Ti;|Z}7) (14) . It helps the AUV finish sections before it leaves them.

« It allows the AUV to find the areas of the workspace that
are not covered.

« It acts as a tie-breaker so the AUV does not enter infinite
loops and converges to complete coverage.

2) Overview of Approach:A block diagram showing an

Define the line that is perpendicular tband aligns with
SSS readingZ;, asC*. The EER over the entire workspace,
W, brought about by a measuremeéryt is then the sum of
the EER along the lin€*.

I(W, Zy) = Z f(Tij,Z,ij) (15) overview of the proposed approach is shown in Fig. 4. The
(i.j)onCL inputs are the workspac#/, and the entropies over the entire
workspace,H (W). The output is the BE objective function,

Given that there is no overlap between subsequent so
pings from a SSS, the total expected information gain broug
about by moving along the path can be expressed as:

Va)-

The workspace is decomposed into equal sized hexagon
cells. The average entropy of the cells is used to determine

no_ which areas of the environment are not covered. A formula is
B(a) = Z I(W, Zy) (16) derived whereby each neighbour of the cell currently ocedipi
k=1 by the AUV is given a value representing the benefit of
wheren is the number of sensor observations. heading towards that particular cell. The value is deteeahin

As the P(y) curve does not have a closed form represeby how much entropy there is down that branch of the directed
tation, gradient-based optimizations are not possible.tlis acyclic graph, with priority given to high entropy areasttha
reason, IvVP is suitable. are nearby. The result is that, by simply applying a formula

It should also be noted that the seabed environment tlat the decomposition and without performing an exhaustive
is being sensed is assumed static. As a result, informagiorsearch, the AUV can determine what areas of the map are left
never lost only gained by sensing the environment. to be explored.

An AUV is shown in an environment in Fig. 8. The IvP Each of the blocks in Fig. 4 will be described in detail in
functions at the stop time are shown in Fig. 9. Note th#te subsequent sections.



C) to C; but they must all be the same minimum length. The
hexagon decomposition geometry is exploited such thatyever
cell at levell is the same distance from the current cell.

0 Each neighbour of”, becomes a child in the graph. The
5 1 neighbours of those nodes become children provided they
chrron are not already in the graph at higher a level. This process
4 2 continues until all cells are in the DAG.
3 Algorithm 1 details the process of building the DAG. The

inputs areC,,, the current cell, and’, the set of all other cells.

=¥

Algorithm 1 Build_DAG(C,Cp)
DonelList < C),
level + 1
2 (%/ while DonelList # C do
s level < level + 1
0 for n < Each node inevel — 1 do
CurrentList < ()
n.children < ()

=EN

Fig. 5. A workspace with a hexagon cell decomposition. THks ¢kat will

be in branch 0 have been outlined. for k « All neighbours ofn do
if k¢ DoneList then

3) Exact Hexagon DecompositiorCell decomposition is n.children < n.children U k
an effective way to reduce the path planning problem into the k.value < Cj.entropy
searching of a tree [14]. Normally, the cells are either dyac if k¢ CurrentList then
or approximately decomposed into rectangloids (i.e. a grid CurrentList « CurrentList Uk
decomposition), although other polygonal shapes have been end if
proposed [22]. However, these decompositions assume that end if
once the robot moves into a cell, that it is efficiently coekre end for

This assumption is not applicable to the the SSS geometry so end for
a new decomposition method is proposed. A main benefit of DoneList < DoneList U CurrentList
the hexagon decomposition is that the distance from theecent end while
of any cell to the center of any adjacent cell is the same.
A hexagon decomposition is performed such that the union5) Derivation of Branch Entropy:The BE is used to

of all cells, C,, k = 1..N covers the entire workspace: evaluate how much entropy there is down each branch of the
N DAG in order that preference will be given to the move that
W C U C,. (17) ta_kes the_ AUV towards an unfinished area/i{Sf_AIso, priority
Pt will be given to moves that have more unfinished area nearer

) . ] . . to the current position so that the AUV does not leave an area
Associated with each cell is an average entraffy, which pefore it is finished.

