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Abstract

The objective of the thesis is to propose new survey planning methods for autonomous
underwater vehicles (AUVs). Historical approaches to the problem usually involve preplan-
ning paths before the start of the survey in a structured, either zig-zag or lawn mower,
pattern. This has three notable shortcomings: 1) The AUV may not be able to follow
the prescribed path exactly, for example if there are unexpected disturbances, 2) Object
detection in imagery obtained from the survey is dependent on many factors, some of which
may not be known a priori, resulting in overly conservative plans, and 3) In the absence
of pre-placed beacons, once the vehicle submerges, its location estimate will drift, again
resulting in deviation from the pre-specified path.

These issues are overcome here using new online and adaptive approaches to survey plan-
ning. First, an algorithm is developed that maintains a model of the area coverage over
the workspace in real-time and plans paths within that workspace. This sensor-driven algo-
rithm is also able to account for uncertainty in the factors that affect object detection while
underway. Second, the algorithm is augmented to explicitly account for the uncertainty in
the AUV location estimate. The link between area coverage and state estimation is made.
It is motivated that for coverage, estimating the full trajectory (or smoothing) as opposed
to just the present pose (or filtering) is beneficial. In addition, the planning strategies
previously developed are augmented to operate within the new probabilistic framework.

The main benefit of the proposed approach is that it is robust to localization sensor noise
and can guarantee coverage in a real field coverage sense not just a planning sense.

Finally, the algorithms are extended to coverage with multiple AUVs. If a team of AUVs
possess precisely synchronized clocks, then when they communicate underwater they can
also calculate their relative ranges from the time-of-flight of the acoustic signals. A cooper-
ative trajectory estimation algorithm is developed that is particularly well-suited to operate
within the challenging underwater communications channel. Data to be transmitted in each
broadcast communication scales linearly with the number of vehicles in the AUV team and
does not backlog in the case of communication failures, which are common underwater.

The algorithms are tested in simulation and in the field on the Iver2 AUV. These tests
show the effectiveness of the proposed methods.
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Chapter 1

Introduction

Autonomous underwater systems technology is lagging behind its ground and aerial robotics
counterparts. Many tasks are more challenging underwater due to the harsh nature of the
underwater environment. For example, some sensing modalities that are the cornerstones of
terrestrial robotics systems, such as global positioning system (GPS) receivers and cameras,
are rendered essentially useless underwater. Additionally, developing autonomous under-
water systems tends to be expensive and time-consuming if operation of a research vessel
is required. Nevertheless, these obstacles must be overcome as there are many applications
where underwater technologies could aid particularly for tasks that are inherently very
dangerous or costly for humans.

One particular such application is mine countermeasures (MCM). The U.S. Navy has
referred to underwater mine removal as the most problematic mission facing unmanned
undersea vehicles and the Navy at large [157]. MCM involves the gathering of sonar imagery,
detection and classification of potential threats, followed by reacquisition and disposal by
a remotely operated vehicle or human diver. The MCM task pipeline is shown in Fig.
1.1. This thesis focusses on the first two phases of the MCM problem - “survey mission
planning” and “data collection survey”.

Survey Mission ' Data Collection ' Data Stitching and
Planning Survey Mosaicing

v

' Re-acquisition and ' Mine Detection /
Re-identification Object Classification

Mine Disposal

Figure 1.1: Autonomous underwater vehicle MCM task pipeline.

Using towed arrays for a variety of tasks such as mine hunting has been done for almost a
hundred years [136]. In the 1970’s, engineers began experimenting with using autonomous



underwater vehicles (AUVs) with on-board sonar sensors. This had significant advantages
in terms of safety to operators and covertness. However, one challenge is that the AUV
must navigate autonomously as opposed to a towed body whose position can be more
accurately measured relative to the ship that is towing it. Additionally, the gathered sonar
data from an AUV cannot be sent to the surface for analysis during the mission. Instead
an entire mission is planned beforehand and then imagery is analyzed by an expert or
automatic target recognition system to classify objects of interest after the completion of
data collection. This puts greater importance on careful survey mission planning for the
AUV.

The objective of a seabed coverage survey MCM mission is usually to clear a path or
working area of mines before entering with a Navy vessel or some other high valued asset.
Usually clearance or confidence is requested up to a specified threshold. If mine-like objects
are identified during the survey, another task-specific AUV or a human diver will take a
closer look and possibly dispose of the objects. It is critically important to localize the
mine-like objects as accurately as possible on the first pass so that they can be easily and
quickly reacquired.

This approach to MCM is only capable of detecting mines that are sitting on the seabed.
Mines are detected from the gathered sonar imagery which is historically done with a
template matching approach on the shadows generated by objects sitting proud of the
seabed. As a result, MCM is treated as a 2D planning problem. The approach extends
to 3D but detecting other types of mines, such as floating or tethered, would require some
other mine sensing technology.

1.1 Problem Statement

Historically, AUV seabed surveys have been designed using primitive heuristic planning
methods, such zig-zag or lawn mower (up and back) paths [164]. Such an approach has
several limitations:

e Sonar performance is dependent on many factors, such as propagation conditions,
seabed type and others, only some of which are known beforehand at the mission
planning stage,

e Plans are not adaptive to the situation where the vehicle does not exactly follow the
prescribed path either because it is infeasible or due to unexpected external distur-
bances,

e Plans do not account for the uncertainty in the platform location that is induced when
the AUV traverses underwater without access to a globally bounded position estimate
other than possibly using a cross-track error threshold to decide when to surface.

The current trend in robotics is towards multi-agent [140] and multi-robot [196] systems.
Such systems come with significant potential benefits in terms of efficiency and robust-
ness. These advantages can be exploited for AUV seabed surveying. However, with the
benefits come the additional costs in terms of complexity of algorithms required to con-
trol and coordinate multiple vehicles that have limited on-board computation capabilities.
Communicating among vehicles in water is limited due to lack of available bandwidth, slow
throughput rate, and unreliability of the acoustic channel.



1.2 Thesis Overview and Significance

This thesis focuses on AUV survey planning that is: 1) adaptive in the sense that plans can
be updated based on sensor data that is gathered during the mission and 2) accurate in
the sense that the uncertainty of the vehicle is explicitly accounted for to produce a more
descriptive representation of the coverage. In addition, the methods are extended to the
multi-AUYV case where the ability for vehicles to sense each other using acoustics is exploited
for cooperation within the challenging underwater environment.

These proposed methods have significant advantages for AUV seabed surveying opera-
tions:

e The mission can be completed more efficiently.

e A more accurate representation of the risk associated with moving an asset through
a waterway allows decision makers to be better informed. If the uncertainty of the
AUV is not accounted for this can result in a an overestimation of the confidence that
all threats are cleared, which can put people and assets in jeopardy.

e Localizing potential targets more accurately means that they can be re-acquired and
disposed of more quickly. The disposal of underwater mines has been done by human
divers and is inherently very dangerous.

1.3 Summary of Contributions

Detailed theoretical contributions will be listed in each individual chapter, but in overview
the contributions of this thesis are:

1. An adaptive approach to the robotics area coverage problem that is particularly well-
suited to the case of seabed surveying where gathered data is not available until survey
completion. This problem is unique in that the coverage sensor (sidescan sonar)
performance is variable and affected by factors such as seabed type or propagation
characteristics that can be unknown beforehand.

2. An explicit link between area coverage and state estimation through the definition of
a probability of coverage. The adaptive planning strategies are extended to operate
within this probabilistic framework.

3. The development of a cooperative trajectory estimation algorithm within a least-
squares optimization framework to extend the algorithms to multiple survey AUVs.

4. Field trials and simulations that demonstrate that the proposed methods are effective
at achieving adaptive seabed coverage.

1.4 Outline

The rest of the thesis is organized as follows: Chapter 2 provides background and litera-
ture review. Specifically, sections are devoted to path planning (Section 2.1), information
theory (Section 2.2), the sidescan sonar sensor (Section 2.3) and AUV localization (Sec-
tion 2.4). Chapter 3 presents the algorithm for sensor-driven online coverage planning with
field results. Chapter 4 extends the approach of Chapter 3 by explicitly accounting for the



platform uncertainty in the coverage map and drawing the links to state estimation and
planning. Chapter 5 extends Chapter 4 to the multi-AUV case where localization error
is reduced (and consequently coverage efficiency is increased) by exploiting inter-vehicle
range measurements. Finally future research directions are highlighted and conclusions are
presented in Chapter 6.



Chapter 2

Background

This thesis is at the intersection of many different research domains. A rigorous treatment
of all the related background and results in the literature is not possible. Nevertheless, this
chapter presents some of the most important areas, mainly relating to:

e Robotics path planning, with a special focus on AUV path planning, coverage path
planning, and path planning with robot uncertainty,

e Information theory, the flexible theoretical framework that is used to achieve various
objectives throughout the thesis,

e Sidescan sonar sensor, the imaging sonar which is used for in this work for seabed
surveying,

e AUV localization.



2.1 Robot Path Planning

In its most general form, robotics path planning consists of determining the sequence of
robot configurations that will result in achieving the stated mission'. Often, particularly in
AUV applications, paths are represented by a set of waypoints to be visited in succession.
These waypoints are used as an outer loop reference that assumes that some inner loop
controller will be able to stabilize the vehicle and track the reference. Given that this
outer loop reference is independent of the platform control, very generic algorithms can be
developed that are agnostic to the AUV system hardware.

Waypoints can be generated one at a time based on current up-to-date information, or can
be fully pre-planned a priori. For example, traditional seabed surveys use a scripted series
of waypoints that define the survey, usually a ladder or zig-zag path [164]. An alternative
to waypoint-defined paths is a more reactive paradigm. For example, an AUV trajectory
could be specified by maintaining altitude over the seafloor, avoiding obstacles, or following
a structure such as a dam. In this style of approach, no model of the environment, or world,
is required to aid in the decision making process so global goals are difficult to achieve.

The ability of an autonomous agent to plan a path depends on many factors, such as the
level of information it has about the environment, the desired quality of the planned path,
and the mission objectives. If detailed environmental information is available beforehand,
then path generation can be slow without consequence. However, if the AUV is required to
plan its mission on-the-fly, then an algorithm that can run in near real-time will be required.

2.1.1 Problem Formulation

In order to formally define the path planning problem, we require a few fundamental terms:
Configuration space (Q): The set of all configurations, ¢, that the robot can achieve.
@ can be subdivided into free configuration space, Q fr.. and occupied configuration space,
Qops- Any configuration in Qs will result in contact with an obstacle, and any configura-
tion in @ free Will not.

Workspace (W): The physical world in which the robot exists.

Path (7(s)): Curve through @ ... parameterized by s.

Degrees of Freedom: The minimum number of independent variables required to rep-
resent the robot configuration. To fully describe an AUV requires six degrees of freedom:
q=A{z,y,2,0,0,19}, where x, y, and z represent the position in 3D space, and ¢, €, and 1) are
the Euler angles. Sometimes planning for an AUV is done in 2D by assuming that 6 = 0,.;,
¢ = ¢ref and z = 2y, in which case there are three degrees of freedom: ¢ = {z,y,}.

We can then define the task of path planning as finding a curve in the free configuration
space, Qfree, that connects a start location, ¢ = ¢s 2 {4, Ys, 2s, 0s, 05,05}, to a goal
location, ¢ = q; £ {xg, Yy, 2g, By, 0y, g} More specifically, as described in [133], the path
can be expressed as a curve 7 : [0,1] = Qfree With 7(0) = ¢, and 7(1) = g,.

The following terms define properties of any path planning algorithm, and can be used
as a basis for comparison:

Optimality: An algorithm that optimizes (maximizes or minimizes) some objective.
Completeness: A plan is complete if it always finds a solution if one exists or determines
that no solution exists in finite time. A path can also be considered resolution complete

!The bulk of the review presented here is published in our book chapter (Chapter 4 in “Marine Robot
Autonomy” [173]).



if it is complete subject to discretization. Alternately, an algorithm is said to be proba-
bilistically complete if it is guaranteed to converge towards completeness.

Offline planning: The plan is completed before execution begins.

Online planning: The plan is incrementally constructed during the mission.
Sensor-based planning: Sensor information is processed online and used for path plan-
ning.

Deliberative: Sense — Plan — Act cycle. The sensor data are usually used to construct
a model of the world [132].

Reactive: Use sensory information to accomplish the mission without representation of
the entire environment [132].

Path planning approaches come in many flavours. Categories that will be described
include: heuristic, potential functions, roadmaps, and cell decomposition. In order to com-
pare and contrast the various algorithms, the simple 2D environment shown in Fig. 2.1
will be used. Red randomly placed blocks represent obstacles and the start and goal are as
indicated.

* <«— Start

Goal —>» *

Figure 2.1: Simple environment with polygonal obstacles that will be used to compare path
planning algorithms [173].

2.1.2 Heuristic-Based Algorithms

Heuristic-based methods use a set of rules in order to achieve an objective. An example are
the simple “bug” algorithms [47].



2.1.2.1 Bugl

In Bugl [144], it is assumed that the robot has only a contact sensor and knowledge of
where the goal is. The robot begins by moving towards the goal as if the start and end
points were joined by a straight line. If an obstacle is encountered, it is circumnavigated
to find the point on the obstacle that is closest to the goal. The robot then travels to that
point and continues until the goal is reached. If the heading line intersects with a previously
visited obstacle, it is inferred that there is no path to the goal. It has been proven that
this method is complete, meaning that the robot is guaranteed to find the goal or report
that there is no possible path to the goal in finite time. The details of the approach are
presented in Algorithm 1.

Algorithm 1 Bugl algorithm Algorithm 2 Bug?2 algorithm
Input: Map Input: Map
Output: Path Output: Path
1: while Not arrived at the goal do 1: Generate line [ that intersects start and
2:  Take a step in the direction of the goal goal
3:  if Obstacle encountered then 2: while Not arrived at the goal do
4: if Obstacle is previously unvisited 3:  Take a step along [
then 4.  if Obstacle encountered then
5: Circumnavigate the obstacle un- 5: Move around the obstacle until hit-
til encountering the initial con- ting [
tact point 6: if Robot revisits an already visited
6: Move to the point on the obstacle point then
that is closest to the goal 7 Search fails
: Mark obstacle visited 8: end if
8: else 9: end if
9: Path does not exist 10: end while
10: end if
11:  end if

12: end while

The sample path generated with the Bugl algorithm is shown in Fig. 2.2.

2.1.2.2 Bug?2

In Bug2 [144], an imaginary line is drawn between the start point and the goal point. The
robot begins by following this line. If an obstacle is encountered, it begins to circumnavigate
the obstacle until it intersects the line and then it continues. Bug2 is generally faster than
Bugl, but has the disadvantage that it is not guaranteed to find the goal in finite time,
as it can be trapped by certain oddly shaped obstacles. If the robot ever encounters an
already visited point in the map, then the algorithm fails. The details of the approach are
presented in Algorithm 2. The path generated is shown in Fig. 2.3.

There is also a variation of Bug2 called TangentBug. In TangentBug [103], it is assumed
that the robot is equipped with a range sensor. The robot begins by traveling towards the
target point. If an obstacle is detected by the finite range sensor then the robot alters its
trajectory to the point on the range sensor that will avoid the obstacle and bring it towards
the goal. The resulting path is tangential to the obstacles. This method vastly outperforms



Figure 2.2: Path planned using Bugl algorithm (appears in joint publication [173]). In
Bugl, obstacles that are encountered are circumnavigated to find the closest point to the
goal.

Figure 2.3: Path planned using Bug2 algorithm (appears in joint publication [173]). In
Bug?2, obstacles are avoided until the robot returns to the line that intersects the start and
goal locations.



Bugl and Bug2, but requires the use of an additional sensor. In all Bug algorithms, the
direction to circumnavigate the obstacles must be chosen prior to the search. Usually this
choice is made randomly, but can have a significant effect on the length of the resultant
path.

2.1.3 Potential Functions

Available knowledge of the environment such as goal and obstacle locations can lead to the
development of a potential function over the free configuration space. Paths are generated
by following the negative gradient of the potential function. The approach tends to be
computationally simple because no searching is required to determine the path, instead the
direction of the negative gradient of the potential field is automatically chosen.

2.1.3.1 Potential Fields

In the potential fields method, the potential function is generated by considering the goal
as an attractive force and the obstacles as repulsive forces. The potential function at any
point in the space is the sum of the positive and negative force fields [47]:

U(Q) = Uatt(q) + Urep(‘])

(2.1)
VU(Q) = VUatt(Q) + VUrep(Q)
where the positive force could be defined as:
Uar(a) = 600, o)
att\q) = 2 q,; 9goal (22)

antt(Q) = £(q - ngal)

where d(g;, q;) = (¢; — ¢;) is a function that defines some measure of distance between any
two locations, ¢; and ¢;,80 in the configuration space, and £ is a scalar multiplier. The
negative force could be defined as:

Urepi(@) = %n(diq) N Q%V ,di(q) < QF -
Di 0 , di(q) > QF
1 1 —¢ .
VUrep- 77(@;‘ - dl(q))g@(q) , dz((]) < ; (24)
v i) > Q;
VUTep == VUrequ (2'5)

where d;(q) is the minimum distance to obstacle 7, and ¢; is the closest point to ¢ on obstacle
i. Q7 is the domain of influence for obstacle i, and 7 is a scalar multiplier. The path is
generated by following the direction of the negative gradient (—V(U(q)) which corresponds
to the direction that is progressing towards the goal the fastest.

In this form, complete knowledge of the location of obstacles in the environment is required
assuming (; is large enough. However, online versions of the potential fields method have
been suggested [114]. For example, if the robot is equipped with a range sensor, then the
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Q; values could be adjusted to the range of the sensor. The main drawback of this method
is that it is possible for the robot to enter locations that are not the goal where the sum of
the vectors is zero. These are referred to as local minima, for an example refer to Fig. 2.4.

Current Location

Obstacle Obstacle

Q Goal

Figure 2.4: A local minimum. The repulsive forces from the obstacles and the attractive
force of the goal all sum to zero so the robot will not move.

The path generated by the potential fields algorithm is shown in Fig. 2.5.

2.1.3.2 Wavefront Planner

The wavefront planner [22] is similar to the potential fields method, but differs in several
important ways. The potentials at each point in the free space are generated by simulating
a wave propagating from the goal location to the start. The details are given in Algorithm
3. The free space is represented by a grid, all are initially marked as unvisited. To initialize,
the goal cell is marked as visited and given a value of 2. The algorithm then iteratively
finds unvisited neighbors of visited cells and assign them values of one greater than the
visited cell. The result is a ‘wavefront’ radiating outwards from the goal cell as new cells
are assigned increasing values.

Once the wavefront reaches the start cell, the potential function is complete and a path
can be derived based on gradient descent. This is accomplished by beginning at the start
location and iteratively choosing the neighbor with the minimum value.

The wavefront planner has the advantage over the potential fields method in that no local
minima are generated. However, it is computationally more expensive and requires prior
knowledge of the locations of all of the obstacles (offline algorithm).
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Figure 2.5: Path generated from the potential field algorithm (appears in joint publication
[173]).

Fig. 2.6 shows an example implementation of the algorithm. In the figure, the lighter
areas of free space are at a higher potential. The obstacles shown in black are considered
infinite potential. In this case, the free space is discretized into a grid and only four neighbors
are considered in the gradient descent step.

2.1.4 Roadmaps

A roadmap [132] is generated as a subset of the configuration space that satisfies three main
rules:

1. It is possible to get from any start point in the configuration space to the roadmap.
2. It is possible to get from any point on the roadmap to any other point on the roadmap.
3. It is possible to get from the roadmap to any goal point in the configuration space.

Different spaces that have been proven to be roadmaps include the visibility graph [143],
which is generated by connecting every vertex of obstacles that can be connected with a
straight line, and the Voronoi diagram [11], which is the set of points that are equidistant
from at least two obstacles.

Once a roadmap is generated, it can be represented as a graph of edges and nodes, which
can be searched with classical search methods, such as A*, D*, breadth-first search and
many others. Generating the roadmap requires prior knowledge of the positions of all of
the obstacles. However, online methods where the roadmap is built as the robot traverses
the environment do exist and are referred to as ‘sampling-based methods’ [47].
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Algorithm 3 Wavefront algorithm

Input: Map @, start cell gstart, goal cell ggoqr
Output: Path P
1: mark all free space as unvisited
2: index < 2
3: Qgoal + index
4: mark ggoq visited
5: while g4+ not visited do
6:  set all unvisited cells neighboring a cell with value index to index + 1
7:  mark all cells with value index 4 1 as visited
8  index < index + 1
9: end while
10: g < gstart
11: add g to P
12: while g404 not in P do
13: g < neighbor of ¢ with minimum value
14: add q to P
15: end while

2.1.4.1 Generalized Voronoi Diagram

The generalized Voronoi diagram (GVD) is the set of all points in the free space of a map
that are equidistant from at least the two closest obstacles. The GVD can be interpreted as
a topological representation of the map structure that contains the key information intrinsic
to the map but in a much more compact, one-dimensional form, and is a roadmap [47].

An easy way to generate the GVD is to assign a circle with a small radius to each grid
of the map, ¢;, then increase the radius of the circle until it contacts at least one obstacle.
If there is only one contact point, then g; does not belong to the GVD otherwise it does.
Algorithm 4 gives the detail of the approach.

An example of a GVD is shown in Fig. 2.7.

2.1.4.2 Visibility Graph

The visibility graph is an alternate roadmap representation of the free space.

In a visibility map, all obstacle vertices are nodes in the graph. Edges connect nodes that
are in the line of sight of others in the free space. The full algorithm for generating the
visibility graph is given in Algorithm 5. This algorithm requires that obstacles be polygonal.
The set {v;})_, represents all obstacle vertices where V is the total number of vertices in
all obstacles. Each possible combination of vertices is connected with and a straight line,
denoted by Qpine- If all configurations on this line do not intersect with any obstacles then
an edge between these two nodes is added to the graph.

This algorithm produces a graph with a high level of connectivity. The graph can be
pruned by considering the following two definitions:

e Supporting lines are tangent to two obstacles with both of them on the same side of
the line.

e Separating lines are tangent to two obstacles with each on opposite sides of the line.
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Figure 2.6: Path planned with wavefront algorithm.(This figure appears in joint publication
[173])

Figure 2.7: A generalized Voronoi diagram (GVD) (This figure appears in joint publication
[173]). Each point in the GVD is equidistant from at least the two nearest obstacles.
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Algorithm 4 Generate GVD
Input: Map Q

Output: GVD
1: GVD <0
2: for all ¢; € Qpee do
3: <0
4:  C < circle with center g; and radius r
5 cp0
6: while cp =0 do
T: r<r—+Ar
&: Cp < C ﬂ Qobs
9:  end while
10:  if number of elements in cp is greater than 1 then
11: Add ¢; to GVD
12:  end if
13: end for

Algorithm 5 Visibility Graph

Input: Map, Q

Output: Visibility graph VG
1: Add each obstacle vertex v; to VG as node n;
2: fori=1:V do
3: forj=1:V and j # i do

4: q; < closest valid configuration to vertex v;
5: q;j < closest valid configuration to vertex v;
6: Q1ine < set of configurations connecting g; to g; by a straight line in configuration
space
if Qline m Qobs = @ then
Add edge between n; and n; in VG
9: end if
10: end for
11: end for

It can be proven [47] that the best solution will be made of supporting and separating lines.
Therefore all other edges can be removed.