represents a measure of the average uncertainty over the arernere will be a value of BE for each neighbour of the
of the workspace that falls within that cell: current cellC, as each neighbour has its own branch in the
i, 1 Z H(T) (18) DAG. In order for the BE to provide the benefits desired,
k= n o W cells that are at higher levels in the graph must be given more
)ec.NwW weight. For each neighbouk,= 0..5, of C,, the BE, gy, for
wheren is the number of grid cells in hexagon céll.. Each a DAG with a total ofL levels is given by:
cell is also assigned a levél,which is the minimum number

of cells that must be traversed to reach the presently oedupi Z .
cell Cp, and a list of children, which are all neighbours in L = ‘
level [ + 1. d(L—-1+1) —
A hexagon decomposition of a workspace is shown in Fig. gk = =2 lk ) (19)
5. The workspace is the shaded area underneath the hexagons. il
The hexagon on the right shows the numbering convention for Z !

the neighbours. The cells in branch 0 are indicated by thé bol
outline. where my;, is the number of nodes in level of branch

4) The Directed Acyclic GraphThe directed acyclic graph k. In (19), the closer cells are weighted higher using an
(DAG) uses the levels and children of each cell to build anverse linear function. Other weighting functions, such a
alternate data structure. Every céll appears only once in exponential decay could have been used, and would produce
the graph, and is at levél There can be several paths fronsimilar results.
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It is desirable for target recognition to view targets afetént angles [4]

6) Simple ExampleFig. 6 shows the transformation from
hexagon cells to DAG. The cell label€d, is the cell that the I M
AUV is currently in, and the values in all of the other cells \ W |
represent their average entropies. The corresponding BE \ i
each of the three neighbours are calculated as:
\\

g2 = 1/3((2)(0.6) + (1)(0.1)) = 0.433, \&xiﬁ’_ \ |‘
g3 = 1/3((2)(0.5) + (1)(0.1)) = 0.367, o s g
g2 = 1/3((2)(0.2) + (1)(1/2)(0.95 + 0.90)) = 0.442. - "

In this casey, is the highest.

7) Building the Branch Entropy Objective Functioihe
values of branch entropy are treated as samples of the under-
lying objecting function and are connected linearly to gate

Fig. 8. A simulated path (left) with confidence map (right)

L2 . . _ insonificationd; and #,. Without loss of generality, we can
the full objective function. The 6 desired headings; of . e thatzlj > C?j_ o is calculated as the acute angle of

known utility are 60k°,k = 0..5, W.hiCh. corresponds_ to the_the intersection of two lines with directiofls andf, as shown
headings that pass through the midpoints of the nelghbgurﬁ Fig. 7

hexagon faces. The corresponding points used to generte t n the case that the two measurements are parallel, then

objective _functlon forG(ya) are (60.]{’ g’“)’]? — 05 The «a = 0 and the two confidences are considered to be dependant:
known points are then connected with straight lines based on

the piecewise linear framework of IvP. A general equatian fo
the objective function(G(v,) is derived that parameterizes
each of the connecting lines: In the case that the two measurements are perpendicular,

1 thena = 7/2 and the two confidences are considered to be
G(a) = 59k = grr1)¥a + gr(1 = k) +gir1. - (20) independent:

tot
j

= max(cl;,c) = cl. (22)

¢ i Cig) = Cij

where . e
60

Note that for consistency defing = go. If the angle0 < « < 7/2 then it is assumed that the resulting

T tot H H .
An AUV is shown in an environment in Fig. 8. The lvpconﬂdencegij should be determined using:
functions at the stop time are shown in Fig. 9. The branch Qo2
. . . acs;
entropy behavior is maximum &t and180° as these headings cg;?t =—(1- C}j) + C}j,’ (24)
point to the areas of the map that have unfinished areas. ' g ' '
which describes a linear relation between dependence and

C. Combining Measurements From Different Insonificatiofidependence based on the valuenof
Angles The conditional entropy defined in (13) therefore incor-