A visibility graph is shown in Fig. 2.8. In reality it can be useful to implement a safety
margin (buffer) around all obstacles so that the paths do not closely approach obstacles.

The visibility graph has the advantage over the GVD roadmap in that it is very simple to
generate. However, the resulting graph in general has more edges and nodes and therefore
will be harder to search. In addition, the path generated from following the roadmap is
guaranteed to come very close to obstacles, and the algorithm requires that obstacles be
represented as polygons.

2.1.4.3 Probability Roadmaps

In some cases, generating the roadmap using either the GVD or the visibility graph is
either too difficult, or results in a graph with so many nodes and edges that it cannot be
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Figure 2.8: A visibility graph (This figure appears in joint publication [173]). The roadmap
is built by connecting all vertices of all obstacles together.

searched efficiently. This can be the case if there are many obstacles, or particularly if
the dimensionality of the configuration space is high. For example, an underwater robotic
arm with multiple links that is used for docking or precise tasks will have a configuration
space dimensionality equal to the number of links in the manipulator. To account for these
problems, sampling-based methods have been proposed. While these algorithms do not
possess desirable qualities such as completeness or optimality, they are effective at solving
real life problems efficiently [129].

There are different types of sampling-based algorithms, but essentially they all aim to
build a roadmap by randomly generating sample locations in the free configuration space.
The first sampling-based algorithm was the probabilistic roadmap (PRM) planner [129].
According to this planner, the entire free configuration space is covered with random samples
which are then connected at a higher level to generate a roadmap. The PRM planner is
designed such that the roadmap building and the query phases of operation are separate;
the entire roadmap is built before a path is found from start to goal. The challenging
aspects of this type of algorithm are: 1) determining whether a randomly generated sample
lies in the free configuration space at all, and 2) determining whether the edge between two
nodes remains in the free configuration space. An implementation of the PRM planner is
given in Algorithm 6.

A path planned with the PRM algorithm is shown in Fig. 2.9. Note that this algorithm
is probabilistically complete, meaning that it is guaranteed to converge towards an optimal
solution if enough nodes are generated.

Other sampling-based methods find a path to the goal as samples are generated. One
popular algorithm is the Rapidly-Exploring Random Trees planner [125].
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Figure 2.9: Path planned using the probability roadmap algorithm (figure appears in joint
publication [173]). The free space is randomly sampled and then connected. This roadmap
is used to find a path from the start to the goal.
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Algorithm 6 Probabilistic Roadmap
Input: Map, )
Output: Probabilistic Roadmap PRM
1: Add gstere and ggoqr to PRM
2: while No path exists from gg4rt t0 qgoa in PRM do

3:  Randomly generate ¢ from Q)

4:  if ¢ € Qfrec then

5: Add q to PRM

6: for all node n € PRM with n # ¢ do

7 if Good path exists from n to g then
8: Add edge in PRM between n and ¢
9: end if

10: end for

11:  end if

12: end while

2.1.5 Cell Decomposition

Cell decomposition refers to any method that partitions the free configuration space into a
set of smaller cells [49]. Once the decompostion has been done, a connectivity graph can
be built, where the cells are the nodes, and cells that share a common edge are connected
in the graph.

Cell decompositions are classified as either exact, semi-approximate, or approximate [49].
Within the cell decomposition methods, the major differences are generally based on how
to generate the cells and what shape they should be. Pioneering work in this field was done
by Acar and Choset. The Boustophedeon cell decomposition is first introduced in [48] and
is based on previous work by Canny and Lin [43]. The cell decomposition is generated by
determining critical points in the workspace where the connectivity of a slice, or 1-D line,
of the free space changes as it is swept across the workspace. This is expanded in [1, 2] to
include a method in which critical points can be detected online and the decomposition is
referred to as a Morse decomposition. The connectivity of the cells is represented by the
Reeb graph. In [3], the approach is applied to a terrestrial demining task where the robot
is able to detect and exploit the pattern of the mines to search more efficiently. In [4], the
algorithm is extended to apply to a robot whose sensor swath is larger than the platform
footprint. In this approach, two heuristics are combined: one for coverage of wide open
spaces based on Boustrophedon search, and one for constricted areas which is based on the
GVD.

Once the cell decomposition is made, a graph is generated where each cell represents a
node in the tree and adjacent cells are connected with an edge. As mentioned, this type
of decomposition is most useful for achieving coverage, but start-to-goal planning can be
done by reducing each cell to one or a few points. In Fig. 2.10 each cell has been reduced
to its centroid. The centroids of cells in the figure are denote by black dots. The blue
lines represent the critical slices. Note that every critical slice is tangent to an obstacle
but cannot penetrate an obstacle. As per the earlier figures, the obstacles are shown in
red. The path found by connecting centroids is shown as the yellow line. Note that in this
simplistic case, a suboptimal path is generated because of the reduction of the cells to only
their centroids.
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Figure 2.10: A path planned using the Morse cell decomposition (figure appears in joint
publication [173]). Once cells are generated, a path is found through the cells that connects
the start and the goal.

19



2.1.6 Coverage Path Planning

Coverage path planning (CPP) is a sub-problem of the more general path planning problem.
Instead of generating a path that efficiently navigates from a start point to a goal point,
the objective is now to generate a path where every point in the workspace is covered with
a sensor. The problem can be formulated as follows: consider a mobile robot with an on-
board sensor with some 2D swath S. A trajectory through the workspace W will result
in a set of N swath readings: {S1,S2,...,Sn}. The goal of CPP is generally to generate a
path through the workspace such that Uf\i 1 Si 2 W, meaning that at some point the sensor
swath has passed over every point in the workspace?.

In the context of CPP, some approaches can be considered as deterministic, which do not
consider uncertainty and can provide completeness under good conditions [85]. Alternately,
non-deterministic or probabilistic approaches are more robust to sensor and actuator noise,
but cannot guarantee completeness. Simple CPP algorithms define structured paths that
follow a predetermined geometry like a lawn-mower or a zig-zag to ensure coverage. These
approaches tend to work well when the structure of the workspace to be covered is completely
known a priori. When the area to be covered is unknown, this task is sometimes referred
to as ‘exploration’ and requires more adaptive algorithms [86].

As described in Choset’s survey of complete coverage methods, there are heuristic [49],
random, and cell decomposition techniques. A heuristic method defines a set of rules to
follow that will result in the entire environment being covered. For example, Acar and
Choset’s complete coverage algorithm based on sensing critical points [1], and Wein’s [226]
method of building corridors based on maximizing a quality function. A key facet of these
approaches is having obstacles to generate the rules. Another recently published method
based on a heuristical approach is [135]. Three independent behaviours are defined: spiral
path tracking, wall following and virtual wall following resulting in paths that are more
energy and time efficient.

Cell decomposition is used to divide up the environment into a manageable number of
cells or areas that can be searched like a graph or tree. Once all cells have been covered,
then the entire workspace has been covered. Commonly used methods of decomposing the
workspace include trapezoidal, or Morse [1] decompositions. Another popular method for
solving the CPP problem is the spanning tree coverage algorithm [82]. The workspace is
decomposed into cells equal in size to the sensor swath and then a Hamiltonian cycle is
determined which visits each cell exactly once. The main drawback of this method is that
the path generated contains many sharp turns which violate the dynamic constraints of any
non-holonomic platform. Other recently proposed cell decomposition approaches to CPP
include: exact cell decomposition for vacuum cleaning [13] and unmanned aerial vehicles
[141], 3D terrain coverage for farming [106], and a trapezoidal decomposition for agricultural
applications [165].

An important aspect of any coverage planner is whether paths are planned online or of-
fline. An offline planner assumes that perfect prior knowledge of the workspace is available.
Online planners are required if it is desired for the agent to adapt to the dynamic envi-
ronment. If the planner uses real-time sensor data then the approach is said to be sensor
driven [165].

2This coverage objective will be explored more fully and expanded upon in Chapter 3 and Chapter 4
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2.1.7 Autonomous Underwater Vehicle Path Planning

Much less research has been done on AUV path planning compared to autonomous ground
or air vehicle planning. This section will summarize some of the more important and recent
results in the field.

One of the first known papers to discuss path planning of AUVs was published by Warren
in 1990 [223]. In this approach, potential fields are used to avoid obstacles and local minima
are avoided by considering the global path. More recently, an optimal kinematic control
scheme is proposed where the cost function to be minimized is the integral of a quadratic
function of the velocity components [29]. In [231], a mixed integer linear programming
method is used to find a path for adaptive sampling of the ocean using AUVs. This type
of algorithm is used as an alternative to static buoys for collecting oceanic data such as
temperature, salinity, etc. The metric for benefit in the objective function is a maximum
sum of probabilities and paths planned are greedy. In [46], genetic algorithms and dynamic
programming are used to find paths for multiple AUVs.

In some cases, such as highly cluttered harbours, obstacle avoidance is an important
consideration. In [179], a path is planned using a fast-marching based method. In [178],
a sequential-quadratic programming approach is used to avoid obstacles detected with a
multi-beam sonar.

A significant consideration in start-to-goal path planning in an underwater environment
is accounting for ocean or estuarine currents, for examples refer to [35], [123], [207], [208],
[5], [214].

In [209], a coverage algorithm for MCM with a side-looking sonar is proposed that uses
cell decomposition and exploits the supposed fact that mines are sometimes laid in lines.
In [77], a Boustrophedon decomposition [48] is combined with the GVD to derive paths
for coverage of a highly unstructured or non-convex environment. This algorithm presumes
that absolute knowledge of the environment is known a priori and all planning is done
offline.

Algorithms have been presented that optimize the design of structured paths for CPP.
For example, in [117], the Cramer-Rao lower bound is used to optimize the track spacing
for a ship hull inspection mission. In [228], a coverage algorithm for MCM with a side-
looking sonar is proposed that optimizes the spacing between parallel tracks. The metric
for optimality is maximizing the mean probability of detection for a given workspace. The
dependence of probability of detection on seabed type and range is described.

AUV coverage algorithms for inspection and reconstruction of underwater objects such
as ship hulls have also been presented [63, 117, 93, 95].

2.1.8 Path Planning with Uncertainty

Chapter 4 extends coverage planning to explicitly consider the state uncertainty of the
robotic platform in a rigorous way. When an AUV submerges to perform a survey, it loses
access to a global position reference. As a result, an uncertainty in the location of the
platform is induced that grows as the AUV remains submerged, especially in the presence
of ocean currents. Without carefully considering this position uncertainty, it is possible
to become overly confident that a certain area of seabed has been covered. In a MCM
application, this can result in mines being missed. There exist very few references in the
literature that consider platform uncertainty in the general path planning problem and
almost none that consider it in a coverage framework.
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A distinction must be made between path planning algorithms that randomly sample
Q@ free and those that explicitly consider robotic platform uncertainty. These sampling-
based methods are considered probabilistic because the locations of the nodes in a graph
or roadmap are randomly generated, but it should be emphasized that the uncertainty of
the pose of the robotic platform itself is usually not considered. In this case, the path
planning problem is often solved using a PRM. The uncertainty in the robot pose can be
incorporated into the calculation of the the heuristic function to determine a probability that
a path generated will be suboptimal [156]. In this approach, the workspace is discretized
into a cost map, where each value in the costmap is no a longer deterministic scalar, but a
RV.

Some start-to-goal path planning methods have considered the platform location uncer-
tainty in the context of designing paths that remain a ‘safe’ distance from obstacles. In
[130] this is achieved through a set-bounding approach where the platform’s 3o ellipse should
never come in contact with an obstacle. As noted, in the context of simultaneous localiza-
tion and mapping (SLAM), there are uncertainties associated with the platform pose and
with the obstacles’ locations that should both be accounted for. An alternative approach
to defining the safe distance based on pose uncertainty that is more closely related to the
approach taken here is to define a probability of collision with an obstacle. Paths can be
chosen that have the right combination of optimality and risk [100]. In [34], a user can spec-
ify a maximum allowable probability of collision and then an optimal path is found subject
to this so-called ‘chance constraint.” In [219], a similar approach is taken that bridges the
gap between planning and control. A linear-quadratic Gaussian motion planner is combined
with the rapidly exploring random trees planner to determine a path that minimizes the
probability of collision with obstacles. The path is planned in advance assuming accurate
stochastic models for motion dynamics and sensor measurements, as well as obstacle loca-
tions. One approach to exploration in the presence of uncertainty is the network of paths
concept presented in [210]. In this approach, localization error at the goal is minimized by
reversing along the known path whenever a dead-end, or untraversable path, is reached.

The literature is extremely scarce with respect to coverage algorithms that even acknowl-
edge the fact that state estimation is probabilistic (examples of publications where vehicle
uncertainty is mentioned in passing in the CPP context include [36], [135]). Recently, a
‘probably approximately correct’ measure of performance for stochastic coverage was defined
in [53]. This measure defines the probability of coverage of a given fraction of the workspace
based on the platform pose uncertainty. However, this approach uses the assumption that
platform localization error is constant.
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2.2 Information Theory

The origins of information theory date back to 1948 and the seminal paper “A Mathematical
Theory of Communication” [200]. Originally used to study the fundamental limits of data
compression, communication and storage, the ideas have now been applied to such diverse
fields as statistical inference, language processing, cryptography, network science and data
fusion [101].

2.2.1 Shannon Information

The Shannon entropy of a continuous random variable (RV) X, with probability density
p(x), is defined as:

H(X) = ~E{log p(x)}

= [ ple)og ey, (26)

or similarly for a discrete RV:

H(X)==> p(z)logp(x) (2.7)

and represents a measure of the compactness of a distribution [88].
As an example consider a binary RV X € {0,1}. The Shannon entropy can be evaluated
as:

(2.8)
=—p(X =1)logp(X =1) = (1 - p(X =1))log (1 — p(X =1))

which demonstrates that H(X) can be represented as a function of p(X = 1) in this case.
If we graph the relation we get Fig. 2.11. Important to note is that the entropy has its
maximum when the p(X = 1) = p(X = 0) = 0.5. In this case the value of X is at its most
uncertain since it has an equal chance of being a 1 or a 0. If we subsequently were given
some further information about X that allows us to guess one outcome as being more likely
than the other, then our uncertainty, or entropy, about X would be reduced. Also of note
in Fig. 2.11 is that the curve is symmetric about the p(X = 1) = 0.5 axis. The entropy
values are in no way related to the values in the distribution (there is no = anywhere in
(2.6), only p(x)). If we are given information that increases the chance of X being 0 or
being 1 it is equivalent from an entropy standpoint.
Now consider two RVs X and Z. The conditional entropy of X given Z is defined as:

H(X12) = ~E{logp(el2)} = ~ [ plal2)logp(al2)da. (29)

Now we can define the mutual information, or entropy reduction as :
AH(X|Z)=H(X)—-H(X|Z). (2.10)
The mutual information defines a scalar quantity that represents the amount of information

about X that is contained in Z, or how much the entropy of X will be reduced by knowledge
of Z.
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Figure 2.11: The Shannon entropy of a binary RV X plotted as a function of p(X = 1)

For example, if X is the location of a target and Z is a RV that represents some uncer-
tain sensor measurement, then AH (X|Z) represents the amount of information that we are
getting about the location of that target by performing the measurement. From a control
perspective, this becomes a useful way of evaluating the utility of actions. However, we usu-
ally don’t know what the measurement will be before we make it, so we cannot evaluate the
mutual information directly since we can’t evaluate p(x|z) directly until the measurement is
actually made. To compensate, if we have a good idea of how our sensor works, then we can
perform an average over a distribution of measurements that could be made. As a result,
we can evaluate the expected entropy reduction, or information gain, which represents the
expected reduction in entropy of X that will come about by making measurement Z:

EZ[AH(X|2)] = H(X) - Ez[H(X|2)), (2.11)

where Fz denotes expectation over Z. One extremely useful aspect of the expected entropy
reduction formulation is that information can be combined additively.

Although the concept of Shannon entropy was originally developed to represent commu-
nication over a noisy channel, it readily extends to exploration, which is closely related to
coverage. From [121]: “Exploration can be viewed as a communication process where the
object of interest is the transmitter, the sensor is the receiver, the sensing process is the
noisy communication channel, and the sensed signal carries information about the object
of interest.”

2.2.2 Fisher Information

The Fisher information is an alternate representation of information that is only defined
for continuous RVs. It also differs from Shannon information in that for a joint distribution
p(x) over a array of RVs X it produces a matrix rather than a scalar value. The Fisher
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information is defined by:
d2
Q(X) = —5 logp(x 2.12
(X) = 5 logp(x) (2.12)
where (X)) is referred to as the information matriz and is a measure of the surface of a
bounding region containing the distribution p(x) [88].
An interesting case is when X is a multivariate n-dimensional Gaussian or normal distri-

bution with mean vector g and covariance matrix 3::

1 1 _
p(x) =N(p, %) = W eXP{_g(X - H)Tz I(X — )} (2.13)

If we apply (2.12) to (2.13) then we arrive at the result that:
QX)=x"1 (2.14)
We can also define an information vector, &:
E=3"1pu (2.15)

and the information vector and information matrix can be used as an alternative parame-
terization of the Gaussian distribution (often referred to as “canonical representation”):

p(x) = N1, Q) = _(273)"|Q\ exp{%xTﬂx + ¢Tx}. (2.16)

which is used for recursive state estimation with the information filter. The additivity of
information is exploited in the information filter in the “update” stage where new sensor
data is processed additively.

Finally, applying the equation for Shannon entropy (2.6) to the Gaussian distribution a
relationship between the Shannon and Fisher information forms can be derived as:

H(X) = — 3 log{(2re)"|94(X)]} (2.17)

where | | is the determinant operation. With (2.17) we can calculate the Shannon entropy
from the Fisher information matrix but we cannot recover a unique Fisher information
matrix from a Shannon entropy value.

2.2.3 Information-Theoretic Approaches to Path Planning

In the realm of robotics path planning, the information concepts can be applied in a number
of different ways.

One of the most common is for target localization. The approach is based on optimal
sensor placement theory developed in [42]. Autonomous vehicle paths are planned to pro-
vide optimal position estimation of a fixed or moving target. In [41], and later in [234],
information gain is used to determine paths from a start point to a goal point where some
points in the environment are characterized as targets that should be classified. Paths are
chosen based on how much information they provide about the targets. These methods
are commonly used for target localization from an unmanned aerial vehicle (UAV). For
example, in [92] a target is localized using a team of quadrotor helicopters. The pose of the
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target is estimated using a particle filter, and a formulation for evaluating the entropy of
a particle set is introduced. A similar approach for a fixed-wing UAV using particle filters
and information gain is presented in [195]. In [121], multiple UAVs cooperatively perform
exploration and gather information about objects of interest. An optimization of vehicle
heading is performed to minimize mission time using the Shannon channel capacity equation
to quantify information. In [216], fixed-wing UAVs are used to localize a target where the
utility of actions is formulated as information gain or probability of detection. In this case
the search is planned over the set of possible trajectories and it is assumed that the rela-
tionship between control inputs and outputs is perfect and deterministic. This assumption
implies that once the search over a finite horizon, or look-ahead time, is complete, the UAV
is able to ezactly follow the optimal trajectory. A similar approach is presented in [206]
where the complexity of information theoretic planning over a fixed control horizon is also
noted. Also related is [70] where an optimization is performed over vehicle headings to min-
imize the probability of misclassification of a target as an alternative to an information gain
objective function. The problem of classification of objects of interest at known locations
is related to the coverage problem studied here. For example, a similar possible solution
is presented in [102] where Shannon information is used to plan paths. In this thesis, no
assumption is made about a priori knowledge of the locations of objects of interest and
instead the mission is formulated as an area coverage problem. The relationship between
these two problems is akin to the difference between the travelling salesman problem and
Chinese postman problem [149]. The travelling salesman problem attempts to find the
shortest path that visits all nodes in a graph and returns back to the starting location. In
the chinese postman problem, the path has to follow every edge in the graph rather than
visit every node.

The problem of optimal planning of angles of viewing, or “looks” of rectangular objects
at known location but unknown orientation is investigated in [38]. References to AUV
planning based on information are relatively scarce. In [32], mutual information is used as
the benefit metric in the objective function, combined with a recursive greedy planner. The
proposed grid decomposition results in very restrictive paths, and the paths designed apply
more readily to a underwater glider.

Another related application of information is for the task of adaptive exploration. Again,
originally used on ground robots [44] and more recently used for planetary exploration [213],
the problem can be posed through the use of information as an optimal control problem
[134]. For example, in [122], an algorithm using information is presented to define optimal
paths for a UAV to navigate through a region and obtain information about objects of
interest. Exploration and coverage of an unknown environment are closely related [86].
However, as noted in [215], a pure information gain solution to the exploration task results
in a greedy solution, and therefore suffers from reduced performance in the case that the
mission objective is complete coverage.

Information is also used in the SLAM literature as active localization where control actions
are selected that support the localization objective based on how much information they
provide about the robot’s location given the map. For example, in [110] multiple quadrotors
use information theory to collectively localize using a linearly scalable framework. In [87]
information is used to control multiple platforms for localization using bearing-only sensing.

Finally, information can be used to trade off the benefits of exploration and localization
[37]. For example in [39], information is used to generate online paths for a UAV in a SLAM
context and a detailed observability analysis is provided.
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2.3 Sidescan Sonar Sensor

Many underwater MCM missions are conducted with a side-looking sensor: either a syn-
thetic aperture sonar (SAS) or a sidescan sonar sensor (SSS). In this research the SSS has
been used. The SSS uses the returns from emitted high frequency sound to generate an
image of the seabed. An object sitting on the seabed will cast a sonar shadow that can be
analyzed to determine if the shape is suggestive of a mine. The on-board SSS gathers data
as the AUV moves forward in rectilinear motion and leaves a narrow channel of unscanned
seabed directly beneath it. An AUV path and corresponding SSS coverage swath are shown
in Fig. 2.12.

»

I
Altitude Ny Range
|

Figure 2.12: An example of the AUV trajectory and corresponding area covered by its SSS.

SSS returns are combined with navigation data to provide geo-referenced mosaicks of the
seabed. An example of a mosaicked image is shown in Fig. 2.13. The target is highlighted.
Often targets will be detected using automated systems [233], which have recently been
implemented on-board AUVs operating in real-time [229]. When the sonar makes sharp
turns, areas on the outside of the turn are missed or distorted due to the finite ping rate of
the sonar. As a result, it becomes very difficult for systems that rely on template matching
to identify targets in these areas [45] and consequently these data are usually completed
discarded.

The angle of incidence of the sonar beam with the seabed has a significant effect on
the size of the shadow cast by an object and therefore the probability of successful mine
detection and classification.

In 2006, there was an effort by the NATO Undersea Research Centre to build a model
to quantify minehunting performance with respect to all factors that can influence the
probability of detecting a target in sonar data. The result was the Extensible Performance
and Evaluation Suite for Sonar (ESPRESSO) [54] which is used in this thesis to model the
coverage performance of the sonar.

The program takes as its input a set of parameters and outputs a lateral range curve,
which is defined as follows [54]:

Definition 2.3.1. The lateral range curve P(y) defines the probability that a target at
a specified lateral distance, y from the robot’s track will be detected somewhere along that
track.
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Figure 2.13: A portion of mosaicked imagery after stitching together the data from a sides-
can sonar survey with a towed body. Image obtained from Defense R&D Canada.

Parameter values that affect the generation of the lateral range curve are described
in Table 2.1 along with the general way in which these parameters are determined. In
ESPRESSO, these parameters are set by the user to generate a sensor performance charac-
teristic (lateral range curve) [54]. The parameters fall into four general categories that will
affect detection: environmental, target, sonar, and platform.

Fig. 2.14 shows the lateral range curves generated by ESPRESSO for three different
seabed types: cobble, sand, and clay, all at a depth of 10 m. In the figure, the “confidence”
at a lateral range y represents the probability that if a mine is present it will be detected in
the subsequent “Mine Detection / Object Classification” stage of the AUV MCM pipeline
shown in Fig. 1.1. This definition will be more formally described in Chapter 3.

It should be explicitly stated that the purpose of this work is not to verify the ESPRESSO
model, but rather to plan paths based on the model. Any underwater sonar sensor’s perfor-
mance will be affected by some or all of the parameters described in Table 2.1 and generally
only half of these parameters are known beforehand. In this work we evaluate the benefit
of potential actions using the ESPRESSO model to represent the sensor characteristic but
without assuming known parameters.

If some of the parameters in Table 2.1 are not exactly known at the time of mission
planning the plans have to be made overly conservative. Alternatively, a preliminary survey
called a rapid environmental assessment can be performed to determine the parameters over
the area of interest, but this adds to the total time for the mission.

In Chapter 3, a formulation based on uncertain sonar performance is developed and
optimal (in the sense of information gathering) plans can be developed notwithstanding the
uncertainty in the lateral range curve.
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Category Parameters Method of Detection
Seabed type Sonar or camera imagery
. Water salinity and
Environmental, F CT sensor
temperature
Water clarity Camera
Water depth Sonar
Target, F Mine typ'e, size and | Only available through prior
configuration surveys of the area
Frequency and range | Known beforehand from sensor
Sonar, S . .
of sensor specifications
Platform V Speed Doppler velocity log
Depth Pressure sensor

Table 2.1: Parameters affecting sonar performance characteristics.
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Figure 2.14: Three sample lateral range P(y) curves generated by ESPRESSO [54]. The
AUV is equipped with sonar sensors on both sides of the vehicle, this plot shows only one
side.
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2.4 Autonomous Underwater Vehicle Localization

AUV localization is a challenging problem due primarily to the limited bandwidth and
rapid attenuation of higher frequency acoustic signals and the unstructured nature of the
undersea environment?. Above water, most autonomous systems rely on radio frequency
communications and global positioning. However, underwater such signals propagate only
short distances and acoustic based sensors and communications perform better. Acoustic
communications still suffer from many shortcomings such as:

e Small bandwidth, which means that multiple pairs of communicating nodes have to
use time division multiple access (TDMA) techniques to share the communication
channel,

e Low data rate, which constrains the volume of data that can be transmitted,

e High latency since the speed of sound in water is only 1500m/s (five orders of magni-
tude slower than electromagnetic signals),

e Variable sound speed due to variable water temperature, density, and salinity,

e Multi-path transmissions due to the presence of an upper (free surface) and lower (sea
bottom) boundary coupled with variable sound speed

e Unreliability, resulting in the need for a communications system designed to handle
frequent data loss in transmissions.

An alternative to acoustic communication are optical, or laser, communications techniques
that can achieve higher reliability but suffer from reduced range, usually on the order of
100m.

Notwithstanding these significant challenges, research in AUV localization has exploded
in the last ten years. The field is in the midst of a paradigm shift from old technologies,
such as long baseline (LBL) and ultra short baseline (USBL), which require pre-deployed
and localized assets, towards dynamic multi-agent system approaches that allow for rapid
deployment and flexibility with minimal infrastructure. In addition, SLAM techniques
developed for above water robotics applications are being increasingly applied to underwater
systems. The result is that bounded error and accurate localization for AUVs is becoming
possible with less cost and overhead.

2.4.1 Overview

AUV localization techniques can be categorized according to Fig. 2.15.
In general, these techniques fall into one of three main categories:

e Inertial / Deduced Reckoning: Inertial navigation uses accelerometers and gyro-
scopes for increased accuracy to propagate the current state. Nevertheless, all of the
methods in this category have position error growth that is unbounded.

e Acoustic transponders and modems: Techniques in this category are based on
measuring the time-of-flight (TOF) of signals from acoustic beacons or modems.

3The review presented in this section has been accepted for publication [174].

30



“([p21] woryeoriqnd gurol ur sreedde omdy) eoueurioyred
posearour opraoid 03 WPISAS 9UO UI PIUIGUIOD UIO dI8 SPOYISW IS ], 'SUOIJRIYISSL[D UOIIBSIARU IojeMIOpPUN JO SUI[IN() :GT'g 9IS

T —— -~ uolneloge||0D
! uonezi|eoo aAiesadoo) |
|
I I
“ swes) swes) syelo soepns _
I snoauabolsiay snosuaBouwoy snowouojne |
“ | uoddns
o V/: ||||// |||||||||||||| ) | eoeuns pauuew
\ /
\ / alempieH Josusg
dVYNOS —
JeUOS 1eUOS ojsnooe o5 slepuodsuel |
Buibue. BuiBew / aulidseq auljaseq auleseq uooeaq
Buo) uoys-eqn uoys paxi a|buls
selawe)
Jajowojaubew JoSuas
0a3l9)s Jejnoouowl onssaid NI IAad ssedwoo
\ /
/ \\
Swispouw pue Buiuoyoal
oneubew onsnooe leondo siopuodsue.) paonpap | [eiaul
olsnooe -
eoisAydoas
SRR ABojouyoa | Josuag

uonebireN ANV

31



e Geophysical: Techniques that use external environmental information as references.
This must be done with sensors and processing that are capable of detecting, identi-
fying, and classifying some environmental features.

The type of navigation system used is highly dependent on the type of operation or
mission and in many cases different systems can be combined to yield increased performance.
The most important considerations are the size of the region of interest and the desired
localization accuracy.

Past reviews on this topic include [211], [137], and [118]. Significant advances have been
made since these reviews both in previously established technologies, and in new areas.
In particular, the development of acoustic communications through the use of underwater
modems has lead to the development of new algorithms. In addition, advancements in
SLAM research have been applied to the underwater domain in a number of new ways.

2.4.2 Commonly Used Sensors

Table 2.2 describes some commonly used sensors for underwater navigation.

Description Performance Cost

A compass provides a globally
bounded heading reference. A
typical magnetic compass does
so by measuring the magnetic
field vector. This type of com-
pass is subject to bias in the
presence of objects with a strong On the or-
magnetic signature and points | Accuracy within 1° to 2° for a | der of hun-
to the earth’s magnetic north | modestly priced unit. dreds of dol-
pole. More common in ma- lars US.

rine applications, a gyrocom-
pass measures heading using a
fast spinning disc and the ro-
tation of the earth. It is unaf-
fected by metallic objects and
points to true north.

3-axis Compass

Since the pressure gradient is
much steeper underwater (10m | &~ $100 to 200
= 1 atmosphere) we can achieve | USD

high accuracy ~ 0.1m.

Underwater depth can be mea-
sured with a barometer or pres-
sure sensor.

Pressure Sensor
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Doppler Velocity Log

The Doppler velocity log uses
acoustic measurements to cap-
ture bottom tracking and deter-
mine the velocity vector of an
AUV moving across the seabed.
It determines the AUV surge,
sway, and heave velocities by
transmitting acoustic pulses and
measuring the Doppler shifted
returns from these pulses off the
seabed. Doppler velocity logs
will typically consist of four or
more beams. Three beams are
needed to obtain a 3D velocity
vector.

Nominal standard deviation on
the order of 0.3cm/s to 0.8cm/s.

~ $20k to
80k USD

Sonar

A sonar is a device for remotely
detecting and locating objects
in water using sound. Pas-
sive sonars are listening devices
that record the sounds emit-
ted by objects in water. Ac-
tive sonars are devices that pro-
duce sound waves of specific,
controlled frequencies, and lis-
ten for the echoes of these emit-
ted sounds returned from re-
mote objects in the water. Ac-
tive sonars can be categorized as
either imaging sonars that pro-
duce an image of the seabed,
or ranging sonars which produce
bathymetric maps. More de-
tails of specific active sonar de-
vices are presented in Table 2.3
in Section 2.4.6.2.

Along-track image resolution for
an imaging side-scan sonar is a
function of many factors such
as range, sonar frequency, and
water conditions, however cross-
track resolution is independent
of range. For example, a
Klein 5000 side-scan operat-
ing at 455kHz can achieve an
along track resolution of 10cm
at 38m range and 61lcm at the
maximum 250m range and a
Klein 5900 sidescan operating
at 600kHz can achieve along
track resolution 5ecm at 10m and
20cm resolution at the maxi-
mum 100m range. In both
cases nominal cross-track reso-
lution is 3.75c¢m. Resolution for
a bathymetry sonar is on the or-
der of ~ 0.4° to 2° along track
and =~ 5 to 10cm cross-track.

Prices  vary
widely from
20k to 200k
USD or more.
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GPS

GPS can be used for surface ve-
hicles. Position is estimated us-
ing the TOF of signals from syn-
chronized satellites.

Many factors can influence the
accuracy of a GPS reading, in-
cluding type of GPS technique
used, atmospheric conditions,
number of satellites in view, and
others. Precisions for different
GPS systems are: common com-
mercial off-the-shelf GPS - 10m,
Wide Area Differential GPS -
0.3 to 2m, Real-Time Kinematic
- 0.05 to 0.5m, Post processed -
0.02 to 0.25m.

From  hun-
dreds to
thousands of
dollars.

Inertial Measurement Unit (IMU)

Use a combination of accelerom-
eters and gyroscopes (and some-
times magnetometers) to esti-
mate a vehicle’s orientation, ve-
locity, and gravitational forces.

e Gyroscope: Measures
angular rates. For un-
derwater applications.
Commonly-used types

ring laser and

MEMS Since a gyroscope

measures angular rates,

there will be a drift in the
estimated Euler angles as

a result of integration.

include

e Accelerometer: Measures
the force required to accel-
erate a proof mass. Com-
mon designs include pen-
dulum, MEMS, and vi-
brating beam among oth-
ers.

e Gyroscope - Drift ex-
tremely variable from
0.0001°/hr (ring laser)
to 60°/hr or more for
MEMS [56].

e Accelerometer -  Bias
range from 0.01lmg
(MEMS) to  0.00lmg

(Pendulum) [56].

Extremely
variable.
From  hun-
dreds of
dollars for a
MEMS IMU

to hundreds
of thousands
of dollars for
a commercial
grade  ring-
laser or fibre
optic system.

Table 2.2: Some on-board AUV sensors used for state estimation.

2.4.3 Inertial Systems

When the AUV positions itself autonomously, with no acoustic positioning support from a
ship or acoustic transponders, it dead reckons. With deduced (ded) reckoning, the AUV
advances its position based upon knowledge of its orientation and velocity or acceleration
Traditional ded reckoning is not considered a primary means of navigation but
modern navigation systems, which depend upon ded reckoning, are widely used in AUVs.
The disadvantage of ded reckoning is that errors are cumulative. Consequently, the error

vector.
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in the AUV position grows unbounded with distance traveled.

One simple method of ded reckoning pose estimation, for example if heading is available
from a compass and velocity is available from a Doppler velocity log (DVL), is achieved by
using the following kinematic equations:

i =v"cosp + v¥siny

Yy =v"siny + v’ cosy (2.18)

P =0

where (z,y,1) is the position and heading in the standard North-East-Down coordinate
system, and v%, and vV are the body frame forward and starboard velocities. In this model
it is assumed that roll and pitch are zero and that depth is measured accurately with a
depth sensor.

An inertial system aims to improve upon the ded reckoning pose estimation by integrating
measurements from accelerometers and gyroscopes. Inertial proprioceptive sensors are able
to provide measurements at a much higher frequency than acoustic sensors that are based
on the TOF of acoustic signals. As a result, these sensors can reduce the growth rate of
pose estimation error, although it will still grow without bound.

One problem with inertial sensors is that they drift over time. One common approach,
for example used in [153], is to maintain the drift as part of the state space. Slower rate
sensors are then used to calibrate the inertial sensors. In [153], the authors also track other
possible sources of error such as the variable speed of sound in water to reduce systematic
noise. These noise sources are propagated using a random walk model, and then updated
from DVL or LBL sensor inputs. Their inertial navigation system (INS) is implemented
with an inertial measurement unit that runs at 150Hz.

The basic kinematics model (2.18) is incomplete if the local water current is not accounted
for. The current can be measured with an acoustic Doppler current profiler (ADCP). For
implementations with ADCP see [84] [89]. A DVL is usually able to calculate the velocity
of the water relative to the AUV, v, and the velocity of the seabed relative to the AUV,
vg. Then the ocean current can be calculated easily as v. = vy - v5. The ocean current
can also be obtained from an ocean model, for example in [94] where ocean currents are
predicted using the regional ocean modeling system [202] combined with a Gaussian process
regression [184]. If access to the velocity over the seabed is not available, then the current
can be estimated from a transponder on a surface buoy as in [24]. In [24], the authors
analyzed the power spectral density to remove the low frequency excitation on the buoy
due to the waves to estimate the underwater current.

The performance of an INS is largely determined by the quality of its inertial measurement
units. In general, the more expensive the unit, the better its performance. However, the
type of state estimation also has an effect. The most common filtering scheme is the
extended Kalman filter (EKF), but others have been used to account for the linearization
and Gaussian assumption shortcomings of the EKF. For example, in [112] an unscented
Kalman filter (UKF) is used and in [99] a particle filter (PF) application is presented.

Improvements can also be made to INS navigation by modifying (2.18) to provide a more
accurate model of the vehicle dynamics. The benefits of such an approach are investigated
in [90], particularly in the case that DVL loses bottom lock, for example.

Inertial sensors are the basis of an accurate navigation scheme, and have been combined
with other techniques described in subsequent sections. In certain applications, navigation
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by inertial sensors is the only option. For example, in extreme depths where it is impractical
to surface for GPS, an INS is used predominantly, as described in [227].

The best INS can achieve a drift of 0.1% of the distance traveled [74], however, more
typical and modestly priced units can easily achieve a drift of 2-5% of the distance traveled.

2.4.4 Acoustic Transponders and Beacons

In acoustic navigation techniques, localization is achieved by measuring ranges from the
TOF of acoustic signals. Common methods include:

e Ultra Short Baseline: Also sometimes called super short baseline. The transducers
on the transceiver are closely spaced with the approximated baseline on the order of
less than 10 centimetres. Relative ranges are calculated based on the TOF and the
bearing is calculated based on the difference of the phase of the signal arriving at the
transceivers. See Fig. 2.16-b.

e Short Baseline: Beacons are placed at opposite ends of a ship’s hull. The baseline
is based on the size of the support ship. See Fig. 2.16-a.

e Long Baseline and GPS Intelligent Buoys: Beacons are placed over a wide
mission area. Localization is based on triangulation of acoustic signals. See Fig. 2.16-
c. In the case of GPS intelligent buoys, the beacons are at the surface whereas for
LBL they are installed on the seabed.

e Single Fixed Beacon: Localization is performed from only one fixed beacon.

e Acoustic Modem: The recent advances with acoustic modems have allowed for new
techniques to be developed. Beacons no longer have to be stationary.

Figure 2.16: (a) Short baseline (b) Ultra-short baseline (c) Long baseline (figure appears in
joint publication [174])

Due to the latency of acoustic updates, state estimators are implemented where the ded
reckoning proprioceptive sensors provide the predictions and then acoustic measurements
provide the updates.

2.4.4.1 Ultra Short and Short Baseline

USBL navigation allows an AUV to localize itself relative to a surface ship. Relative range
and bearing are determined by TOF and phase differencing across an array of transceivers,
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respectively. A typical setup would be to have a ship supporting an AUV. In short baseline,
transceivers are placed at either end of the ship hull and triangulation is used.

The major limitation of USBL is the range and of short baseline is that the positional
accuracy is dependent on the size of the baseline, i.e. the length of the ship.

In [190] an AUV was developed to accurately map and inspect a hydro dam. A buoy
equipped with an USBL and differential GPS helps to improve upon ded reckoning of the
AUV which is performed using a motion reference unit, a fibre optic gyro and a DVL.
An EKF is used to fuse the data and a mechanical scanning imaging sonar (MSIS) tracks
the dam wall and follows it using another EKF. For this application, the USBL is a good
choice because the range required for the mission is small. The method proposed in [186]
augments [190] by using a delayed-state information filter to account for the time delay in
the transmission of the surface ship position.

In [23], sensor based integrated guidance and control is proposed using a USBL positioning
system. The USBL is installed on the nose of the AUV while there is an acoustic transponder
installed on a known and fixed position as a target. While homing, the USBL sensor listens
for the transponder and calculates its range and the bearing based on the time difference of
arrival. In [181], USBL is used for homing during the recovery of an AUV through sea ice.

In [113], data from an USBL and an acoustic modem is fused by a particle filter to improve
ded reckoning. As a result, the vehicle operates submerged longer as GPS fixes can be less
frequent. The simulation and field experiments verify the developed technique.

In [154], a ‘tightly-coupled’ approach is used where the spatial information of the acoustic
array is exploited to correct the errors in the INS.

2.4.4.2 Long Baseline / GPS Intelligent Buoys

In LBL navigation, localization is achieved by triangulating acoustically determined ranges
from widely spaced fixed beacons. In most cases, the beacons are globally referenced before
the start of the mission by a surface ship [128], a helicopter [104], or even another AUV
[220]. In normal operation, an AUV would send out an interrogation signal, and the beacons
would reply in a predefined sequence. The two way travel time of the acoustic signals is used
to determine the ranges. However, there have been implementations in which synchronized
clocks are used to support one-way travel time ranging [51].

GPS intelligent buoys remove the need for the LBL beacons to be installed at the seafloor
which can reduce installation costs and the need for recovery of these beacons.

One of the limitations of LBL is the cost and time associated with setting up the network.
However, this can be mitigated to some extent if the beacon locations are not globally
referenced and either self-localize [50], or the AUV can localize them by performing SLAM.
For example, [161] uses a nonlinear least squares implementation, whereas [177] uses a
particle filter version of SLAM to determine the location of the fixed beacons during the
mission.

A major consideration in an LBL localization network is the treatment of outliers. Meth-
ods to account for outliers in LBL systems include hypothesis grids [31] and graph parti-
tioning [166]. Generally, range measurements can fall into one of three categories: direct
path, multi-path, or outlier. In [31], a hypothesis grid is built to represent the belief that
future measurements from a particular cell will be in a particular category. In graph parti-
tioning, outliers are rejected using spectral analysis. A set of measurements is represented
as a graph, then the graph partitioning algorithm is applied to identify sets of consistent
measurement [166].
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Another consideration is the time difference of arrival of the acoustic responses of the
network [33], [59]. The change in vehicle pose between the initial interrogation request and
all of the subsequent replies must be explicitly handled. This is often done with a delayed
state EKF.

Major drawbacks of LBL are the finite range imposed by the beacons, and the reliance
on precise knowledge of the local sound velocity profile of the water column based on
temperature, salinity, conductivity, and other factors [128]. However, the LBL systems do
overcome these shortcomings to be one of the most robust, reliable, and accurate localization
techniques available. For this reason it is often used in high-risk situations such as under-ice
surveys [104], [126]. Other implementations include: alignment of Doppler sensors [119] and
deep water surveys [232]. An extensive evaluation of the precision of LBL is provided in
[30].

2.4.4.3 Single Fixed Beacon

A downside of LBL systems is the cost and time required for installing the beacons and
geo-referencing them. It is possible to reduce these infrastructure requirements if only a
single fixed beacon is used instead of a network of them. The concept is that the baseline
is synthesized by propagating the ranges from a single beacon forward in time until the
next update is received. This technique has been referred to as virtual LBL and has been
simulated on real world data in [131]. It is noted that the AUV trajectory has a significant
effect on the observability of the vehicle state. Long tracks directly towards or away from
the single fixed beacon will cause unbounded growth in position error. As a result, tracks
or paths for the survey vehicle being localized in this manner should be planned to be
tangential to range circles emanating from the transponder.

A visual representation of single beacon navigation is shown in Fig. 2.17. It assumes that
the vehicle has prior knowledge of the beacon location. In the figure the vehicle receives
three acoustic pings from the beacon at the bottom. Each time, reception of a ping results
in a reduction of uncertainty in the direction of the beacon.
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Figure 2.17: An AUV localizing with a single fixed beacon at known location. Uncertainty
grows in between updates from the beacon. On reception of an update, uncertainty is
reduced in the dimension coinciding with the location of the beacon. (figure appears in
joint publication [174])

Single beacon navigation has also been used for homing, for example in [79]. This task
is particularly challenging because the AUV will preferentially move in a track directly
towards the beacon, violating the observability criterion. As a result, path planning must
be designed to avoid this situation. This can be particularly useful for recovering an AUV
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that has become inoperable, but is still able to transmit pings.

2.4.4.4 Acoustic Modem

Advances in the field of acoustic communications have had a major effect on underwater
navigation capabilities. The acoustic modem allows simultaneous communication of small
packets and ranging based on TOF. If the position of the transmitter is included in the
communicated information, then the receiver can bound its position to a sphere centered
on the transmitter. This capability removes the need for beacons to be fixed or localized
prior to the mission. In addition, it allows for inter-AUV communication, which means
teams of AUVs can cooperatively localize.

Popular acoustic modems are manufactured by Woods Hole Oceanographic Institute,
Teledyne Benthos, and Evologics among others. In general communication can either use
frequency shift keying with frequency hopping (FH-FSK), which is more reliable but pro-
vides lower data rates, or variable rate phase-coherent keying (PSK). Some models also
include precise pulse-per-second clocks to allow synchronous ranging. Typically, due to
the limited bandwidth underwater, the communication channel is shared using a TDMA
scheme. In TDMA, each member in the group is allotted a time slot within which to broad-
cast information. The major detractor of such a scheme is that the total cycle time grows
with group size. At present, achievable bit rates range from 32 bytes per 10s packet with
FSK, to several kbit/s in optimal conditions with PSK.