Automatic or manual target identification is greatly imPorates the angles of insonification in the computation of

proved if the object of interest can be viewed multiple timeg;- AS @ result, the information gain objective function will

from different angles of insonification [4], particularly the Preferentially select paths that result in views of the vepace
case of non-symmetric targets as shown in Fig. 7, or rippl&@m different aspects.
seabed types. As such, it is preferable to scan areas with non

arallel tracks. In other research, it has been assumed that . S .
&easurements should be either dependent [16] or indepen e'nThe Collective Objective Function
[23] regardless of insonification angle. Our approach astou According to (1), the final utility,R, is the weighted sum
for the angles of insonification of the multiple views whermf the objective functions. In Fig. 9 the objective funcsoat
combining subsequent observations of the same seabed l@canapshot are shown together with the collective with=
tion. 1.0, wg = 1.0, andw; = 0.8. In this case, the collective

Let two confidences obtained from subsequent passesobjective function selects the heading ®i° to be the best

location (i, ) be c}j and cfj with corresponding angles of desired heading.
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Expected Information Gain Component Hardware Real Experiment
180+ Branch Entropy Simulation
, Maintain Heading
160 F Best Ho ! Collective
GPS Sensor iGPS [24] UBlox LEA-5H
Compass Sensor iCompass [24] 0S5000-USG
Depth Sensor iDepth [24] MSI Depth sensor
£ Sonar Sensor pConfidenceMap Yellowfin Dual-
=1

Frequency 330/800
kHz Side-scan

DVL iDVL [24] SonTek/YSI DVL
Sensor Drivers “iSensor” IVER2 frontseat
applications [24]
Inner Loop Control | pMarinePID [24] IVER2 frontseat
% o 100 130 20 20 300 a0 Actuator Drivers included in iActua- | IVER2 frontseat
Desired Heading (Degrees) tion [24]
Actuator iActuation [24] 130 Watt, 4000 RPM

Brushless DC motor
Frontseat Computer| Dell Dual Core | Intel 1.6 GHz ATOM

Fig. 9. The information gain, branch entropy, maintain liegdand collective
objective functions corresponding to the path shown in Big.

3GHz processor
Frontseat - Backseaf pMOOSBridge [24] | iOceanServerCommg
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Communication [25]
e . ‘ Backseat Computer | Dell Dual Core | Intel 1.6 GHz ATOM
ALY 3 - 3GHz processor
@ D -—=" ll , Outer Loop Control | IvP Helm [26] IvP Helm [26]
lGPS ”Compassu Sonar ”DVL ] | Navigation and Lo-| pEKF pEKF
3 calization
| High Level Planning| Behaviors Behaviors
[ sensor Drvers | 3 I Base Station Dell Dual Core | Windows Netbook

Backseat - Base Stal pAcommsHandler &| WHOI yModem
tion Communication | iModemSim [27]

TABLE Il
DESCRIPTION OF COMPONENTS USED FORWIL SIMULATION AND REAL
HARDWARE TRIALS
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Fig. 10. System structure of the hardware-in-the-loop Hiou ]

Fig. 11. The path planned by the proposed planner for a foruareq
workspace with constant aral priori known parameters (left). The IVER2
IV. EXPERIMENTAL SETUP AUV made by OceanServer Technology used for trials (right).