The ability of a modem at the surface to transmit its location to the survey vehicles
provides two important benefits over past navigation methods: 1) it removes the necessity
to geo-reference the beacons prior to starting the mission, and 2) it allows the beacons to
move during the missions. The first advantage saves time and money, and the second allows
the mission range to be extended as necessary without re-deploying the sensor network.
Many methods have been recently published that exploit one or both of these benefits.

The moving long baseline concept was first demonstrated in [218] using a Sonardyne
AvTrack acoustic navigation system. Two manned surface vehicles were used to support
one AUV. This concept has proved particularly useful for mapping rivers, such as in [150],
where two boats are used to continuously define a cross-section of the river to be mapped
near the location of the AUV.

This approach has been extended to a single moving source. A manned surface ship can
localize itself with GPS and bound the error of one or more survey AUVs by broadcasting
its position. Such an approach is attractive because there is no need for calibration or
recovery of beacons.

In [225] and [224], a deep water validation was performed for the single moving beacon
concept. It should be noted that localization is done in post-processing. In the proposed
approach, an EKF maintains an estimate of the of the position of the survey vehicle as well
as the support ship. In a deep water application, the time taken for the acoustic transmission
should be accounted for in the filtering algorithm. Here, this is represented as a delayed
state EKF. It is accurately noted that the TOF measured is the range between the current
position of the receiver and a previous position of the sender. In [224], the performance
of the single beacon navigation is compared against an LBL system. Also, there is a more
rigorous discussion on sources of error in acoustic range measurements such as errors in
sound velocity estimation, acoustic multi-path, and errors in ship GPS. Similarly, in [151] a
deep diving AUV is localized in post-processing. In this case, the survey vehicle is required
to execute a known closed path after it dives to a depth of 6000m. A similar approach is
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presented in [80] to map the magnetic signature of a moving vessel.

If the survey vehicles are acting as passive listeners using one-way travel time for range
measurement, then the system naturally scales well with number of survey vehicles assuming
they stay within range of the surface vehicle. In [66] and [69], a maximum likelihood sensor
fusion technique is presented to localize survey vehicles to within 1m over a 100km survey.
It is also noted in this paper that over a long survey, the drift of the pulse-per second clock
will have a significant effect on the localization performance.

2.4.5 Cooperative Localization

In GPS-denied environments mobile robots can estimate their positions by ded reckoning,
integrating velocity or acceleration measurements. The position itself is not observable so
the position error will grow without bound.

2.4.5.1 Background

It has been shown that if a team of robots without access to a global reference can share
their information and make relative measurements of each other, then the rate of increase
of the position error will grow more slowly for every member of the team [192] [96] [185]
[81]. This is referred to in the literature as cooperative localization.

Likely the first research done on the subject was presented in [127] where robots in a
team take turns acting as stationary landmarks. Since, the restrictions on robots being
stationary have been removed and advances have been made in several areas including:

e Comparing different estimators, such as maximum likelihood [96], maximum a poste-
riori (MAP) [159], EKF [97], particle filter [182], nonlinear least squares [235],

e Reducing computational complexity, such as [6]. Full complexity analysis is performed
in [60],

e Reducing communication overhead, for example through quantization of data [217,
160], or by careful consideration of which data needs to be transmitted [158] [138].

Another potential advantage of the cooperative localization approach is that increased
sensing capabilities of one member can benefit the entire team. For example, in [17], it
is shown how one vehicle with a more expensive INS can result in increased localization
performance for vehicles that it is able to communicate with. A thorough performance
analysis for this case is presented in [155].

In [193], the scalability of cooperative localization is addressed, and it is shown that an
upper bound on the rate of increase of position uncertainty is a function of the size of the
robot team. The more robots in the team, the better the cooperative localization will be.
However, this is subject to the law of diminishing returns: each new additional member
improves the location estimation of the team less than the previous. Other important
results have been proven, such as that the maximum expected rate of uncertainty increase
is independent of the accuracy and number of range measurements and depends only on
the accuracy of the proprioceptive sensors on the robot [155].

Another aspect of the cooperative localization scheme that has been extensively inves-
tigated is the observability of the system. For example, in [201], the bearing only case is
considered for cooperative SLAM, and in [235] the range only cooperative localization case
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is analyzed for observability properties. In [97], it is shown that the observable subspace of
a standard EKF implementation of cooperative localization is of higher dimension than the
true nonlinear system, which can lead to overconfidence in the EKF estimate.

Here we are particularly interested in estimating the entire robot trajectory to minimize
the position error of objects of interest detected in sonar data. Therefore we are particularly
interested in the MAP cooperative localization case, specifically applied to the underwater
environment.

A distributed MAP approach is presented in [159]. Here it is shown that, in the case of
a fully connected and high bandwidth communication scheme, the calculation of the batch
MAP solution can effectively be distributed across members of the team. This could be
particularly effective in the case that communications are reliable but on-board computation
is lacking. However, the approach is infeasible for underwater implementation since the
bandwidth requirements and communication synchronicity are violated.

2.4.5.2 Underwater Cooperative Localization

Although many general cooperative localization papers cite the underwater world as a pos-
sible application space, most make either implicit or explicit assumptions which are not
applicable to underwater cooperative localization. Nevertheless, advances in underwater
cooperative localization have seen a surge in recent years due largely to advances in under-
water communications capabilities.

A graphical depiction of multiple AUV cooperative localization is shown in Fig. 2.18.
Data is transmitted through the acoustic channel. Upon reception of a data packet, the
receiver, vehicle j, can use the TOF of the acoustic signal to determine its range, r;;, from
the sender, vehicle i. If the vehicles possess well synchronized clocks, then this range can be
determined from the one-way travel time of the acoustic signal, otherwise an interrogation-
reply is performed to determine a round-trip range.

The result of these new communications capabilities is that operations that were previ-
ously performed with fixed and pre-localized beacons can now be adapted to use nodes with
acoustic modems as moving beacons. For example, in [218] two manned surface vehicles are
used to support an AUV, referred to as moving long baseline. Once it has been established
that vehicles can navigate with the help of manned surface vehicles, a natural progression
for the sake of increased autonomy is to move towards unmanned surface vehicles. The first
known implementation of autonomous surface crafts (ASCs) being used to support AUVs
is presented in [52], which is an extension of the moving long baseline concept. Two ASCs
are used to support one Odyssey III AUV in a series of experiments in 2004 and 2005. In
[15], two ASCs are used and a general framework is developed for cooperative localization.
Bahr et al. developed a framework [16] whereby a single vehicle, termed a communication-
s/navigation aid (CNA) can support a team of AUVs. The CNA can either be a surface
craft or and AUV, but all measurements are made relative to the CNA and all communi-
cations are marshalled by the CNA. This is further verified by Fallon et al. [75] who used
a single autonomous surface craft to aid AUV localization. In both cases, each successful
acoustic communication restricts the survey vehicles’ locations to an annulus assuming that
all vehicles are able to accurately measure their depths.

In [76], the approach is extended to the homogeneous AUV case where any vehicle in
the team can surface for a GPS fix to bound the location error of the entire team. In this
case a “keyframe” rate is used where multi-vehicle state beliefs are only estimated at some
integer fraction of the communication frequency. All other communications are used for
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Figure 2.18: Cooperative localization for AUVs: relative ranges are determined from TOF
of acoustic communication packets. (figure appears in joint publication [174])
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marshalling data.

In [14] an “Interleaved Update” approach is used for a multi-AUV EKF implementa-
tion. In this approach, each vehicle maintains a bank of N? EKF filters where each filter
only includes inter-vehicle measurements from a subset of the rest of the AUV team. On
transmission, each vehicle transmits its estimate from all of the N? filters.

A key consideration in both [14] and [76] is maintaining consistency of the estimator by
correctly accounting for the cross-correlations that are induced when one vehicle estimates
its position relative to another. Also, optimizing the use of the communication channel is
important since bandwidth is restricted and AUVs must take turns transmitting in a TDMA
scheme. Further experimental results with an AUV /CNA cooperation scheme were recently
presented in [221]. In this case unknown ocean currents are also explicitly accounted for.

2.4.6 Geophysical Localization

Geophysical localization refers to any method that utilizes external environmental features.
Almost all methods in this category that achieve bounded position error use some form of
SLAM. Categories include:

e Magnetic: It has been proposed to use magnetic field maps for localization. The
only known work in this area is by Claus and Bachmayer [12] who have developed a
magnetometry system for mapping and navigation using magnetic data. In addition,
the team at the University of Idaho has been mapping the magnetic signatures of
Navy vessels [8, 7].

e Optical: Use of a monocular or stereo camera to capture images of the seabed and
then match these images to navigate.

e Sonar: Used to acoustically detect then identify and classify features in the environ-
ment that could be used as navigation landmarks. With bathymetric sonar features
can be extracted almost directly from assembled returns. With sidescan (imaging)
sonar, feature extraction is achieved through post-processing of imagery.

2.4.6.1 Optical

Visual odometry is the process of determining the robot pose by analyzing subsequent cam-
era images. This can be achieved through optical flow or structure from motion. Invariant
extraction and representation of features is an important consideration. Many previous al-
gorithms have been proposed and applied in ground and air robotics, such as scale-invariant
feature transform (SIFT) [142], speeded up robust feature (SURF) [25], amongst many oth-
ers*. Images can be captured with either stereo or monocular cameras. Stereo cameras
have the added advantage that full six degree-of-freedom transformations between consec-
utive image pairs can be found. The major challenge is closing loops in the trajectory by
associating non-consecutive images, which is necessary to bound localization error.
Limitations for optical systems in underwater environments include the reduced range
of cameras, susceptibility to scattering, and inadequacy of lighting. As a result, visible
wavelength cameras are more commonly installed on hovering AUVs because they can get
close to objects of interest. In addition, visual odometry and feature extraction rely on

“For a review and comparison of some methods, see [152].
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the existence of features. Therefore optical underwater navigation methods are particu-
larly well-suited to small-scale mapping of feature-rich environments. FExamples include
shipwreck and dam inspections.

In [67] and [64], Eustice et al. present an implementation of underwater vision-based
SLAM called visually augmented navigation (VAN). The multi-sensor approach combines
the benefits of optical and inertial navigation methods and is robust to low overlap of im-
agery. The approach is a view-based version of EKF-SLAM, where camera-derived relative
pose measurements provide the spatial constraints for visual odometry and loop closure.
In [68] and [65], the VAN approach is converted to the information form and it is proven
that the view-based exact sparse extended information filter SLAM maintains a sparse in-
formation matrix without approximations or pruning. This approach was applied to deep
water surveying of the RMS Titanic in [68]. The issue of recovering the mean and the
covariance from the information form is also addressed. SIFT and Harris extraction points
are used to match images. The VAN method has also been applied to ship-hull inspection
for the U.S. Navy [116]. In recent work, [95] uses features from both a profiling sonar and a
monocular camera in full pose graph formulation for a hovering AUV performing ship hull
inspections. Odometry is derived relative to the ship hull using a DVL locked onto the ship.
An approach to tackle the problem of data association in feature-poor areas of a ship hull is
explored in [115] using a novel online bag-of-words approach to determine inter-image and
intra-image saliency. In computer vision, the bag-of-words model can be used to categorize
features in imagery.

Feature-based approaches to underwater SLAM have also been proposed. For example,
in [62], an augmented EKF is used to generate a topological representation. Non-time-
consecutive images are compared and loop closures are made based on observation mutual
information. Feature-based EKF SLAM is also applied to the underwater environment in
[197] and [198].

A byproduct of accurate localization is that accurate mapping can be achieved. Several
authors have shown the ability to compute 2D and 3D reconstructions of the underwater
environment based on optical underwater SLAM. For example, in [205], an structure from
motion model together with SLAM are used to photomosaic the RMS Titanic as well as a
hydrothermal vent area in the mid-Atlantic. In [109], 3D reconstructions of an underwater
environment are done using SLAM with a combination of multi-beam sonar and stereo
camera.

Pure visual odometry based methods that do not require SLAM can be used for applica-
tions such as pipeline tracking [167].

2.4.6.2 Sonar

Sonar imaging of the ocean pre-dates AUVs by decades. As a result, it is a fairly robust
technology. Several types of sonars are used for seabed and structure mapping. They are
summarized in Table 2.3.

Sonars are designed to operate at specific frequencies [120] depending on the range and
resolution required. In all cases, the performance of the SLAM algorithm is dependent on
the number and quality of the features present in the environment.

Imaging Sonar

The insonified swath of the sidescan sonar is shown in Fig. 2.19-a. The intensity of the
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Sonar ‘ Description ‘ Pros Trade-Off ‘ Ref ‘

SSS Multiple  beams | Can work at rela- | Resolution in- | [194] [74]
that measure | tively high speeds | versely — propor- | [105] [9]
intensity of re- | (10kt) to give high | tional to range,
turns to create a | area coverage. e.g. 1.8 MHz
2D image of sea produces 40 m
bed; beams are range.
directed perpen-
dicular to travel

o direction.
£ | FLS Similar in princi- | Obstacle avoid- | Limited distance | [222] [107]
¥ ple to a side-scan | ance, also as a | to depth ratio (
_.E sonar only beams | nadir gap filler. 6:1 max); single
are directed for- angle of view.
ward.

SAS Coherent process- | Range indepen- | Optimal at low | [203] [212]
ing of consecu- | dent resolution. speeds. and | [163]
tive displaced re- deeper water.
turns to synthe-
size a virtual ar-
ray.

MSIS One beam with | Cheaper than | Slow.  Accuracy | [189], [187],
actuator that | multi-beam. depends on AUV | [146], [147],
scans a swath. attitude. [148],  [91],

[188]

Echo Single, narrow | Yield representa- | Point  measure- | [72, 73]

Sounder | beam used to | tion of seabed and | ments in generally
determine depth | targets between | one direction.
below the trans- | transducer to
ducer. seabed.

bSD Profiler Low-frequency Information  on | Penetration depth | [145]

EO echo sounders | subsurface fea- | inversely propor-

52 that penetrate the | tures. tional to resolu-
seabed. tion.

Multi- TOF from re- | Gathers echo | Resolution in- | [21] [20] [19]

Beam turns to assemble | sounding data | versely pro- | [18]
bathymetric more  efficiently | portional to
maps. than a  single | frequency.

beam.

Table 2.3: Sonar imaging and ranging devices used for underwater localization.
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Figure 2.19: Sonar sensor swaths: (a) Sidescan (b) Multibeam (c) Foward looking (d)
Mechanical scanning and imaging (e) Synthetic aperture. (figure appears in joint publication
[174])

acoustic returns from the seabed of this fan-shaped beam also depends on the bottom type
and is recorded in a series of cross-track slices. When mosaicked together along the direction
of travel, these assembled slices form an image of the seabed within the swath of the beam.
Hard objects protruding from the seabed send a strong return which is represented as a
dark image. Shadows and soft areas, such as mud and sand, send weaker returns which are
represented as lighter images.

SLAM with the sidescan was first presented in [194] using an augmented EKF and the
Rauch-Tung-Striebel smoother. The value of smoothing in the pose estimation is empha-
sized since all previous poses should be updated when a loop closure event is detected. It
is noted that automated feature detection (which is not trivial) and data association are
necessary to achieve autonomy for sidescan sonar SLAM. In [74], the approach in [194] is
improved using smoothing and incorporates range updates from a CNA. This is the only
known research that combines a sonar based SLAM method with acoustic modem ranging.
In [105], sidescan sonar SLAM is posed as an interval constraint propagation problem. In
[10, 9], the problem was approached using a submap joining algorithm called the selective
submap joining SLAM. The work in [9] uses a cascaded Haar classifier for object detection
from sidescan imagery and is demonstrated off-line on a gathered dataset. A discussion of
which type of features are appropriate for sidescan sonar SLAM is presented in [230]. All
of the proposed approaches to sidescan sonar SLAM require post-processing to detect the
features for data association.

A depiction of the forward looking sonar (FLS) is shown in Fig. 2.19-c. Based on the
transducer geometry, the primary function of this type of sonar device is to map vertical
features. As such it is commonly deployed on a hovering AUV capable of approaching man-
made underwater structures at very low speeds. Feature-based SLAM based on exact sparse
extended information filter has also been implemented with a FLS for ship hull inspections
[222]. The issue of online feature extraction from FLS images is addressed in [107].

The MSIS is shown in Fig. 2.19-d. Its operation is similar to the FLS except that instead
of multiple beams, a single beam is rotated through the desired viewing angle. Consequently,
the update rate is slow. It cannot be assumed that the AUV pose is constant for an entire
sensor scan cycle, which increases the complexity of mapping algorithms.

The group at the University of Girona has done significant work with the MSIS as pre-
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sented in [189, 187, 146, 147, 148, 91, 188]. In [189, 188], online feature extraction and
data association and an EKF SLAM implementation is performed. In addition, a submap
method is used to reduce computational complexity. Given that the algorithm is based
on line feature extraction, the method is well-suited to man made environments with well
defined edges and boundaries. In [187], the slow update rate of the MSIS is accounted for
with a delayed state EKF SLAM algorithm. In [148, 147, 146, 91|, a probabilistic scan
matching algorithm is presented that exploits the overlap in the images from the MSIS.

A figure depicting the SAS is shown in Fig. 2.19-e. Synthetic aperture is a methodology
that enables high resolution through coherent processing of consecutive displaced returns.
Instead of using a large static array of transducers, it uses the sensor’s along-track dis-
placement to create a large virtual array. The resulting resolution is on the order of the
transducer dimensions and, more importantly, independent of the range between the sensor
and the target. Since there is no need to have a small aperture the frequency used can be
considerably lower which enables a longer range since lower frequencies propagate further
in water. This is at the cost of more complex image processing and the requirement for
a tightly prescribed speed. The micronavigation required to attain the tightly prescribed
speed and trajectory, in the presence of seas, is an active area of research.

Applications of SAS to AUV navigation represent an area of active investigation. Both
[203] and [212] describe a displaced phase center antenna micronavigation technique using
SAS and that is good at estimating sway, but poor at estimating yaw. In [163], a con-
stant time SLAM algorithm is developed for use with a SAS. The approach uses a submap
approach to maintain scalability. Data association is done off-line and comparisons with
ground truth provided by LBL show good results. An additional comment about SAS for
navigation is that although it offers remarkable detection capabilities, the SAS payload can
significantly change the hydrodynamics and controllability of a small AUV [163].

Ranging Sonar

A depiction of the multi-beam sensor swath is shown in Fig. 2.19-b. With multi-beam
instead of just one transducer pointing down there are multiple beams from arrays of trans-
ducers arranged in a precise pattern on an AUV hull. The sound bounces off the seafloor at
different angles and is received by the AUV at slightly different times. The signals are then
processed on-board the AUV, converted into water depths, and arranged as a bathymetric
map. The multi-beam resolution achieved depends on its transducer quality, operating fre-
quency, and altitude from the seabed. Multi-beam bathymetry systems have been routinely
used to map out large areas of seafloor. Each survey line that the AUV transits collects
a corridor of data known as a swath. The multi-beam sonar yields 2.5D bathymetric fea-
tures (elevation map) whereas the sidescan sonar produces 2D imagery. The former better
facilitates feature based navigation as evidenced in the literature [21], [20].

Barkby et al. have proposed a bathymetric SLAM algorithm called BPSLAM that is based
on a featureless FastSLAM implementation [21] [20] [19] [18]. In their approach, the need for
feature extraction is removed; each particle maintains an estimate of the current vehicle state
and the two-dimensional bathymetric map. An important issue with employing a particle
filter based system with such a large state space is the computational expense of copying
particles’ maps during the resampling process. This problem is solved by “distributed
particle mapping” where a particle ancestry tree is maintained. Copying of particle maps
is avoided by having new particles generated during the resampling process point to their
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parents’ maps rather than copying them. Maps of leaf nodes in the tree are reconstructed
by recombining the maps of all ancestors. In [21], the need to store each particle’s map is
removed completely by storing just the particle’s trajectory and linking poses to an entry in
a log of bathymetry observations. Maps are then reconstructed as needed using Gaussian
process regression, and, as a result, loop closures can be achieved even in the case where
there is little or no overlap between sonar images since the regression process is able to
make predictions about areas of seabed that have not been directly observed.

Similar to optical SLAM, the higher the quality of the navigation algorithm, the higher
the quality of the data. A convenient way of representing 3D data is in octree form as in
[71]. In this work, an active localization framework is presented where actions are selected
to reduce the entropy of particles. The vehicle pose is estimated with particle filter SLAM.

Using phase only matched filtering for comparing subsequent images is presented in [40)]
and later [180]. It is shown that this method outperforms the standard iterative closest
method to find six degree-of-freedom transformations between subsequent multi-beam scans.
A similar approach using planar surface registration is presented in [169].
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Chapter 3

Sensor-Driven Online Coverage
Planning

3.1 Introduction

This chapter presents an online approach for AUV seabed surveying!. Many of the path
planning methodologies outlined in Chapter 2.1 require prior knowledge of the presence
of obstacles to generate paths. In an AUV seabed surveying application, the challenge
is not due to obstacles but rather to the variable performance of the sonar sensor used
for seabed coverage that is dependant on environmental factors that can be unknown and
variable. An approach is presented that is inspired by sensor-driven [1] and information gain
[41] approaches but uniquely tailored to the AUV seabed coverage problem. Adaptivity is
achieved by maintaining a coverage map as the vehicle traverses the workspace and then
planning paths based on the up-to-date coverage map.

Sensor objectives for the coverage task are particularly hard to define because of the
uncertainty of sensor data so information gain is exploited as a merit criterion. However,
it is shown that the information gain method alone is not sufficient to achieve global goals
when there is incomplete prior knowledge about the environment. To compensate, the
concept of branch entropy is proposed. Although the proposed research can be applied to
diverse missions or sensors, it is particularly well-suited to AUV MCM missions where the
seabed is scanned using a SSS.

In what follows, the term workspace will be used to refer to the geometric area of seabed
to be covered and the term environment will be used to refer to describe the physical world
including acoustic propagation conditions, seabed type, currents and other things of that

type.

3.1.1 Problem Statement

For UAV systems, detection, identification, and classification of objects and targets can be
done in situ by transmitting imagery back to a base station for analysis during the mission
[70, 175]. There is an advantage to in situ processing of the sonar data as the mission
can be adapted on-the-fly to address the detected targets. However, at present wireless

'The bulk of the work presented in this chapter is published in [171, 172, 170]. Additionally, application
of the proposed algorithms to coverage with a fixed-wing unmanned aerial vehicle has been accepted for
publication in [175].
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transmission of sonar data through water is not feasible because of limited bandwidth and
attenuation over relatively short ranges. As a result, data gathering must be completed
before object classification and image processing can take place as shown in the AUV
MCM pipeline Fig. 1.1. If the data gathered is insufficient for high probability detection,
identification and classification, then the AUV will have to be redeployed to fill the gaps
that were missed on the first pass. This prolongs the mission.

Historically, paths were planned beforehand (offline) for data collection regardless of un-
known parameters that could affect the quality of the resulting sonar imagery. This involved
either making overly conservative estimates resulting in suboptimal survey paths or by mak-
ing repeated passes in the case that the parameters were not as expected. Additionally,
sometimes planned paths were not exactly followed, for example due to unexpected distur-
bances such as currents or seas.

3.1.2 Objectives and Significance

Prior to this work, few if any research proposed online strategies to underwater seabed
coverage. Usually AUVs are pre-programmed with waypoints that specify a structured
path, such as a zig-zag or lawn mower [164]. In this case, performance will rely heavily on
the accuracy of information about the workspace and the ability of the vehicle to exactly
follow the prescribed plan. Often plans are made overly conservative in order to compensate
for unexpected disturbances or incorrect environmental information.

The objective of the this chapter is to present an algorithm where paths can be planned
online during mission execution based on the most up-to-date estimate of the parameters
affecting sonar performance and the coverage already achieved over the workspace.

The result is that the first two blocks of Fig. 1.1 given in Chapter 1, “Survey Mission
Planning” and “Data Collection,” should be combined into one block, “Adaptive Data
Collection,” yielding the alternative pipeline shown in Fig. 3.1.

Adaptive Data } Data Stitching and
Collection Mosaicing

v

' Re-acquisition and ' Mine Detection /
Re-identification Object Classification

Mine Disposal

Figure 3.1: Adaptive AUV MCM task pipeline.

This online approach to planning has the advantages that it saves operators’ time as
there is no need to predefine waypoints, it removes the need to perform an environmental
assessment survey to determine the environment parameters, and the total time to complete
the mission is reduced.
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3.1.3 Overview of Contribution

In the approach taken here, path planning is achieved through reconciling behaviours that
represent the multiple objectives defined for efficient mission completion as the vehicle
navigates through the workspace. The proposed approach has the advantages that:

1. The total path lengths and times required to cover a workspace are shorter in many
cases compared to traditional structured methods.

2. There is no need for pre-programmed waypoints.

3. It is adaptive to any changes in environmental factors that can be detected in situ
such as seabed type and water properties.

4. Tt is able to generate paths for complex and non-convex environment shapes such as
would typically be found in harbours closer to the shore.

5. Preference is given to viewing seabed from different insonification angles, which is
beneficial for target recognition [78].

In this chapter it is assumed that vehicle pose is exactly known, an assumption that is
common in coverage literature [49] but rarely true in reality, particularly for AUV systems.
In the following chapter, this assumption is removed.

Due to the adaptive nature of the approach, the paths produced can contain more turns
than traditional approaches, although this is avoided where possible.

The performance of the approach is evaluated via simulation and implementation on the
Iver2 AUV developed by OceanServer Inc.

3.1.4 Chapter Nomenclature

A table of nomenclature used in the rest of this chapter is given in Table 3.1.

Variable Description
t Time index
1 Grid cell index
c’ Grid cell 4 at location [2%,y°]T in global coordinate frame
Sct = [*x%,*yi]T, the location of cell ¢’ in the sensor coordinate frame
g Tt Transformation matrix from global to sensor coordinates
N Total number of grid cells
w The workspace or area to be covered
M’ Binary RV representing the existence or absence of a mine in cell ¢’
M} Binary RV represented the detection of a mine in cell ¢’ at time ¢
T} Binary RV representing confidence (correct classification) at cell ¢’ based
on all data up to and including ¢
T} Binary RV representing confidence (correct classification) from only data
at time ¢
&l RV representing set of all parameters that affect mine detection perfor-
mance
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Xi = [X4, Y:, U] Vehicle pose at time ¢ (represented as RVs here for con-
sistency with following chapter, although assumed deterministic here:
p(Xe=x¢) =1)

P.i(y) The sensor characteristic curve generated by the ESPRESSO model with
the parameters specified by &! that defines the confidence as a function
of the lateral range from the AUV track y

St The sensor swath: the set of all cells that are covered to some extent by
the sonar at time ¢

« The acute angle between two “looks” of a cell

R(y) The collective objective function

J () The maintain heading objective function

B(v) The information gain objective function

wp, wg, wy | Weights used in the collective objective function
Ty () A straight line path parameterized by s used to evaluate the information
gain expected from travelling at a specified heading

Q free The free configuration space

G(v) The branch entropy objective function
a’ Hexagon cell with index j
N; The total number of hexagon cells
HI The average entropy of the underlying grid cells in cell o’
Gk Branch entropy value for branch number &

Table 3.1: Chapter 3 nomenclature.

3.1.5 Chapter Outline

The remainder of the chapter is organized as follows: Section 3.2 details how the coverage
map is maintained as the AUV traverses the workspace. Section 3.3 describes the proposed
online planning solution, including the information gain and branch entropy objective func-
tions. Section 3.4 describes the experimental setup and the simulation framework. Section
3.5 shows simulation and experimental results, while a more in-depth discussion is performed
in Section 3.6. Section 3.7 provides a brief summary.

3.2 Maintaining the Coverage Map

The approach presented here differs from most coverage planning methods in that paths
for coverage are generated based on a coverage map that is actively maintained as the
vehicle traverses the workspace based on the achieved vehicle pose. This allows paths to be
generated online and can result in path planning methods that are adaptive to sensor data
gathered in situ.

The process of building the coverage map comprises two main steps:

1. Estimate the coverage over the workspace resulting from a sonar measurement at time
t

2. Combine the estimate from time ¢ with estimates from times prior to ¢
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3.2.1 Problem Formulation

The workspace to be covered, W, is maintained as a grid of N small cells ¢! = [, yi]T.
The size of each cell is sufficiently small that the coverage over the cell can be treated as
uniform. For example, the size of the grid cells could be chosen to be equal to the resolution
of the sonar sensor.

Define the RV M* € {mine, mine} to represent the presence of a mine in cell ¢!, i = 1..N
of the discretized workspace. Then, define the RV M/} € {mine, mine} to represent the
mine detection event in ¢ at time ¢. There are four possible scenarios for each cell:

1. M} = mine and M’ = mine : target detected

M} = mine and M"* = mine : false alarm
M} = mine and M" = mine : missed target

M} = mine and M’ = mine : no target and nothing detected

L

In the common case that object detection, identification, and classification is not being
done on-board the AUV, we have no access to either M?, whether a mine exists at location
c’, or Mti, whether a mine will be detected in cell c!. However, the ESPRESSO model [54]
described in Section 2.3 was developed to address exactly this problem. In the absence of
knowledge of whether there is or is not a mine at location we can express the coverage of
cell ¢’ using the concept of confidence, which describes the probability that we correctly
assess the status (mine or no mine) at cell c'.

Define a binary RV Tti € {0, 1} that represents whether cell ¢’ will be correctly classified
as either containing a mine, or not, at time ¢:

.

p(1} = 1) = p(target detected) + p(no target and nothing detected)
- = p(M} = mine, M* = mine) + p(M; = mine, M' = mine) (3.1)
p(1} = 0) = p(false alarm) + p(missed target)
= p(M} = mine, M* = mine) + p(M; = mine, M* = mine)

For each T}, p(T} = 1) € [0.5,1] represents the confidence, or probability of correct
classification of cell ¢! as either containing a target or not, and p(1} = 0) = 1 — p(T} = 1)
is the probability of incorrect classification, based on the data at time ¢.

Additionally, for each cell, ¢, associate a binary RV, T}, where p(T} = 1) represents the
confidence at cell ¢’ by combining all the “looks” of cell ¢! from the start of the survey until
time ¢. This collection of RVs is referred to as the confidence map.

At the start of the mission the confidence values are all initialized to 0.5: p(T} = 1) =
0.5, Vi = 1..IN, and the objective of the mission is to maximize these confidence values.

3.2.2 Estimating Coverage Based on Current Pose

As the AUV navigates around the workspace the confidence map is updated based on the
current AUV pose and the environmental parameters affecting sonar performance described
in Table 2.1.

The target detection event can be represented by the Bayesian network shown in Fig. 3.2,
where X; 2 {X;,Y;, ¥;} is the 2D vehicle pose at time ¢. Any variable with the superscript
1 varies across the workspace and any variable with the subscript ¢ varies with time.
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AUV Pose, X,

Environmental Target Detection, Platform
Parameters, E' M/ Paramters, V,

Sonar Target
Parameters, S Parameters, F

Target Presence

Figure 3.2: Bayesian network representing target detection similar to [41]. Arrows represent
conditional probabilities.

We can express the joint probability of target detection based on a single observation and
combination of sensor, environment, and AUV pose as:
p(Mtz = Thi,Ez = ei,S = S,F = f,Vt = Vt,MZ' = mi,Xt = Xt) =
p(MZ = ’I7~’Lt|:EZ = ei, S = S, F = f,Vt = Vi, Xt = Xt)X (32)
F = f|M" = m")p(E" = e)p(S = s)p(Vi = vi)p(M' = m")p(Xs = xy).
However, since we are only interested in estimating the confidence over the workspace and

not the actual presence of mines, (3.1) can be used to rewrite the right hand side of (3.2)

as:
p(Ti =1E' =¢',S =, F = £, V; = v, X; = x;) % (3.3)
p(E" = e")p(S = s)p(F = £)p(Vy = vi)p(X; = x). '

Define £ = {E*, S, F, V,} as the set of all RVs from Table 2.1 at location ¢’ and time ¢ and
(3.3) can be further reduced to:
p(T7 = 1€} = &}, X, = x)p(€] = e)p(Xs = x1) (3.4)

Assumption 3.2.1. As is common in coverage literature, assume that the AUV pose is
exactly known (p(X; = x¢) = 1). Extension to the case where the AUV configuration is
uncertain is the subject of the next chapter.
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Based on Assumption 3.2.1, we can further simplify (3.4) to:
p(T; = 1€ = €}, X, = x)p(€] = &)). (3.5)

Denote the sonar lateral range characteristic generated by the ESPRESSO model with

parameters €! as P,i(y) where y is the lateral range. p(Ti = 1|E = €1, X, = x,) is read
directly from the lateral range curve:

PE”{' (Syi) if ¢’ € S

(3.6)
0.5 otherwise

p(TtZ = 1‘52' = €i7Xt =X¢) = {
where the sensor swath, S; is the set of cells that are covered to some extent by the sonar
sensor measurement taken at time ¢ and ®y} is the orthogonal distance from cell ¢’ to the
AUV track at time ¢ and is computed by transforming the location of the cell in the global
coordinate frame into the sensor coordinate frame through the transformation matrix §T:

= ZTt[xi,yi]T. (3.7)

We do not require perfect knowledge of the environmental parameters encapsulated by
E!. The final confidence resulting from a single sonar sensor reading at time ¢ for cell c’
can be obtained by marginalizing out the environmental parameters from (3.5):

(T =1)=> p(T{ = 1,€ =&}, X; = x1)

€
=> p(T} = 1|} =&}, X; = x)p(€] = €})
: (3.9)

= Bei[p(T} = 1|€} = €}, X; = x)]

_ ) EeilPa ((y))] if cell ¢ € S
0.5 otherwise

where p(E¢ = €!) is the probability that we are using the correct sensor characteristic curve
to evaluate the confidence of cell ¢, and Egg represents the expectation over the RV &;.

Example 3.2.1. Consider the case where all parameters are assumed known and correspond
to the conditions that generate the lateral range curves in Fig. 2.14 except the seabed type
which is assumed to have equal probability of being either “sand”, “cobble”, or “clay” (p(E: =
cobble) = p(E% = sand) = p(EL = clay) = 1/3) for the cell ¢ at location (x,y") = (4,30).
The AUV is currently at location (x4, y¢) = (4,0) pointing due north (Y = 0). Denote the
three lateral range curves in Fig. 2.14 as Peay(y), Peobble(y) and Psand(y). The lateral range
of cell ¢ is *yi = 30. The confidence after following this single track should be evaluated
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using (3.8):
p(Fi = 1) = B p(Ti = 11€} = €1, X, = x,)

= Z p(I} = 1€} = e}, X, = x)p(€] = &})
ete{clay,sand,cobble} (39)

= clay(?)o)(l/?’) + Pcobble(go)(l/?’) + Psand<30)(1/3)

= 0.9985(1/3) + 0.5331(1/3) + 0.6340(1/3) = 0.7219.

If there is no knowledge of environmental conditions beforehand, the distribution of £% can
be initialized as uniform across all possible environmental parameter values. As the AUV
traverses the workspace, some unknown parameters such as seabed type can be measured
in situ using sensors as described in Table 2.1.

Tv‘o obtain a final confidence value at cell ¢’ from all data up to and including time ¢,
p(T} = 1), must be combined with previous measurements of the same location to obtain
the total confidence p(T} = 1) that if a mine exists in cell ¢’ it will be detected.

3.2.3 Combining Measurements From Different Looks

Previous work on AUV MCM has either assumed that subsequent observations of the same
location should be considered as either statistically dependent [228] or statistically indepen-
dent [183] regardless of insonification angle. However, there is a rich body of literature to
support the fact that viewing a target from different angles is beneficial for target detection
and identification [78, 38]. This is largely due to the fact that targets are identified in SSS
imagery not by looking at the bright returns caused by the object but by the shadow that
is cast behind the object which provides more information about the shape and size of the
object.

The combination of subsequent looks can be represented by the Bayes’ network shown
in Fig. 3.3. A visual depiction of an AUV viewing a cylindrical target twice is shown in
Fig. 3.4. Define the acute angle between the two angles of incidence to be «. For the
work here, we propose that the angle of viewing should be accounted for when combining
confidences of subsequent “looks” because the conditional dependence or independence of
these subsequent looks is a function of the amount of overlap in the sonar shadows. The
two shadows in Fig. 3.4 should be treated as independent since there is no overlap in the
information that they are providing about the shape of the target.

Proposition 3.2.1. Subsequent looks of the same cell should be combined by taking the
mazimum confidence in the worst case that looks are assumed conditionally dependent and
with De Morgan’s law in the best case that looks are assumed conditionally independent:

p(T} = 1) > max{p(T}, = 1),p(Tf, = 1), ...,p(T}, = 1)}
, K y (3.10)
p(T = 1) <1 - [[( - p(T, = 1))
k=1
Proof. See appendix B. O

It is argued here the level of correlation between two looks represented by Tgl =1) and
p(f}g = 1) is directly related to the overlap in the shadows produced in the sonar imagery.
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Tracks
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Seafloor

Figure 3.3: Bayes’ network de- Figure 3.4: Different views of targets will produce dif-

scribing the generation of T} ferent shadows. It is desirable for target recognition to
from two previous “looks” or view targets at different angles to get more information
“views” of cell ¢’ at time ¢; and about the shape of the target.

to represented by Tgl and Ttg re-

spectively.

Further analysis of the correlation between looks as a function of the incidence angle would
be an interesting avenue for future work, but is outside of the scope here.

In the case that the two observations are parallel then @ = 0 and the two shadows are
exactly overlapping and the max function should be used:

p(T} = 1) = max{p(T}, = 1),p(T}, = 1)} = p(T}, = 1). (3.11)

Whuere we assume without loss of generality that the look at time ¢; yields a higher confidence:
(T =1) > p(T, = 1).

In the case that the two observations are perpendicular then o = /2 and the two shadows
will have no overlap (as shown in Fig. 3.4) and the two looks are independent and should
be combined using:

p(T} =1) =1 [(1 = p(T}, = 1))(1 = p(T}, = 1)) (3.12)

If the angle 0 < a < 7/2 then the resulting confidence, p(T} = 1), should be somewhere
in between based on the amount of overlap in the sonar shadows which is a function of the
angle o. Estimating the exact overlap as a function of the angle a would be difficult since it
is dependent on the target geometry and its orientation relative to the insonification angle.
As an estimation, a linear relation between (3.11) and (3.12) is used:

2ap(T}, = 1)

p(T} =1) ~
v

(1= p(T}, = 1)) +p(Ti = 1), (3.13)

While this is an approximation and detailed verification of this relation could be sup-
ported by future work, it is important that the benefit of viewing a target from different
insonification angles will result in a higher probability of correct classification (confidence).
This will be reflected in the coverage map and additionally in the the information gain ob-
jective function which will preferentially choose to view areas of seabed at different angles
because they will result in more information gain.
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3.3 Path Planning Approach Based on Multi - Objective Op-
timization

As the AUV moves about the workspace, the confidence map is updated based on the
achieved vehicle path and our estimates about the parameters that affect sonar performance
over the workspace using the process described in Section 3.2. To satisfy the main objective
of this work, which is to develop online planning strategies for coverage, we define a multi-
objective function that uses the up-to-date coverage map to evaluate the benefit of different
actions.

This is formulated as an optimization that produces a desired heading ¥4 by maximizing
an objective function that is evaluated over the domain of all possible headings: ¢ = [0, 27]:

Vg = argrmax R(¢) = wpB(y) + waG(Y) +wsJ (), (3.14)

where R(7)) is the total utility, B(¢) is the information gain, G(%)) is the branch entropy,
J(1) is the benefit of maintaining the current heading, and wp, wg, and w; are the re-
spective weights. Tuning of the weights is an important consideration. In the present
implementation, trial and error has been used to tune the weights, however, it would be
simple to optimize them with some meta heuristic method such as genetic algorithms or
particle swarm optimization [139]. All functions will be explicitly defined, but, in general,
the function B(1)) prioritizes headings that cover the most area in the short term, the func-
tion G(v) prioritizes over headings that will help the robot complete its coverage mission in
the longer term, and the function J (1)) prioritizes over closest headings to avoid unnecessary
turns.

The functions J(v), B(v) and G(¢) will be described in detail in Sections 3.3.1, 3.3.2
and 3.3.3 respectively.

The optimization takes place over the heading reference only and it is assumed that
desired speed and depth are generated by some other method. In this case speed and
altitude reference are held constant and tracked by inner loop controllers. The reference
depth can be calculated from the reference altitude using known bathymetry or data from
on-board sensors and and is usually chosen based on the desired resolution of the data to
be gathered.

The evaluation of the multi-objective function is done using interval programming (IvP)
in the mission-oriented operating suite (MOOS) framework [28] described in Appendix A
and collectively referred to as MOOS-IvP. Each term in the objective function is defined
as a behaviour which generates a piecewise linear objective function at each iteration of
the outer-loop controller. Accuracy of the underlying objective functions can be traded
off against computation time by specifying the number of pieces in the piecewise linear
approximation. As a result, the domain is discretized. However, the discretization does not
need to be consistent over all objective functions and also need not be uniform.

Each objective function is scaled such that the maximum utility is 100. As a result, the
units of the individual functions can be disregarded.

An AUV is shown in a workspace in Fig. 3.5. This snapshot in time will be used as an
example for each of the objective functions below.
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Figure 3.5: A simulated path.

3.3.1 The Maintain Heading Objective Function

The function J(v) is the simplest objective function and is designed to have peak utility at
the present heading and then rapidly decay based on the allowable yaw rate for valid sonar
data mosaicking. A plot of J(¢) for the snapshot shown in Fig. 3.5 is shown in Fig. 3.6.

3.3.2 The Information Gain Objective Function

Information theory is used to quantify utility over the short term to define the function
B(v) from (3.14).

It is proposed here that Shannon entropy reduction is an appropriate and novel way of
adaptively achieving coverage.

Recall from (2.8) that the Shannon entropy of a binary RV T} can be evaluated as:

H(T}) = —p(T} = 1)log(p(T; = 1)) — (1 = p(T} = 1))log(1 - p(T} =1)), (3.15)
and from (3.15) and Fig. 2.11:

lim  H(T}) =0, (3.16)
p(T}=1)—1

which implies that maximizing the confidence over the workspace minimizes the entropy
of T} for all 4. As a result, an information gain objective function formulated in terms of
gaining information about 7} will result in convergence towards complete coverage.

The expected entropy reduction (EER):

AH(T{|E},Xq) £ H(T}) — Egi [H(T{|E, X)), (3.17)

defines a scalar quantity that represents the a priori expected amount of information that
will be gained about 7} by making the sonar measurement from pose X; at time ¢ with
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Figure 3.6: The “maintain heading” objective function, J(1)), where the current vehicle
heading is ¢y = 92°.

(possibly uncertain) environmental parameters £:. 4
The second term on the right-hand side of (3.17), Egi[H (T}EL, Xy)], is evaluated by

taking an expectation of the conditional Shannon entropy over £::
Egi[H(T} |}, Xy)]
- Zp(é’i = ey)[-p(T} = 1|1} = &}, Xy = xi) log p(T} = 1€} = e}, Xy = xy) (3.18)
£}

— (1= p(T} = 1|€; = €}, Xy = x;)) log(1 — p(T} = 1€} = €}, X; = x1))]

where p(T} = 1|E¢ = €}, X; = x;) is the confidence at cell ¢’ after the sonar measurement
at time ¢ which is generated by using (3.8) to first generate Tg which is then combined
with previous measurements at cell ¢’ using the process in Section 3.2.3. p(Si = g!) is the
probability that €! are the correct parameters.

This definition specifies a way of combining the potential benefits of sensor observations
additively. We can compute the total expected entropy reduction at time ¢ as the sum of
the EERs for every cell in the sensor swath:

AH(TEFN, Xy) = Y AH(T}|E],Xy) (3.19)

i:c'ES

where Ty £ [T}, T7,..., T}].

To evaluate the information gain resulting from travelling at different headings, straight
line paths are generated that begin at the current AUV position, (z,%;), and traverse a
fixed distance r at the heading to be evaluated, .
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The potential paths to be evaluated are represented by the variable 7, and parameterized
by s. As s moves from 0 to 1, the two endpoints of the line, 74(s) moves along the straight
line path in the free configuration space @ free:

Ty 2 [0,1] = Qfree, s — Ty ()

T . (3.20)
Ty(s) = (ze + 3 cos(¥), yt + 3 sin(1)), ¥)

where the set of paths to be evaluated are defined by varying the value of ¢ from 0 to 2.
To evaluate the information gain of traveling at heading 1, we integrate the EERs at each
pose along the line:

1
B 2 [ AH(TIERN my(s)ds (3.21)

It is important to stress that the confidence map is not updated during this searching
process. The confidence map is only updated based on the achieved AUV poses as the AUV
is in motion in the workspace.

The information gain objective function for the snapshot shown in Fig. 3.5 is shown in
Fig. 3.7. Note that the highest utility for the information gain objective function in this
case is approximately 92°, the direction that is being traveled, and the lowest utility is the
reverse direction, 268°, because almost no new information would be gained from moving
over the path that was just traveled. The local minima at angles 47°, 137°, 227°, and 317°
represent other paths that produce sensor swaths that overlap with the previously achieved
coverage.