. . V. RESULTS
In order to test the control algorithms, a hardware-in-the-

loop (HWIL) simulator with the Mission Oriented Operating®. Simulation

Suite (MOOS) [20] is developed and shown in Fig. 10. A The system is tested using the HWIL setup. The first
description of all hardware simulated components and reghulation done is on a simple square environment with fixed
hardware is also given in Table. Il. Also onboard the AUMind known environmental parameters. The resulting path is
but not simulated in the HWIL simulation was a Neil Browrshown in Fig. 11.
CT sensor to gather water conductivity and temperature-info aAg can been seen from the figure, the planner converges
mation. to a spiral-type path that efficiently covers the entire area
The hardware implementation is done on the IVER2 AUWhe spiral-type path is more efficient than the Boustrophedo
shown in Fig. 11. The IVER2's onboard computer (frontseaty lawn mower path in this case because the AUV has to
contains navigation and inner loop control algorithms. Sehe perform less turns and consequently will expend less enérgy
algorithms can be overwritten and raw sensor data can bd fugeimportant to note that without any disturbance in paramset
using the iOceanServerComms application [25] which or oddly shaped environment that the planner does converge
sends data to the backseat and commands to the frontsegt uira structured path.
a serial connection. In the actual implementation, naiegat Since in general the system is stochastic, a Monte Carlo
and outer loop control were performed on the backseat usistyle simulation is conducted to compare the performance
MOOS, while inner loop control remains on the frontseat. for a developed random track algorithm, the informatiomgai



behavior alone (IG), and information gain with branch epyro
(IG/BE) by repeating the simulation 36 times with random ini
tial conditions. The results are tested against the detéstit
typical lawn mower pattern for a simple environment. Result
for three different levels of desired confidence are shown in
Table Ill, wherey and o correspond to the mean and the
standard deviation of the 36 trials.

Desired Confidence
.90 .95 .98

Search Lawn Mower 1275 1545 2355
Method Random 1279 [446] 1915 [460] 2299 [677]
IG 1488 [362] 2429 [817] 3307 [730]
IG/BE 1088 [105] 1458 [150] 1761 [160]

TABLE Il
PERFORMANCE OFLAWN MOWER, RANDOM WALK , INFORMATION GAIN
AND INFORMATION GAIN WITH BRANCH ENTROPYALGORITHMS FOR (D) E)

DIFFERENTCONFIDENCETHRESHOLDS

Fig. 12. A slightly more complex environment shape is sirteda Total

area of environment i$1250m?2. (a) Path planned by BE/IG planner for final

In the generation of the results in Table |||' it is assumed thconfidence greater_ than 99.%). Path length 1154.35nPath p_Ianned by IG
environmental and target parameters for the ESPRESSO m lanner alone for final confidence greater than 99%. PathHeBgL639.34m.
getp ﬁ ath planned by random track planner for final confidencetgrehan

are unknown beforehand. As a result, the lawn mower tracé®s. Path length is 1826.90r(d) Deterministic lawn mower path for final

are based on the most pessimistic assumption of the unkndwﬁhi?en(f}e ?f 97;%3 Path ']?g%toh is 6?]3I-33fe% Detezf?ingtic ';‘g’”wmo‘ﬁef
. th for final confidence o %. Path length is 1221.64m. bteoffor the
parameters. The lawn mower path |ength reqU|red to Obtéﬁm mower path to obtain coverage greater than 97%, theyglinder the

98% coverage is significantly higher because the tracks must track must be covered resulting in high sensor swath lapebetween
be placed closely enough that the areas that are missedylire®/bsequent tracks in the lawn mower survey.
underneath the tracks are covered by subsequent tracks.

Itis clear from the results that the information gain apgtoa
alone is not sufficient. The mean path lengths are consitjerab
longer. Also note that the variances are also much larger,
particularly for the 95% confidence case. This is charastieri
of a greedy approach because sometimes it will get ‘luckg’ an
find a good path very quickly, but when it is ‘unlucky’ it has a
very difficult time completing the mission and the path léngt
becomes very long.

It can also be challenging to design lawn mower paths in
the case that the workspace is oddly shaped. For example
consider Fig. 12. In this case parameters are consideredl fixe
and known. For the case of low desired confidence thresholds,
the lawn mower planner performs well. However, in the case
that high confidence is desired, which is common, the lawn
mower tracks must be designed so that the channel left by I N N N
one track is covered by the next. Indeed this has been noted ® ©
in the past as a shortcoming of the lawn mower method [‘?F]ig. 13. (a) A 300m by 300m square workspace with variable parameters,
The IG/BE planner proposed produces a path with more pathhis case three different types of seabed, which are assumbe known

overlap, but less total sensor swath overlap allowing it gypriori. (b) The path planned by the proposed IG/BE planner. Path length
P P 9 to achieve 97% confidence is 1085.90. The AUV automaticadlyotes more

achieve h'gh coverage faster than the lawn mower Pattefife 1o the areas of seabed with poorer sensor perform@gnd@eterministic

As the workspace shape becomes more irregular, the bengfit for a lawn mower pattern. Path length to achieve 97% &538D. Note
of the proposed manner will increase. that if a higher coverage threshold was desired then th&straould have to

. be significantly closer as described in Fig. 12.
In the case that the environmental parameters are known

but vary over the workspace, the simplest way to construct

the lawn mower path is to place tracks closely enough that cobble, which is the worst case. The proposed IG/BE
coverage will be obtained even in the worst case over thé&anner maintains the confidence map as the AUV traverses
environment. In Fig. 13 the parameters are assumed to the workspace and is therefore better able to capitalizden t
known beforehand where the seabed type varies betwdmiter sonar performance obtained in the case that the deabe
cobble, sand, and clay. THe(y) curves for the three areastype is clay.

of the environment are shown in Fig. 2. In order to ensure The algorithm scales in constant time with the size of the
coverage, the lawn mower tracks must be placed closelprkspace after an initialization since computations el
enough to guarantee coverage in the case that the sedloedhe information gain or branch entropy behaviors are all
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2lg | Path Length[ Workspace Areal
\ Proposed planner (Fig. 14) 1203 m 28 0002
4 Lawn mower (Fig. 14) 1580 m m
‘ },\ Proposed planner (Fig. 15) 1661 m 41 250m?
\
X \ 8 1
] \ c TABLE IV
BIR Hf \ ;“.:_’0.5' SAMPLE PATH LENGTHS FORPATHS PLANNED DURING HARDWARE
\ \ § 0 TRIALS
; S \ 0
G sg\—_ | |
COVE~_—\ or zig-zag type pattern. The waypoints that define the path

) _ _ o are either input by a human operator or somehow optimized
Fig. 14. Path taken by AUV in real trial (left), resulting dmtence map aforehand using a method such as [16]. The method proposed
(middle), and comparison lawn mower path (right). . . . . L.

here is drastically different than this approach. The satioh
and experimental results illustrate that the proposednaars
able to find shorter paths under many conditions. However,
the benefits of the approach extend beyond simply shorter
path lengths. In order to further compare the method predent
against the standard lawn mower method, an empirical com-
parison is presented in Table V.

VII. CONCLUSION AND FUTURE WORK

Fig. 15. Path taken by AUV in non-convex environment in rell t(left) . . .
and resulting confidence map (right) This research presents an online sensor-driven robottbs pa

planner with particular application to seabed coveragé wit
sidescan sonar sensor and an autonomous underwater vehicle
The approach combines information theory with a new concept
coined branch entropy to efficiently cover areas of seabed.

done incrementally as the vehicle traverses the workspace

B. In-Water Trials Simulation results and real water trials illustrate the ddén
Tests were performed on OceanServer's IVER2 AUV iff this approach over standard lawn mower planners. These
Aug. 2011 in Bedford Basin, Nova Scotia, Canada. advantages are: the total path length and time to cover an

The AUV was able to successfully cover two environmengvironment are shorter in many cases, heading is better
within the limited operating region. A plot of a sample patpinaintained for data mosaicing, there is no need for predeter
taken in a simple convex environment and the correspondifigned waypoints, factors affecting sensor performancebean
final confidence map are shown in Fig. 14. The runs we@écounted for, the planner is able to autonomously handie ve
stopped when confidence values reached 95%. A compari§@mplex shaped environments, and the planner preferigntial
lawn mower mission was also performed. views the seabed from different insonification angles, Whic