100}

% 90 180 270
¥ (%)

Figure 3.7: The “information gain” objective function, B(v).
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3.3.3 The Branch Entropy Objective Function

In this section, the G(1) term of the objective function (3.14) will be motivated and derived.

3.3.3.1 Motivation

The information gain method was shown to be effective for solving the path planning prob-
lem when a priori knowledge of the environment, obstacles, and targets are available [41].
However, the approach taken here removes this requirement and is larger in scope than the
short term goals. In the sensor-driven approach, the information gain B(v) is useful for
evaluating the benefits of each of the potential next moves, but when complete coverage is
the goal, this approach reduces to a greedy-first search.

It is necessary to include a parameter in the objective function that helps the AUV achieve
its global goal - complete coverage. This term is referred to as the branch entropy and can
be thought of as akin to a potential function for coverage. The benefits of including the
branch entropy in the objective function are:

e [t helps the AUV complete the coverage of sections before it leaves them.

e It allows the AUV to find the areas of the workspace that have not been covered and
are out of range of the information gain behaviour.

e It acts as a tie-breaker so the AUV does not oscillate between headings of equal
information gain. Instead, this behaviour operates over the entire workspace so that
coverage will converge towards complete.

3.3.3.2 Overview of Approach

A block diagram showing an overview of the proposed approach for generating the branch
entropy objective function is shown in Fig. 3.8.

At initialization, the workspace is decomposed into equal sized hexagon cells where each
hexagon cell contains many grid cells. This cell decomposition is used to generate a directed
acyclic graph (DAG) (directed graph with no cycles)with the cell that the AUV currently
occupies as the root. The average entropy values of the grid cells in the hexagon cells are
used as inputs to a formula where each neighbour of the cell currently occupied by the AUV
is given a value representing the benefit of heading towards that particular cell. The value is
determined by how much entropy there is down that branch of the DAG (explained further
in the following section), with priority given to high entropy areas that are nearby so that
the AUV will finish covering sections of the workspace before it leaves them. The result
is that, by simply applying a formula on the decomposition, and without performing an
exhaustive search, the AUV can determine what areas of the map are left to be explored.
Finally, the branch entropies of each of the neighboring cells are combined into one function
over all headings that represents the branch entropy objective function.

After the AUV moves, the average entropy of the hexagon cells must be recomputed to
incorporate the new information. If the AUV has moved from one cell to a neighbouring
cell, then the DAG must also be updated to reflect the fact that there is a new root.

3.3.3.3 Exact Hexagon Decomposition

Cell decomposition, described in Chapter 2.1.5, is an effective way to abstract the path
planning problem into a graph searching operation [48]. Normally, the cells are either
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Figure 3.8: Flow diagram depicting the generation of the branch entropy objective function.

63



exactly or approximately decomposed into rectangles, although other polygonal shapes have
been proposed [165]. In this case we select a hexagonal decomposition. A main benefit of
the hexagon decomposition is that the distance from the center of any cell to the center of
any adjacent cell is a constant.

A hexagon decomposition is performed such that the union of all cells, a’,j = 1..Nj,
where Nj is the total number of hexagon cells, covers the entire workspace, W:

N
wc|Jal (3.22)

Jj=1

Associated with each hexagon cell is an average entropy, H7, which represents a measure
of the average uncertainty over the area of the workspace that falls within that cell:

_. 1 )
H = > H(T)), (3.23)
wete{ad MW}

where 7 is the number of grid cells in hexagon cell a’.

This averaging operation on the entropy of the grid cells is a valid operation since summing
of the entropies is equivalent to the entropy of the joint distribution in the case that RVs
are independent:

H(X1, X2) = E[—logp(z1, 72)]
= E[— logp(l‘l)p(l‘z)]
— E[-

logp(z1)] + E[—log p(z2)]
= H(X1) + H(X3)

(3.24)

So this average entropy can be interpreted as a normalized joint entropy over all grid cells
in the hexagon.

Each cell is also assigned a level, [, which is the minimum number of cells that must be
traversed to reach the presently occupied cell aP, which is the root of the tree, and a list of
children, which are all neighbours in level [ + 1.

A hexagon decomposition of a workspace is shown in Fig. 3.9. The workspace is the pink
polygon area underneath the hexagons. The hexagon on the right shows the numbering
convention for the neighbours. Each cell that is neighboring the cell that the the AUV
currently occupies represents a branch. The branch number follows the same convention as
the numbering for neighbours. For example, the cells in branch 0 in Fig. 3.9 are indicated
by the bold green outline.

3.3.3.4 The Directed Acyclic Graph

The hexagon decomposition is subsequently converted into a directed acyclic graph (DAG).
Every cell a/ appears only once in the graph, and is at level [. There can be several paths
from a” to a’ but they must all be the same minimum length. The hexagon decomposition
geometry is exploited in that center of every hexagon cell at level [ is the same Euclidean
distance from the center of the current hexagon cell, aP.

Each neighbour of a? becomes a child in the DAG. The neighbours of those nodes become
children provided they are not already in the DAG at a higher level. This process continues
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Figure 3.9: A workspace with a hexagon cell decomposition. The workspace to be covered
is shown in pink and is also decomposed into smaller grid cells. The hexagon cells that will
be in branch 0 have been outlined in green.

until all hexagon cells in the workspace are included in the DAG.
Algorithm 7 details the process of building the DAG. The inputs are a?, the current cell,
and {a’|j = 1..N;}, the set of all other cells.

3.3.3.5 The Branch Entropy Equation

The branch entropy is used to evaluate how much entropy there is down each branch of the
DAG to select a path that takes the AUV towards an unsurveyed area of W. Also, priority
will be given to paths that have more unsurveyed area nearer to the current position so
that the AUV does not leave an area before it is completely surveyed.

There will be a value of branch entropy for each neighbour of the current cell a? as each
neighbour has its own branch in the DAG. In order for the branch entropy to provide the
benefits desired, cells that are at higher levels in the graph must be given more weight. For
each neighbour, k = 0..5, of aP, the branch entropy, gi, for a DAG with a total of L levels

is defined as: o
. >
SL i)

m
= 1k
- L-1

2.1
=1

where my j; is the number of nodes in level [ of branch k and C; is a list containing the
indices of the hexagons in level [ of branch k. In (3.25), the closer cells are weighted higher

Ik (3.25)
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Algorithm 7 Build DAG({a’};—1.n,,a?)

DonelList + aP
level <+ 1
while DoneList # {aj}jzl__Nj do
level < level + 1
for n < Each node in level — 1 do
CurrentList < ()
n.children < ()
for k < All neighbours of n do
if k ¢ DoneList then
n.children <+ n.children Uk
k.value < C*.entropy
if k ¢ CurrentList then
CurrentList < CurrentList Uk
end if
end if
end for
end for
DonelList < DoneList U CurrentList
end while

using an inverse linear function. Other weighting functions, such as exponential decay could
have been used, and the impact of this choice could be explored further in future work. The
denominator is used for normalization.

Example 3.3.1. Fig. 3.10 shows the transformation from hexagon cells to DAG. The cell
labeled aP is the cell that the AUV is currently in, and the values in all of the other cells
represent their average entropies.

94 Qs 92

Figure 3.10: A transformation from hexagon decomposition to DAG. (numbers in cells/n-
odes represent average cell entropy)

The cell aP? has three neighbours: 2, 8, and 4. Consequently there will be three branch

entropy values: gz, g3, and g4 (g0 = g1 =95 =0).
For branch 2, L = 2,m12 = 1,m92 = 2 and the average entropy in level one is 0.2 and
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i level two are 0.9 and 0.95:
g2 =1/3((2)(0.2) 4+ (1)(1/2)(0.95 + 0.90)) = 0.442,

for branch 3, L = 2,m13 = 1,ma3 = 1 and the average entropy in level one is 0.5 and in
level two s 0.1:

g3 = 1/3((2)(0.5) + (1)(0.1)) = 0.367,

and for branch 4: L =2,m14 =1,mo4 = 1 and the average entropy in level one is 0.6 and
in level two is 0.1:

91 = 1/3((2)(0.6) + (1)(0.1)) = 0.433.

In this case go is the highest, which reflects that fact that there is much more uncertainty
down the branch 2.

3.3.3.6 Building the Branch Entropy Objective Function

Once the values of branch entropy are computed, they are combined into one function over
all headings, ¢, that is used in the multi-objective optimization.

The values of branch entropy are treated as samples of the underlying objective function
and are connected by straight lines. The six headings, ¢ of known utility are $k, k = 0..5,
which corresponds to the headings that pass through the midpoints of the neighbouring
hexagon faces. The corresponding points used to generate the objective function for G(v))
are (rk/3,gr), k = 0..5. A general equation for the objective function, G(¢)) is derived that
parameterizes each of the connecting lines:

G(y) = %(gk = gk 1) + gr(1 — k) + gt (3.26)

where

k= L% . (3.27)

Note that for consistency define gg = go.

The branch entropy objective function for the snapshot from Fig. 3.5 is shown in Fig.
3.11. The branch entropy behaviour is maximum at 0 and 7 as these headings point to the
areas of the map that have unfinished areas.

It is important to stress that the branch entropy objective function is used in conjunction
with the information gain objective function where the branch entropy function uses the
hexagon decomposition over the entire space to achieve the global coverage objective in the
long term and the information gain is used to maximize coverage in the short term.

3.3.4 The Full Multi-Objective Function

According to (3.14), the final utility, R(¢), is the weighted sum of the objective functions.
In Fig. 3.12 the objective functions at a snapshot are shown together with the collective
with wp = 1.0, wg = 1.0, and wy = 0.8. In this case, the collective objective function
selects the heading at 94° to be the best desired heading.
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Figure 3.11: The “branch entropy” objective function for the snapshot shown in Fig. 3.5.
The outputs of the branch entropy equation (3.25) are connected together in a piecewise
linear fashion to define generate the objective function.
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Figure 3.12: The information gain, branch entropy, maintain heading, and collective objec-
tive functions corresponding to the path shown in Fig. 3.5.
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3.4 Experimental Setup

In order to test the proposed algorithms, missions were performed with MOOS both in
simulation and in water. For a background of MOOS-IvP refer to Appendix A.

A block diagram of the MOOS communities is shown in Fig. 3.132, where the blocks
labeled “Coverage Map”, “Information Gain”, “Branch Entropy”, and “Maintain Head-
ing” were custom built applications that were not included in the open-source distribu-
tion of MOOS-IvP. The Iver2 AUV on which hardware tests were done is set up in a
frontseat /backseat configuration with two Intel ATOM 1.6GHz CPUs which communicate
through a serial connection [61]. All the sensors and actuators are interfaced through the
frontseat computer. When underway, the backseat computer can take control either by
specifying actuator values directly, or by specifying outer loop references which are tracked
by an inner loop controller on the frontseat. The backseat has access to the raw sensor data
and also a filtered state estimate from the frontseat. In the work in this chapter, the filtered
state estimate is used directly from the frontseat. In the next chapter the raw sensor data
is used on the backseat to perform navigation.

The simulation is setup to mimic the actual hardware so the backseat MOOS community
can remain untouched when the transition is made to hardware. In simulation, an additional
frontseat community is used for sensing, actuation, navigation, inner loop control, and
vehicle kinematics.

The backseat MOOS community contains three essential components:

1. The frontseat/backseat interface which is responsible for communicating with the
frontseat (specifically iOceanServerComms [61]).

2. The custom “Coverage Map” application which subscribes to AUV state data and
produces a coverage map based on the method described in Section 3.2.

3. The IvP Helm [28] which reconciles behaviours into an outer loop heading reference
at each iteration. In this case each term in the objective function (3.14) is represented
by a behaviour shown in Fig. 3.13 as “Information Gain”, “Branch Entropy”, and
“Maintain Heading”.

A description of all simulated components and actual hardware is also given in Table. 3.2.
Also on-board the AUV but not simulated was a Neil Brown CT sensor to gather water
conductivity and temperature information.

3.5 Results

3.5.1 Simulation

The system is tested using the simulation setup. The first simulation done is on a simple
square workspace where environmental parameters are assumed known and fixed (assumed
to be cobble seabed at 10m depth to produce the curve in Fig. 2.14). The resulting path is
shown in Fig. 3.14.

The planner produces a spiral-type path that efficiently covers the entire area based on
the known sonar performance. Without variable or unknown environmental parameters

2There are other MOOS applications running that are doing logging, mission monitoring, and other
tasks that are part of the open source distribution.
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Figure 3.13: Simulation and actual hardware setup with MOOS. State data is passed from

frontseat to backseat.
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Figure 3.14: Left: The path planned by the proposed planner for a rectangular workspace

with constant and a priori known parameters.

Darker areas indicate higher confidence.
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Component Simulation Actual Hardware
GPS Sensor iGPS [162] UBlox LEA-5H
Compass Sensor iCompass [162] 0S5000-USG
Depth Sensor iDepth [162] MSI Depth sensor
DVL iDVL [162] SonTek/YSI DVL

Sensor Drivers

“iSensor” applications [162]

Iver2 frontseat

Inner Loop Control

pMarinePID [162]

Iver2 frontseat

Actuator Drivers

included in iActuation [162]

Iver2 frontseat

Propellor

iActuation [162]

130 Watt, 4000 RPM
Brushless DC motor

Frontseat Computer

Dell Dual Core 3GHz

Intel 1.6 GHz ATOM pro-
cessor

Frontseat - Backseat Com-
munication

pMOOSBridge [162]

iOceanServerComms [61]

Backseat Computer

Dell Dual Core 3GHz

Intel 1.6 GHz ATOM pro-
cessor

Outer Loop Control IvP Helm [26] IvP Helm [26]
Navigation pEKF Iver2 frontseat
High Level Planning Behaviours Behaviours

Table 3.2: Description of components used for the simulation and implemented on the

IVER2 for the in-water trials.
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and using a simple rectilinear workspace, the planner converges to a structured path. This
limiting case is a good test of the algorithm.

Since in general the system is stochastic, a Monte Carlo style simulation is conducted
to compare the performance for a developed random track algorithm, the information gain
behaviour alone (IG), the branch entropy alone (BE), and information gain with branch
entropy (IG/BE) by repeating the simulation 36 times with random initial conditions. The
results are tested against the a priori scripted lawn mower pattern for a simple workspace.
Results for three different levels of desired confidence are shown in Table 3.3 where the data
from the Monte Carlo simulation is presented with a mean and a covariance (values in square
brackets). In the generation of the results in Table 3.3, it is assumed that environmental and
target parameters for the ESPRESSO model are unknown beforehand. As a result, the lawn
mower tracks are based on the most pessimistic assumption for the unknown parameters.
The lawn mower path length required to obtain 98% coverage is significantly higher because
the tracks must be placed closely enough that the areas that are missed directly underneath
the tracks are covered by subsequent tracks. For lawn mower paths this is referred to as
swath overlap and has a large effect on the length of the resultant path. It is clear from
the results that the information gain approach alone is inefficient. The mean path lengths
are considerably longer. Also note that the variances are also much larger, particularly for
the 95% confidence case. This is characteristic of a greedy approach because sometimes
it may get ‘lucky’ and find a good path quickly, but when it is ‘unlucky’ it has a very
difficult time completing the mission and the path length becomes long. Additionally, the
branch entropy approach alone is not as effective as the combination of information gain
with branch entropy. It is most efficient to use the combination of information gain for
achieving coverage in the short term and branch entropy to guide the AUV to uncovered
areas of the workspace.

Desired Coverage
.90 .95 .98
Lawn Mower 1275 1545 2355
Search Random 1279 [446] 1915 [460] 2299 [677]
Method IG 1488 [362] 2429 [817] 3307 [730]
BE 1260 [146] 1738 [232] 2634 [292]
IG/BE 1088 [105] 1458 [150] 1761 [160]

Table 3.3: Performance of lawn mower, random walk, information gain, branch entropy,
and information gain with branch entropy algorithms for different desired levels of coverage.
Values in the table are in metres and are mean results from 36 simulation runs with variance
in brackets.

It can also be challenging to design lawn mower paths when the workspace is oddly
shaped. For example consider the plots in Fig. 3.15 where the workspace is shown as the
dark green outline. In this case environmental parameters are considered fixed and known
(cobble seabed at depth of 10m). For the case of low desired confidence thresholds, the
lawn mower planner performs well. However, in the case that high confidence is desired,
which is common, the lawn mower tracks must be designed so that the channel left by
one track is covered by the next. Indeed this has been noted in the past as a shortcoming
of the lawn mower method [164]. The IG/BE planner proposed produces a path that
occasionally crosses itself, but results in less total sensor swath overlap allowing it to achieve
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high coverage faster than the lawn mower pattern. As the workspace shape becomes more
irregular in geometry, the benefit of the proposed planner will increase.

(f)

Figure 3.15: A comparison of sample paths planned by the various approachs. (a) Proposed
IG/BE planner for final confidence greater than 98%. (b) IG alone for final confidence
greater than 98%. (c) BE alone for final confidence greater than 98%. (d) Path planned by
random track planner for final confidence greater than 98%. (e) Deterministic lawn mower
path for final confidence of 95%. (f) Deterministic lawn mower path for final confidence of
99%. In order for the lawn mower path to obtain coverage greater than 95%, the valleys
under the AUV track must be covered resulting in high sensor swath overlap between
subsequent tracks in the lawn mower survey.

In the case that the environmental parameters are known but vary over the workspace,
the simplest way to construct the lawn mower path is to place tracks closely enough that
coverage will be obtained even in the worst case over the workspace. In Fig. 3.16 the
parameters are assumed to be known beforehand where the seabed type varies between
cobble, sand, and clay. The sensor characteristic curves for the three areas of the worksapce
are shown in Fig. 2.14. In order to ensure coverage, the lawn mower tracks must be placed
closely enough to guarantee coverage in the case that the seabed is cobble, which is the worst
case. The proposed IG/BE planner maintains the confidence map as the AUV traverses the
workspace and is therefore better able to exploit the better sonar performance obtained in
the case that the seabed type is clay.

The algorithm computation scales constantly with time and the size of the workspace
after an initialization, meaning that the amount of computation required to generate the

73



N ~|Clay Seabed
[ Cobble Seabed
. |Sand Seabed

(a)

VLA

g
(c)

5(//
(b)

Figure 3.16: (a) A 300m by 300m square workspace with variable parameters, in this
case three different types of seabed, which are assumed to be known a priori. (b) The
path planned by the proposed IG/BE planner. Path length to achieve 97% confidence is
1085m. The AUV automatically devotes more time to the areas of seabed with poorer sensor
performance (c) Deterministic path for a lawn mower pattern. Path length to achieve 97%
confidence is 1185m. Note that if a higher coverage threshold was desired then the tracks
would have to be significantly closer as described in Fig. 3.15.
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information gain and branch entropy objective functions is independent of time and the size
of the workspace. A path planned on a larger workspace is shown in Fig. 3.17. The total
length of the path planned to cover the 118750m? environment is 3794m. The corresponding
path length for the random track approach was 7937.39m (path not shown). Therefore, in
this case there is a factor of two reduction in the proposed path length and likely time to
perform the mission.

Figure 3.17: Path planned for coverage of a large environment up to 99.5% confidence. Area
of environment is 118750m?. Length of path planned is 3794m.

3.5.2 In-Water Trials

Tests were performed on OceanServer’s Iver2 AUV in the Bedford Basin in Nova Scotia,
Canada.

The AUV was able to successfully cover three environments within the limited operating
region. A plot of a sample path taken in a simple convex workspace and the corresponding
final confidence map are shown in Fig. 3.18. The runs were stopped when confidence values
reached 95%. A comparison lawn mower mission was also performed where the overlap is
sufficient to guarantee the 95% coverage; see Fig. 3.19.

When comparing the two paths from Fig. 3.18 and Fig. 3.19, it is interesting to note
that, although the desired tracks for the lawn mower pattern are straight lines, the actual
path oscillates about these desired paths. This is largely due to the inability of the frontseat
controller to track the desired path in the presence of currents. It should be noted that the
currents on the day when this trial was conducted (Sept. 1 2011) were extremely small, on
the order of 0.2 knots at most. The proposed planner has, as a component of the multi-
objective function, an objective to explicitly maintain headings rather than track paths.
The result is that the oscillation in heading can be suppressed to some extent.

A non-convex environment test was also conducted with results shown in Fig. 3.20. By
comparison with Fig. 3.15, it is shown that the results from simulation and from in-water
trials are very similar, confirming the validity of the simulations.

Finally, a third and more irregularly shaped workspace was tested. In addition, the
threshold for the coverage mission to be considered complete was higher at 98% confidence.
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Figure 3.18: Path taken by AUV in-water trial overlayed on final confidence map. In the
confidence map, darker areas indicate higher confidence. Final confidence was 95%.

Figure 3.19: Lawn mower path to cover the same workspace as Fig. 3.18 to 95%.
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Figure 3.20: Path taken by AUV in non-convex workspace during in-water trial overlayed
on resulting confidence map (darker areas are higher confidence). Final confidence 95%.

Path Length | Workspace Area | Confidence
Proposed planner (Fig. 3.18) 1203 m

2
Lawn mower (Fig. 3.18) 1580 m 28 000 m 9%
Proposed planner (Fig. 3.20) 1661 m 41 250 m? 95%
Proposed planner (Fig. 3.21) 1717 m 41 200 m? 98%

Table 3.4: Sample path lengths for paths planned during hardware trials.

The resulting path and confidence map are shown in Fig. 3.21.
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Figure 3.21: Path taken by AUV in very oddly shaped environment during in-water trial
overlayed on resulting confidence map (darker areas are higher confidence). Final confidence
98%.

The path lengths for the trials are shown in Table 3.4.



3.6 Discussion

As discussed, the status quo for AUV sidescan seabed surveys is to perform a structured
search, either a lawn mower or zig-zag type pattern. The waypoints that define the path
are either input by a human operator or somehow optimized beforehand using a method
such as [228]. The method proposed here is fundamentally different. The simulation and
experimental results illustrate that the proposed planner is able to find shorter paths under
many conditions. However, the benefits of the approach extend beyond simply shorter path
lengths. In order to further compare the method presented against the standard lawn mower
method, an empirical comparison is presented in Table 3.5.

78



Proposed Planner

Lawn Mower Approach

Coverage overlap

While it is acknowledged that
there is some overlap as the path
sometimes crosses itself, the actual
amount of coverage overlap is re-
duced evidenced by the fact that
coverage swaths can be more accu-
rately estimated and accounted for
online.

Guaranteeing high coverage re-
quires tight spacing of lawn mower
tracks which results in high cov-
erage overlap, but in some cases
when desired coverage is suffi-
ciently low, overlap can be mini-
mized.

Level of autonomy

Extremely high. One button solu-
tion.

Usually requires operator to spec-
ify waypoints to define tracks. In
complex environments the perfor-
mance is subject to the judgement
and skill of the survey designer.

Total energy con-
sumption

Fairly low since trajectories are
smooth.

Requires sharp turns at the end
of tracks and also high energy re-
quirements to follow the track as
shown by the jagged path in Fig.
3.18.

Online vs. off-line

All planning takes place online.
The main advantage as has been
stated is that mission plans can be
adaptive to environmental param-
eters and stochastic sensor obser-
vations.

All planning is done offline. There
is an inherent assumption with this
type of planning that the vehicle
trajectory will exactly follow the
plan and that all environmental
parameters will be as predicted.

Deterministic vs.
stochastic

Stochastic in that it is capable of
adapting to the stochastic nature
of state estimation and sensor in-
put.

Deterministic.

Completeness

Probabilistically complete - due to
the branch entropy behaviour, the
AUV is guaranteed to find the ar-
eas of the map that are not cov-
ered.

Although the motion plan can have
a guarantee of completeness, there
is no actual guarantee of that the
entire workspace will be covered in
reality.

Path tracking

Optimizes an objective function
over heading so paths are not
tracked.

Required to follow track between
waypoints.

Closed loop - sensor feedback used

Level of feedback to update plan. Open loop.
High - requires simulation over

Computational headings for IG behaviour but only Low

requirements a simple numerical calculation for '

the branch entropy behaviour.
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Optimality

Provides no guarantee of optimal-
ity.

In certain cases where the environ-
mental parameters are known and
the desired coverage is low can pro-
vide provably optimal plans.

Quality of sonar
data

Mosaicking can be difficult if swath
overlap is not achieved or if paths
contain curves.

In general can be better since the
survey planner has direct control
over the amount of swath overlap
at the planning stage.

Overall
mance

perfor-

Results in path with shorter path
in general if environmental param-
eters are not known a prior: and
particularly in the case of complex
environment geometries.

Paths tend to be longer if worst
case environmental conditions are
assumed. However, in ideal case
with full prior knowledge, sim-
ple environment geometry and low
required confidence threshold can
provide better solution.

Table 3.5: Comparison of proposed method and standard lawn mower.

3.7 Summary

This chapter presents an online sensor-driven robotics path planner with particular applica-
tion to seabed coverage with a sidescan sonar sensor and an AUV. The approach combines
information theory with a new concept referred to as branch entropy to efficiently cover
areas of seabed. Simulation results and in-water trials illustrate the benefit of this ap-
proach over standard lawn mower planners. These advantages are: the total path length
and time to cover an environment are shorter in many cases, heading is better maintained
for data mosaicking, there is no need for predetermined waypoints, factors affecting sensor
performance can be accounted for, the planner is able to autonomously handle very com-
plex shaped environments, and the planner preferentially views the seabed from different
insonification angles which is preferable for target recognition.

In the following two chapters, this approach will be extended to incorporate uncertainty
in the vehicle pose, and then to multiple AUVs.
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Chapter 4

Probabilistic Area Coverage:
Accounting for Sensor Location
Uncertainty

4.1 Introduction

In this chapter two fields of robotics research, area coverage and state estimation, are linked
at a level that has not been seen to date. As will be shown, this improves the ability of a
robot to achieve its coverage objective in the real world. First the theory is developed for
a general coverage problem and then specifically applied to AUV seabed coverage.

4.1.1 Problem Statement

The problem of coverage can be defined as taking a sensor measurement of, or passing an
end effector over, an area of interest [48]. A great deal of literature exists on planning paths
for complete coverage that can generate plans that are provably complete [1, 3]. However,
as is noted in [48] “The term complete is used in the motion planning sense, not in the
operating research field sense.” Indeed it is acknowledged that while a plan might achieve
provable coverage there is no guarantee of actual area coverage when the degree of coverage
cannot be directly sensed.

Historically, coverage is determined by assuming that there is perfect knowledge about
the location of the sensor. Since coverage is a function of the configuration of the sensor
at the time measurements are taken and the sensor is attached to a robot platform with
uncertain pose, the measurement, and consequently the area covered by the measurement,
will be uncertain.

For example, consider Fig. 4.1 which represents field data of an AUV covering an area
of seabed with a SSS. In this case, the mission was run on the surface for access to the
GPS data for ground truth, but the GPS data is not used when the vehicle is inside of the
workspace (yellow box) to simulate an AUV submerging to perform the survey and then
surfacing at the end of each leg. Position was estimated on-board the Iver2 AUV using an
EKF which fused velocity measurements from the DVL and orientation from the compass.
Fig. 4.1-a shows the region to be covered, the pre-planned lawn mower tracks designed to
cover the area with the SSS, the AUV position estimates from the EKF, and the actual
trajectory from the GPS data. Fig. 4.1-b shows the desired coverage that would be obtained
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if the AUV were able to exactly follow the pre-planned tracks, Fig. 4.1-c shows the believed
coverage based on the EKF position estimates, and Fig. 4.1-d shows the coverage based on
the GPS data. In this case the desired coverage was 96% (b), the estimated coverage was
80% (c), and the actual coverage was 67% (d).

(a) (b)

200
3 100
2 0

~100

(d)
|

Figure 4.1: (a) Plot of workspace to be covered (yellow) with desired lawn mower tracks
(green), EKF estimated path (red), and achieved path (blue). (b) Desired coverage over
workspace based on exactly following the lawn mower tracks. (c) Estimated coverage from
EKF pose estimates. (d) Achieved coverage based on GPS ground truth data.

In the case that seabed coverage is being done for a safety critical task such as MCM,
this represents a large discrepancy between the desired risk (b), the perceived risk (c), and
the real risk (d) associated with moving an asset and personnel over this area of seabed.

The actual vehicle trajectory can deviate from the plan for a number of reasons including:
1) The plan may not be feasible based on limitations of the non-holonomic vehicle, 2) The
tracking controller on-board the vehicle may not be able to exactly track the planned path
due to unexpected external disturbances such as currents, or 3) The vehicle location estimate
contains uncertainty. In the previous chapter an approach is proposed that maintains a
map of the coverage as the AUV traverses the workspace and then plans paths based on
the achieved coverage, which overcomes the first two issues. However, based on Assumption
3.2.1, the third issue has not been addressed since we assumed perfect knowledge of the
AUV location. In this chapter that assumption is removed.

Location uncertainty effects have been fairly extensively considered in general start-to-
goal path planning literature as summarized in Chapter 2.1.8. However, work that accounts
for any of these in a coverage context is fairly scarce. For example, in [36], a heuristic
method is developed that combines three types of behaviours: inward spiral, shifting spiral,
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and greedy. The application is for a lawn mowing robot and the kinematic constraints of the
vehicle are explicitly considered. The coverage map is maintained, and after the initial pass
with the inward spiral and shifting spiral behaviours, the missing areas are covered using
a greedy approach. Localization uncertainty is naively accounted for by planning paths to
have some sensor overlap.

Perhaps the most closely related work is presented in [53], where a “probably approxi-
mately correct” measure of coverage performance is developed that accounts for localization
uncertainty. Das et. al. argue correctly that once platform localization error is significant,
the definition of the coverage completion criterion must be modified to become probabilistic.
However, the approach only considers simple coverage sensor characteristics and provides
no adaptive approach to account for the uncertainty in vehicle pose. Also, it is assumed
that the localization variance reaches a steady-state. This may be reasonable if the state
estimate is derived from a low-precision GPS, but will not be the case when the vehicle is
ded reckoning and experiences unbounded position uncertainty growth.

Some methods proposed to adjust existing heuristics so that platform uncertainty may
be accounted for (e.g. move tracks or spirals closer to each other) [36]. However this can
produce paths with unnecessary sensor overlap in the case that pose uncertainty is low.
Here we propose to maintain the “probability of coverage” over the entire workspace and
use this to plan paths.

4.1.2 Objectives and Significance

There are three main objectives in this chapter:

1. Develop a framework whereby platform location uncertainty can be incorporated
within the coverage model.

2. Propose a state estimation algorithm that is well-suited to the coverage problem.

3. Extend the planning algorithms proposed in the previous chapter to operate within
this probabilistic model of coverage.

Finally these methods will be applied to the AUV seabed surveying problem. The proba-
bilistic area coverage framework is ideally suited to AUV surveying for a number of reasons.
First, the localization uncertainty is often not negligible due to the difficulties in estimating
pose underwater. Second, trajectory estimation is essential to correct past pose beliefs after
the vehicle obtains accurate localization information such as GPS or acoustic updates from
a beacon. Third, in the case that the survey is being done for the purposes of MCM, it is
extremely important that an accurate representation of the coverage be obtained due to the
safety-critical nature of the application. AUV localization critically impacts the location of
targets and the subsequent re-acquisition and disposal. A location of seabed that is falsely
identified as covered could contain a mine and put lives and assets at risk.

4.1.3 Overview of Contribution

This research bridges the gap between area coverage and state estimation that has only been
mentioned in passing in previous literature. The work here achieves this by developing a
probabilistic coverage framework that can accurately represent the probability of coverage.
In the presence of significant platform uncertainty, mission completion must be redefined as
achieving a specified probability of coverage. For example, “we want to be 80% sure that
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we have covered at least 90% of the workspace” could be a valid mission objective but “we
want to cover at least 85% of the workspace” is not.

This is the first known work that explicitly provides a general framework to combine the
robot pose uncertainty resulting from state estimation from noisy pose sensors with a model
of the area coverage. Once the link has been made, it becomes clear that the quality of the
state estimation will have an impact on the coverage. The coverage over the workspace is a
function of the entire vehicle trajectory, so it is proposed that the entire trajectory should
be estimated (sometimes referred to as smoothing) as opposed to estimating only the pose
at the present time (filtering). However, since the computation required for estimating the
entire trajectory will grow with time, a new adaptive sliding window approach is proposed
that approximates the best full trajectory estimate. The window size is adaptive based on
the information gain along the trajectory resulting from global updates.

Once the framework has been developed, a planning algorithm is presented that operates
within this new richer and more descriptive probabilistic coverage model. Many classical
deterministic CPP methods no longer apply due to the stochastic nature of the problem.
The planning algorithm presented in the previous chapter must be adapted to account for
the new uncertainty associated with the coverage. To summarize, the contributions of the
present work are the following:

1. A probabilistic coverage model that uses stochastic state estimates to produce a more
descriptive representation of the coverage in the sense that it accounts for the uncer-
tainty in the system.

2. An adaptive sliding window method for estimating the AUV trajectory to obtain a
close approximation to the optimal coverage estimate without requiring more compu-
tation as time passes or the size of the workspace grows.

3. A path planning framework to achieve coverage within the probabilistic coverage
model.

4. An application with field results of an AUV being deployed for underwater seabed
coverage for MCM.

4.1.4 Chapter Nomenclature

An overview of the nomenclature used in this chapter is given in Table. 4.1.

4.1.5 Chapter Outline

The general framework for probabilistic coverage is presented in Section 4.2. In Section 4.3,
it is motivated that a trajectory estimation, or smoothing, technique is preferable from a
coverage standpoint and a sliding window approach is proposed. The proposed framework
and planning algorithms from the previous chapter are applied to the problem of seabed
coverage for an AUV in Section 4.4. Section 4.5 describes the experimental setup. In-water
results are presented in Section 4.6. Finally, some conclusions are presented in Section 4.7.
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Variable Description

t Time index
Sy Coverage sensor swath
w Workspace to be covered
qg,m, 8 Global, robot, and sensor frame respectively
c',i=1..N | N small grid cells
w Coverage level
Xy RV for robot pose (position and orientation)
U, RV for control input or odometry
Z, RV for localization sensor readings
sCY RV for location of cell 7 in sensor frame
! Increased sensor swath incorporating all cells that have a “rea-
sonable” chance of being covered
H(5ch) Function to map a cell in the sensor frame to a coverage value
(coverage sensor model)
o Tt Transformation matrix to map a cell location in the global frame
to the sensor frame
Wi RV for coverage of cell ¢ resulting from coverage sensing from
only time ¢
W} RV for coverage of cell i resulting from all coverage sensing for

all time up to and including ¢

Table 4.1: Chapter 4 nomenclature.

4.2 Probabilistic Coverage Framework

4.2.1 Problem Formulation

Consider a robot with platform geometry .4 and coverage sensor swath S (Fig. 4.2) [41].
Define the workspace W as the area that is to be covered.

Similarly to the last chapter, the workspace is decomposed into N small grid cells: ¢, i =
1..N where the size of the cells is sufficiently small that the coverage can be treated as
uniform over the cell. This cell size could be determined by the resolution of the coverage
sensor. Each cell ¢’ is represented by its position in the workspace. For example, for the
2D case, ¢! = [2¢,y']7 where 2% and 3’ are the  and y locations respectively of cell ¢’ in
the global frame.

If the robot takes a sensor reading at time ¢, then the set of all cells that are at least
partially covered by the measurement defines the coverage sensor swath, S;.

The position of a cell ¢’ in the sensor frame is obtained by performing a transformation
from the global frame to the sensor frame through the robot body frame:

‘e = [yt =T (T, %' = JT, 9¢’ (4.1)

where *ci and 9¢’ are the location of the cell in the sensor and the global frame respectively
and 2T is a homogeneous transformation (rotation and translation) from frame a to frame
b. In the absence of any specified frame (preceding superscript) assume the global frame.
We can associate with each cell ¢?, i = 1..IN a value w! that represents the level to which
cell ¢’ is covered at time t. The collection of values, w; = [w},w?, ..., wi"] is referred to as
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Figure 4.2: The workspace W is decomposed into N cells. As the robotic platform, A, moves
about, W becomes covered in a manner consistent with the coverage sensor geometry S. The
cells should be chosen small enough such that the coverage can be considered as constant
over the cell and cells are never partially covered. Here the sensor geometry is shown as a
2D swath for the general robotics coverage problem. In the case of AUV seabed coverage,
the swath is a 1D line perpendicular to the direction of AUV motion.

the coverage grid map (CGM).
There are two important assumptions that are common for coverage problems that should
be explicitly stated:

Assumption 4.2.1. The workspace being covered is static (for the case an AUV MCM
mission this would mean that no mines are being added or removed during the survey). As
a result the level of coverage can only increase with time during the mission.

Assumption 4.2.2. The coverage level cannot be directly sensed. The coverage level must
be inferred through the coverage sensor model, such as ESPRESSO [5]].

Based on a detailed investigation of the coverage sensor, such as ESPRESSO [54] for the
case of AUV seabed surveying, the CGM cells are updated according to:

wi = H(*c}), (4.2)

where H(%c?) represents the coverage sensor model and defines how to update the CGM
based on the locations of the grid cells in the sensor frame.

If we assume a perfect and uniform coverage sensor then w € {0.5,1}, meaning that each
cell is either covered or not (w = 0.5: not covered, w = 1: covered).

In this case we state the complete coverage objective, assuming known poses, as requiring

wi =1,¥i = 1..N. (4.3)

However, in many cases, such as MCM sonars, the coverage sensor performance is not
uniform as is elicited by the lateral range curves shown in Fig. 2.14. In the case of a
non-uniform sensor characteristic, w € [0.5,1]. In this case, (4.3) can become difficult or
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impossible to achieve depending on the coverage sensor model. We can consider the mission
complete either when a proportion of cells, P, have been covered to a specified level wypyesh:

.. ;
N#{m = L.N,w; > Wipresn} > P, (4.4)

where #{-} is the cardinality operator on a set, or when we have achieved a desired average
coverage, Wayg Over the entire workspace:

N
N Z W} > Wapg, (4.5)
i=1
which was the criterion for mission completion used in the previous chapter.

4.2.2 Coverage with Uncertain Poses

One of the main conjectures in this work is that if we remove Assumption 3.2.1 and consider
the AUV pose uncertainty then these mission objectives (4.4), (4.5) are not sufficient criteria
for mission completion because they do not encapsulate the uncertainty in the coverage.
In general it is impossible to exactly localize a mobile robot so there will always be some
uncertainty about which areas of the workspace have been covered.

As an example, consider the simple circular shape floor vacuuming robot in Fig. 4.3. In
this case, the size of the end effector is identical to the robot’s footprint . For an indoor
application the robot might estimate its position from only its two wheel encoders. Since
the encoder does not give a global position measurement, only a change in position estimate,
as time passes the error in the encoder data will accumulate causing the position estimate
to drift. In the figure, the robot drift results in some areas being inadvertently covered
whereas other areas that were meant to be covered are not. In Fig. 4.4 we consider the
same robot at a snapshot in time. The robot pose has some uncertainty and the areas of
higher probability of coverage are represented as lighter in the figure. In this case, we can
be fairly certain that cell ¢! is covered and fairly certain that cell ¢3 is not covered. But for
cell ¢? there is uncertainty about its coverage status.

Actual Path

Desired Path

Figure 4.3: A simple circular robot moving with drift. The blue arrow and associated
coverage area corresponds to the desired path and coverage. The red arrow and area are
the actual path and coverage. Some areas are not covered that were meant to be while
others were inadvertently covered.
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Figure 4.4: The robot from Fig. 4.3 at a snapshot in time. The lighter areas indicate areas
with a higher probability of being covered than darker areas. The cells ¢!, ¢? and ¢? will
have different probabilities of being covered.

4.2.3 Accounting for Pose Uncertainty During Coverage

Consider a robot whose pose distribution at time ¢ is given by X;. The goal of recursive
state estimation is to estimate the belief distribution of the state X; given by [215]:

bel(Xt = Xt) = bel(xt) =

(4.6)
p(Xy = x¢|Ury = w1y, Z1yy = 214, Xo = X0) = p(x¢|ur¢, Z1:4, X0)
where U is some control input or odometry [215] and Z is a measurement used for localiza-
tion.
In filtering, the state at time ¢ is recursively estimated through an approximation of the
Bayes’ filter which operates in a predict-update cycle. Prediction is given by [215]:

bél(Xt) = /p(xtlxt_l,ut)bel(xt_l)dxt_l (47)

and update is given by: B
bel(x¢) = np(z¢|x¢)bel (x¢). (4.8)

where 7 is a normalization factor. Central to this formulation is the Markov assumption,
that only the most recent state estimates, input and measurements need to be considered
to generate the estimate of the next state.

The pose belief at time t is used to generate a probability of coverage for all grid cells
in the workspace. Now, instead of each cell having one value that represents its coverage,
it has a whole distribution representing the probability of coverage to different levels. The
uncertainty in the robot pose transfers to an uncertainty in the position of cell 7 in the
sensor frame: *c! caused by the uncertain transformation o1t in (4.1). The position of cell
¢ in the sensor frame is now uncertain and is represented by a RV *C} whose distribution
is calculated by mapping the position of the cell in the global frame through the uncertain
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Algorithm 8 Iterative coverage distribution estimation

1: Predict the current pose belief using (4.7)
2: Update the current pose belief using the prediction and the localization measurement
using (4.8)
3: for all cells in the effective coverage sensor swath do
Map the cell location to the sensor frame using (4.9)
5:  Generate the coverage distribution for only the current coverage sensor reading using

(4.14)

6:  Update the current coverage distribution with the previous coverage distribution using
(4.22)

7: end for

transformation from global to sensor frame where:

p(*Cj = c;) = p(3T1 7c’ = *c;) = p(°cy) (4.9)
is the probability that cell 7 sits at location ®c! in the sensor frame at time t.

The uncertain location of the cell, in the sensor frame, results in an uncertain coverage.
Consequently, the coverage is now represented by a RV W} where p(W;} = w!) represents
the probability that cell ¢’ is covered to a coverage level w at time ¢ considering all past
robot states.

Similarly to the previous chapter, it is useful to define a RV Wt’ that represents the
probability that cell ¢’ is covered to a level w! resulting from only the sensor reading at
time t.

The robot pose uncertainty will result in unintended cells having some probability of
being covered. As a result, we define the effective coverage sensor swath, S; to be all cells
that have a “reasonable” chance of being covered at time ¢:

S; = {c'Ip(c' € S;) > ¢,i=1..N} (4.10)

where € is some arbitrarily small threshold.

The probabilistic coverage estimation is represented by the Bayes’ network shown in Fig.
4.5 which is an extension of the standard Bayes’ network used for robot pose estimation
[215].

The mapping from pose to cell location in the sensor frame is achieved with (4.9) (yellow
arrows). The uncertain cell location is then mapped to a coverage distribution for a single
timestep (red arrows) and is described further in Section 4.2.4. Finally, the coverage esti-
mate from a single timestep is combined with the previous coverage estimates (blue arrows)
and is described further in Section 4.2.5. The iterative generation of the coverage distri-
bution is briefly summarized in Algorithm 8. In Fig. 4.5, it is assumed that the coverage
distribution is Markovian (the coverage estimate at time ¢ only depends on the estimate at
time ¢ — 1), an assumption that will be revisited in Section 4.2.5.

Consider again the simple vacuum cleaner robot shown in Fig. 4.4 where three cells are
shown after a single sensor swath at time ¢. For cell ¢! we can say that it is almost certainly
covered:

p(Wr=1)~1. (4.11)
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Wi W, Wi

: N nodes

Figure 4.5: Bayes’ network describing how to estimate the coverage distribution recursively.
: Map the uncertain pose X; through the transformation using (4.1) to determine the

uncertain locations of the cells in the sensor frame.

1: Map the uncertain cell location through the coverage sensor model (e.g. sonar lateral

range curve for AUV MCM)to obtain the coverage resulting from only time ¢ using (4.14).

1: Combine the coverage at time ¢ with the previous coverage distribution using (4.22)
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Similarly for cell ¢® we are fairly certain that it was not covered:
p(W2 =1)~0. (4.12)

However for cell ¢? we are uncertain about its coverage status, but we need a formal and
accurate representation of what the probability of coverage is based on the uncertain robot
pose.

4.2.4 Propagating Robot Pose Uncertainty to Coverage Distribution

Here we describe the process for estimating the coverage distribution resulting from a single
coverage sensor reading from an uncertain location. The distribution p(Wti = w), can
be determined by propagating the uncertain cell location in the sensor frame through the
coverage sensor model, H:

W) =H(*C). (4.13)

The distribution of I/T/g can be determined based on the theorem of total probability:
P =) = [ pV] = wi]*C} = *e)p(*C} = *ci)a'c] (4.14)

In the implementation, the value of p(Vv[/'tZ = w!) can be found by applying the “FUNDA-
MENTAL THEOREM” ([168] p.93) for mapping RVs through functions:

_ p(*Ci="ci[l])  p(*C} = *ci[2]) p(*Ci = *ciln])

(Wi =wj) = I 4 - +ot - 4.15
F S T edn)y T HGaR) Heam)

where *ci[1],%ci[2], ..., *ci[n] are the n solutions found when solving w} = H(*c}):
wi = HEG]) = HER) = .. = HCcln) (4.16)

and H'(c) is the derivative of H(c).

Eqs (4.14) and (4.15) give us an explicit way of evaluating the coverage distribution of
each coverage grid cell from a single uncertain pose. H(*c}) is evaluated from the coverage
sensor model (4.2). p(°c}) is generated by mapping the cell location in the global frame
through the uncertain transformation ;T; defined in (4.1).