When comparing the two paths from Fig. 14, it is interestini§ Preferable for target recognition.
to note that, although the desired tracks for the lawn mowerIn future work, the proposed approach will be extended
are straight lines, the actual path oscillates across tesieed to multiple searchers. This is particularly challengingegi
paths. This is largely due to the inability of the frontsedhe difficult communication environment underwater. Thil w
controller to stabilize the heading in the presence of auste involve combining novel multi-AUV navigation techniques
It should be noted that the currents on the day when this trigith a decentralized searching and planning approach. In
was conducted (Sept. 1 2011) were extremely small, on tagdition, algorithms should be developed to optimize the
order of 0.2 knots at most. Because the proposed plangétection of weights either statically or dynamically. tigs
is designed to maintain headings, the outputted sonar dét@rder to increase the benefit of this algorithm to realidor
will be of higher quality thereby improving data mosiacingpplications, it is necessary to better formulate the ATR an
during post-processing and allowing targets to be idedtifigonar geo-referencing algorithms such that the confideaice ¢
more easily. be used to make accurate predictions of mine detection. rates

A more complex non-convex environment test was also
conducted with results shown in Fig. 15. By comparison with
Fig. 12, it is shown that the results from simulation and from ACKNOWLEDGEMENT
water trials are very similar, confirming the validity of the
simulations.

The path lengths for the trials are shown in Table IV.

The authors would like to acknowledge the contributions
of Vincent Myers, Warren Connors, and Jonathan Hudson
at DRDC-Atlantic in addition to the anonymous reviewers
who provided invaluable feedback. This research is supdort
VI. DiscussionN by Natural Sciences and Engineering Research Council of
As discussed, the status quo for AUV sidescan seab@dnada (NSERC), Defense R&D Canada - Atlantic, and New
surveys is to perform a structured search, either a lawn movBrunswick Innovation Fund.
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Proposed Planner

Lawn Mower Approach

Coverage overlap

While it is acknowledged that there is some overl
as the path sometimes crosses itself, the actual am
of coverage overlap is reduced evidenced by the f
that coverage swaths can be more accurately estim
and accounted for online.

ipGnParanteeing high coverage requires tight spacing

aL(j:?Wﬂ mower tracks which results in high covera
erlap, but in some cases when desired coverag

Sufficiently low, overlap can be minimized.

—

2]

of
e
e is

Level of autonomy

Extremely high. One button solution.

Usually requires operator to specify waypoints to d
fine tracks. In complex environments the performarj
is subject to the judgement and skill of the surv
designer.

e-
ce
FY

Total energy consumption

Fairly low since trajectories are smooth.

Requires sharp turns at the end of tracks and also |
energy requirements to follow the track as shown
the jagged path in Fig. 14.

igh
by

Online vs. offline

All planning takes place online. The main advantal
as has been stated is that mission plans can be a
tive to environmental parameters and stochastic se
measurements.

gAll planning is done offline. There is an inhere
dassumption with this type of planning that the vehiq
strajectory will exactly follow the plan and that al
environmental parameters will be as predicted.

t
le
I

Deterministic vs. stochastic

Stochastic in that it is capable of adapting to t
stochastic nature of state estimation and sensor in

n .
pﬁli)_etermlmstlc.

Completeness

Probabilistically complete - due to the BE behavig
the AUV is guaranteed to find the areas of the m
that are not covered.

r,Although the motion plan can have a guarantee
agompleteness, there is no actual guarantee of that|
entire workspace will be covered in reality.

of
the

Path tracking

Optimizes an objective function over heading so pa]
are not tracked.

h?—zequired to follow track between waypoints.

Level of feedback Closed loop - sensor feedback used to update plaf. Open loop.
High - requires simulation over headings for IG be-
Computational requirements | havior but only a simple numerical calculation for theLow.

BE behavior.

Overall performance

Results in path with shorter path in general if enviroj
mental parameters are not knowrpriori and partic-
ularly in the case of complex environment geometri

Paths tend to be longer if worst case environmer
n-conditions are assumed. However, in ideal case

full prior knowledge, simple environment geomet
psand low required confidence threshold can provi

tal
ith
y
de

better solution.
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TABLE V

COMPARISON OFPROPOSEDMETHOD AND STANDARD LAWN MOWER
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