Referring back to Fig. 4.4 to the simple case with uniform sensor characteristics, we can
now formally represent the coverage status of the grid cell at location 2 by p(VTft2 =0.5) is
the probability that cell ¢? is not covered and p(Wf = 1) is the probability that it is covered
from one sensor reading at time t.

Example 4.2.1. For an example with a non-uniform coverage sensor model consider Fig.
4.6 which represents a 1D (c! = [2%]) lawn mower. Shown at the top is a lawn mower with
angled blades The angling of the blades produces the non-uniform coverage sensor model. In
this case coverage is defined by the length of the grass with the coverage sensor characteristic
shown in the top right. The distribution of the location of cell i in the sensor frame is shown
in the bottom right. This distribution is propagated through the coverage sensor model to
obtain the coverage distribution shown at the left.
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Figure 4.6: The uncertain cell location, *x% (bottom right) is propagated through the cover-
age sensor model (middle right) to obtain the coverage distribution resulting from the only
time ¢ (middle left) for the lawn mower with uneven blades (top). Due to the non-uniform
nature of the coverage model, the generation of one value in the coverage distribution is
shown as the sum of the probabilities of two possible cell locations, shown as the red and
green lines.
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4.2.5 Generating the Coverage Distribution Recursively from Subsequent
Measurements of the Same Location

Equation (4.14) provides a method for us to propagate the pose uncertainty through the
sensor characteristic to obtain an estimate of the coverage distribution from a single sensor
pose. Over the course of a coverage mission, the robot will move around the workspace and
make many sensor readings. We require a way of combining the coverage distribution from
time ¢ with the previous coverage distribution.

First we will describe the process for combining coverage measurements assuming that the
poses are completely known exactly, then the approach will be extended to the uncertain
pose case.

4.2.5.1 Assuming Certain Poses

In the previous chapter (Proposition 3.2.1), it was proposed that the most optimistic way
of fusing measurements, of the same location but at different times, is by assuming that
they are statistically independent, which yields:

L
w'=1- ] - ). (4.17)

=1

where L is the total number of sensor readings of cell ¢?, and u“)};l is the coverage value for

a single timestep ¢ = t;. Alternately, the most pessimistic assumption is to assume that all

sensor readings are dependent, in which case they should be combined using the maximum

function:
i i

w' = lgllz??cL{wtl}. (4.18)

How the values should be combined is dependent on the type of coverage problem. For

example, for the lawn mowing case, the grass can be no shorter than the shortest cut, so

using the max function would be appropriate. Regardless of the coverage problem, we can

use the max function to obtain a lower bound on the coverage resulting in the following
recursive formulation:

wi = max (W), wi_;) (4.19)

where w! now contains the coverage level for cell ¢’ incorporating all previous measurements
of that cell.

4.2.5.2 Assuming Uncertain Poses

Using the maximum assumption, we can recursively define the coverage distribution using
the maximum function on RVs.

It is known in probability theory that if X, Y, and Z are RVs with probability density
functions p(X = x), p(Y = y), and p(Z = z) respectively and Z = max(X,Y) then ([168]
p.141):

z

p(Z=2)=p(X =2) /Z p(Y =¢€)de +p(Y = z)/ p(X = €)de. (4.20)

—00o —00

We can recursively define a lower bound on the coverage distribution at time ¢ as a
function of the coverage distribution at time t — 1 and the coverage resulting from only time
t as given by the following:
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W} = max(W{, W) (4.21)

where the distribution of W; can be evaluated through the following relation:

p(Wi = w) = p(IWi = w) / U (Wi, = )de
‘ o (4.22)
P, = w) /0 p(Wj = e)de

Based on this maximum function formulation for combining coverage sensor measurements
for a given cell ¢, we have defined a way of updating the coverage distribution at time ¢
based only on the pose at time ¢ (used to generate VVVZ) and the coverage distribution at
time ¢ — 1, W/_;, meaning that the Markov assumption can be applied to the coverage
sensor measurements and pose information can be discarded once the coverage distribution
at time ¢t has been updated based on the Bayes’ network in Fig. 4.5.

Example 4.2.2. Continuing on from Fx. 4.2.1, we now consider the case where a cell
is covered twice by the lawnmower with angled blades. Fig. 4.7 shows a cell ¢ that is
covered at two times, t1 and ta, for the angled lawnmower example. At ty the vehicle state
covariance is larger and mean location of cell ¢ is closer to the middle of the lawnmouwer.
At time to the state covariance is smaller with mean location of cell ¢ is closer to the right
wheel. The distribution of cell location in the sensor frame (row (a)) is mapped through
the coverage sensor model (row (b)) to obtain two instantaneous coverage distributions for
times t1 and ty represented by the distributions of the RVs W;l and ng (row (¢)). These
two distributions are used in (4.22) to obtain the resulting RV W} (row (d)).

The algorithm for iterative coverage distribution estimation is summarized in Algorithm
9 which is a more detailed version of Algorithm 8. The first two lines constitute the ini-
tialization procedure. In line 1, the coverage distributions are initialized to have all weight
at 0.5 (p(W¢ = 0.5) = 1). In line 2, the pose state is initialized based on some prior state
distribution. The algorithm then enters the main execution loop line 4-13 until mission
completion. In lines 5 and 6 the vehicle pose is estimated. Then each cell in the effective
sensor swath is processed in the loop from lines 7 to 11. The distribution of the cell location
in the sensor frame is determined in line 8. In line 9 the uncertain state is propagated
through the coverage sensor characteristic using (4.14). In line 10 the coverage distribution
from time ¢ — 1 is combined with the coverage obtained at the current time ¢ using (4.22).
Lines 8, 9 and 10 are repeated for all cells in the effective sensor swath Sj.

4.2.6 New Definition of Mission Completion

It is argued here that the original definitions of mission completion that can be used for
non-probabilistic coverage defined in (4.4) and (4.5) are not appropriate to describe mission
completion now that coverage over the workspace is described stochastically. To compen-
sate, new definitions of coverage are proposed to define mission completeness.

The first original criterion (4.4) is to require that a proportion P; of the area is covered
up to at least a level of wypyesp, is updated to (4.23) which requires that a proportion P; of
the area has a probability of being covered to at least a level wypesn Of at least Ps:

1 . i .
N#{ﬂp(Wt > wthresh) > PQ,Z = 1..N} > Pl. (4.23)
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Figure 4.7: Cell ¢! is covered twice by the uneven lawnmower. In each case, the distribution
of the cell location in the sensor frame (row (a)) is mapped through the coverage sensor
model (row (b)) to obtain an instantaneous coverage distribution (row (c)). These two
distributions are combined using the max operation on RVs to obtain the final distribution
(row (d)) that represents the coverage distribution for cell ¢; resulting from both coverage
readings.
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Algorithm 9 Iterative coverage distribution estimation (detailed)

1 p(W,=05)=1Vi=1..N
2: bel(xg) + distribution of prior pose state estimate

3t 1
4: repeat
5: bél(Xt) = fp(Xt‘It_l,Ut)bel(fﬁt_l)dl‘t_l
6. bel(xs) = np(z|x¢)bel(x¢)
7. for all i such that ¢; € S} do
B =T =
o (W = w) = [ (I} = w]"Cf = *ei)p(*C} = *ef)c
10: p(W} = ) (Wt =w fo Wt | = €)de
+ p( w) [y'p (W} = €)de

11:  end for
12: t+—t+1
13: until mission completion

The second original criterion (4.5) is to have achieved a desired average coverage, Waug
over the entire workspace, can be updated to (4.24) requiring an expected average coverage

greater than wgyg
N

N

1 , 1 ,

v > EW/] = Bl > W > waug. (4.24)
i=1 i=1

In the case where the coverage sensor characteristic is uniform such as the robot vacuum

example, P, = 1 and (4.23) reduces to the “probably approximately complete” measure of

completeness presented in [53].

4.3 Adaptive Sliding Window Filter for Optimal Coverage
Estimation

The previous section provides an explicit method of accounting for pose uncertainty in the
coverage model. This framework is independent of the state estimation method. Coverage
over the workspace is dependant on the entire sensor trajectory, therefore to obtain the
best estimate of the coverage distribution using the proposed framework, we require the
best estimate of the entire robot trajectory (i.e. the robot pose for all time steps, 1..t) as
opposed to just the present state, t. This is sometimes referred to as smoothing rather than
filtering [57].

This approach is particularly applicable to the case when a robot is receiving intermittent
global position updates and needs to optimize its trajectory between these position updates
as is the case for AUV seabed coverage.

4.3.1 Motivation

The same lawn mowing mission as was shown in Fig. 4.1 where robot state estimation
was performed with an EKF was repeated with a maximum a posteriori estimator [111] to
optimize the entire AUV trajectory and the results are shown in Fig. 4.8. Once again, the
robot dead reckons while inside the workspace, and then obtains GPS updates at the end
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of each track. In this case, the area that we believe we have covered (Fig. 4.8-b) and the
area that we have actually covered (Fig. 4.8-c) have a much closer match than in Fig. 4.1.
Fig. 4.8-d shows the mean probability of coverage over the workspace determined using the
probabilistic framework presented in the previous section.

(@) (b)
200 |
100

0
-100 More

metres

0 100 200
metres

Less

Figure 4.8: (a) Plot of workspace to be covered with desired tracks, estimated path, and
actual path. (b) Estimated coverage. (c) Actual coverage. (d) Mean probability of cover-
age.

Not only does smoothing the trajectory give the user a more accurate representation
of the coverage over the workspace, but in most cases reducing the uncertainty of past
state estimates through smoothing the trajectory will increase the area coverage in the
probabilistic framework. For a more rigorous treatment of the relationship between robot
pose uncertainty and area coverage refer to Appendix 77. If the robot can obtain an estimate
of the smoothed trajectory online, then it can make decisions based on the optimal estimate
of the current coverage.

Since minimizing the robot pose uncertainty will in general provide the most efficient
completion of the coverage task, if we obtain some information at time t that allows us to
improve our estimate of (and consequently reduce our uncertainty about) the robot pose
at some previous time ¢’ < t then we can increase the total effective area of the workspace
that has been covered by recalculating the coverage based on the updated pose estimate. In
the implementation, every time the robot receives a global location update, either through
a GPS sensor, cooperative localization, or loop closure in the case of SLAM, then the
entire trajectory should be re-optimized and the coverage over the workspace should be
recalculated based on the new optimized trajectory.

However, such an approach is problematic in that, since the coverage is a function of the
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entire trajectory, every time the trajectory is re-optimized, the entire coverage map must
be re-computed from the start of the mission. As missions become longer the problem will
become computationally intractable. To compensate for this, a adaptive sliding window
filter approach is proposed whereby only the more recent robot poses that are still being
updated by new information received at the present time are maintained in the state space.

4.3.2 Adaptive Sliding Window Criterion

In a sliding window filter [204], [108], a fixed number of past poses are maintained in the
state space. In some cases it becomes unnecessary to maintain extremely old poses in the
state space since they will no longer be appreciably updated by new incoming sensor data.
The advantage of the sliding window filter approach is that required computation does not
increase with time. Past sliding window filter approaches such as [204], [108], [98], use fixed
and predetermined sizes for the sliding window.

Here we propose an adaptive sliding window criterion based on information gain whereby
the size of the sliding window can grow and shrink based on the localization sensor data
that is received. Each time a new global update, Z;, is received, the criterion is run for all
poses in the state space to find the oldest pose that is still updated significantly (quantified
in terms of entropy reduction) by the new sensor data. The time of this oldest pose is
referred to as the sliding window time tg,, and and poses from before the sliding window
time are marginalized out and no longer maintained in the filter.

The adaptive sliding window criterion is expressed as:

tsw = argmin{ H(Xy) — H(Xy|Z;)} > € (4.25)
t'€(0,t]

where H(X) is the Shannon entropy equation defined in (2.6) and € is a tunable threshold
that will determine the adaptive window size.

In the common case that the states are being estimated as Gaussian distributions, then
the relationship between the Shannon and Fisher informations given in (2.17) can be used
to calculate the Shannon entropies in (4.25).

After performing the sliding window criterion (4.25), the probabilistic coverage map at
the sliding window time, Wy, £ [W! W2 ... ,W} ]is stored. On subsequent updates,
there is no need to calculate the coverage map based on the entire trajectory but rather
only for the parts of the trajectory that still in the state space (i.e. the ones that are inside
the sliding window). Finally, all poses from times before t4, can be marginalized out.

4.4 Application to Autonomous Underwater Vehicle Seabed
Surveying

Localization error cannot be considered as negligible in most AUV seabed surveys since the
AUV has no access to a global position reference when the vehicle is submerged. The only
known paper that considers the robot pose uncertainty when performing seabed coverage is
[176]. In this case, the pose distribution is simply convolved with the sensor characteristic.
Such an approach is equivalent to maintaining only the mean values of the coverage of the
coverage map variables proposed here. On the first pass, these mean values will be correct,
but on subsequent passes, the coverage will be under estimated because the max function
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does not distribute across the expectation operation. This will be elaborated upon further
in Section 4.4.4.

4.4.1 Overview of Approach

The framework described in Section 4.2 and 4.3 is applied to estimate the coverage distri-
bution over an area of seabed.

When the AUV is submerged it “dead reckons” using velocity estimates from the DVL and
orientation estimates from the compass. The motion model is given by the set of equations
(2.18). In this mode we perform the iterative coverage estimation process described by
Algorithm 9.

At some interval, such as when the robot surfaces for a GPS fix or receives an acoustic
localization update, the sliding window criterion (4.25) is applied and the coverage map is
regenerated from the sliding window time as described in Section 4.3.

4.4.2 Propagating AUV Location Uncertainty to Coverage Distribution

Since the SSS can only generate useful mosaicked data when the AUV is in rectilinear
motion, the following simplifying assumption is proposed:

Assumption 4.4.1. Only the cross-track uncertainty in the AUV location is considered as
it will have a larger affect on the coverage uncertainty in the case that the AUV is moving
i a straight line.

This assumption is applied to simplify the formulations here, however, an investigation
of the impact of this assumption would be an interesting avenue of future work.

As a result, the pose distribution is projected onto the line orthogonal to the direction of
AUV motion as shown in Fig. 4.9.

Figure 4.9: Projection of 2D position distribution onto 1D line orthogonal to the direction
of AUV motion

It is also assumed here that DVL, GPS, and compass noise are normally distributed (for
justification see [224]) so that the robot pose can be approximated as following a Gaussian
distribution. In this case the 2D position is estimated as a bivariate Gaussian distribution
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of the RVs (X, Y;):

bel(Xt = .%',Y;g = y) NN(H’XH Ext)

— 1 exp(— 1 [($_,uxt)2
27r0$t$t0ytyz V 1 - P% 2(1 - p%) O-f%tivz (426)
R T G [ (s uyt)])
0-'73,5 Yt Oy Uyt Yt
where px, = [tz jty,]" and
EXt _ U?ctxt ptgxtgtaytyt (4‘27)
PtOzias Oyrys Tyiys

and p is the bivariate correlation coefficient [168]:

o Bl 1) (Y = ) (128)

Otz Oyiys

The cell location in the global frame is transformed through 77} into a distribution in the
sensor frame p(*C: = *ci) and then the along-track (*z%) uncertainty is marginalized out

to yield a distribution for cell 4 in the cross-track direction: p(°Y} = $yi) ~ N (Msyi, o

vi*vi)
with:

Jhsyi = (2" — pa,) sinaby + (Y — py, ) cos iy, (4.29)
and:
Tsyiagi = 02 4, SN Yy + L0z, Ty, SIN 200y + agtyt cos® 1. (4.30)

(for derivation see Appendix C).
The coverage sensor model, #, originally defined in (4.2) is now given by:

Wi =H(°C)) = P(Y;) (4.31)

where only the cells that are perpendicular to the AUV pose at time t are in the sensor
swath, and those cells are updated by mapping the orthogonal distance from the cell to the
AUV track through the sonar lateral range curve P(y) based on (4.14).

Fig. 4.10 shows how the distribution of WIZ is generated by mapping an uncertain cell
location through the sensor characteristic. The distribution of the orthogonal distance of
the cell from the sensor is shown in red (bottom right). The sonar coverage sensor model
is shown in blue (top right). The cell location distribution is mapped through the coverage
sensor model to obtain the coverage distribution resulting from this one single measurement
(top left).

Finally, a lower bound on the coverage can be obtained recursively by applying the max
operation on RVs defined in (4.22) to determine the coverage distribution Wj.

4.4.3 Sliding Window Filter Estimation

The coverage distributions are recomputed from the sliding window time whenever a global
update is received. In the implementation, this takes place when the vehicle surfaces for a
GPS reading or receives an acoustic update from a stationary or moving beacon.
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Figure 4.10: The distribution of the cell in the sensor frame (bottom right) is mapped
through the P(y) curve (top right) to obtain a coverage distribution (top left).
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Example 4.4.1. The purpose of this example is to further clarify the effect of smoothing
on the confidence distribution. In this simulation, the robot is made to follow a pre-defined
path. In addition, the vehicle is diving and then surfacing twice, only having access to GPS
when it is at the surface. The path of the robot is shown in Fig. /.11 (top) with five time
steps t1.5. One point is highlighted in red, defined here as cell ct. The coverage distribution
of ct, W} is shown for the five time steps, t = {t1,t2,t3,ts,t5}. in Fig. 4.11 (bottom).
Time t1 is the start of the simulation, time to is the time when cell ¢! is first observed, t3
is the time when the robot first surfaces, at time t4 c' is observed a second time, and then
the robot finally surfaces again at ts. For clarity of the example, the sonar performance is
assumed constant.

Several points are important to note from Fig. 4.11. Note that the distribution of th
has reduced entropy compared to time to because the robot has surfaced and the trajectory
has been re-estimated based on the GPS reading as is noted by looking at the distributions
in Fig. 4.11(bottom). When c' is passed a second time, the two looks producing WZQ and
W& are combined resulting in Wti4 . The coverage distribution is once again recalculated at
ts when the vehicle surfaces again to give the final distribution that shows an extremely high
total probability of coverage.

4.4.4 Path Planning Within the Probabilistic Framework

In order to fully exploit the benefits of the richer description of coverage, path planners must
be developed within the framework so that mission objectives can be achieved efficiently.

Past approaches to AUV seabed surveying have planned structured paths offline and
assumed that the tracks are precisely followed. A summary of some of the approaches was
presented in Chapter 4.4.4.

In the previous chapter we presented a sensor-driven approach to adaptive coverage plan-
ning. Recall from the Bayes’ network in Fig. 3.2 we arrived at the expression (3.4) for
the joint distribution of confidence at cell ¢! from one sensor reading Tti, the environmental
parameters, £, and the vehicle pose X;:

P =1 =X =x)=

oy . ) , , (4.32)
p(Ty = 11&; = &3, Xs = x¢)p(€} = €)p(Xs = x¢)
In Chapter 3, we made the assumption that the pose was certain and p(X; = x;) = 1.
Here, this assumption is removed. For simplicity of formulation, we assume here that the
environmental parameters £ are known (p(€! = €}) = 1) however the extension to the case
where both the environmental parameters and pose are uncertain is straightforward.
Similar to (3.8), we can evaluate the confidence resulting from a single sonar sensor reading
at time ¢t for cell ¢’ by marginalizing out the pose:

p(Ti =1) =) p(T{ =1, =€}, X = x)

Xt

= Zp(i}i = 1|&} = &}, X; = x)p(X; = %)
o o (4.33)
= EXt [p(TtZ = 1|8é = Eza Xt = Xt)}

B {Esyti[Pei(SY;")] if cell ¢ € S,

0.5 otherwise
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Figure 4.11: Coverage distributions at five time steps. (top) Trajectory of AUV with five
time steps shown. (bottom) The coverage distribution of ¢’ for five time steps. The vehicle
begins at time t¢1, first passes the cell of interest at to, surfaces for GPS at t3, passes the
cell a second time at t4 and finally surfaces again at ts.
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where the sonar lateral range curve is a specific representation of the general coverage sensor
function H defined in (4.2). So (4.33) can be rewritten as:

Fey[Po (i) = Bugy[HCC) = EWV) (434)
So the confidence from one look p(TtZ = 1) in the case of the AUV seabed coverage problem
is evaluated as the mean of the coverage distribution from the probabilistic framework. For
the cells that are in the sensor swath:

o .

p(T} = 1) = E[W{] (4.35)
Similarly, the final confidence after combining n looks can be expressed as:
p(T} = 1) = E[W}] = Elmax{W; , W, ..., W }] (4.36)

where the necessity to maintain the entire coverage distributions as opposed to just the
means is highlighted by the fact that the expectation operator, £ cannot distribute across
the max operator: E[max{Wtil, VUV;Q} # max{E[Wtil], E[th]}

Now the sensor-driven path planning approaches presented in the previous chapter over
the confidence variables T; can be applied within the probabilistic framework. Simulation
results are shown in Fig. 4.14.

However, an additional, more structured approach to path planning within the proba-
bilistic framework based on information is also presented in the following section.

4.4.4.1 Structured Approach

In this approach, the location of the next track is optimized at the end of each track. The
placement of the next track to be followed should maximize the information to be gained
by following the track subject to the constraint that no gaps are left.

One proposed method to define structured paths within the probabilistic framework is
described by Fig. 4.12.

The optimization is over the domain of d subject to the constraint that the area A satisfy
mission completion. Define the track as 74 and parameterized by s:

Td : [07 1] — er667 s — Td(s)
Td(l) = (d7 xmax)
where ., and T.,q, are the minimum and maximum x values of the track. Note that
this approach easily extends to surveys at any angle but for simplicity a vertical track
formulation is shown.
In this case we selected (4.24) as the criterion for mission completion.

So the optimization now becomes to select the value of d that will maximize the informa-
tion gained similar to (3.21):

1
B(d) £ /0 AH(T|EFN  74(s))ds (4.38)

subject to the constraint:
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Figure 4.12: The value of d should be optimized such that the portion of the map defined
by A satisfies the mission completion criterion

N
1 .
A Z E[th] > Wang (4'39)
i:ct€A
The advantage of this approach over the unstructured one is that it will produce straight
transects across the workspace. The disadvantage is that it could be more inefficient for
more complex shaped workspaces.

4.5 Experimental Setup

The methods are tested in a simulation and in water trials similarly to the previous chapter.
The adapted backseat MOOS community is shown in Fig. 4.13. The “Adaptive Sliding
Window Filter” application uses raw sensor data from the frontseat to estimate the state
and trajectory. The “Probabilistic Coverage Map” is an enhanced version of the “Coverage
Map” application described in Chapter 3 where now coverage values are probabilistic. The
“Behaviours” are similar to the ones described in Chapter 3 but enhanced to operate within
the new probabilistic framework. All other applications are left unchanged and are part of
the open-source distribution of MOOS-IvP.
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Figure 4.13: MOOS communities for simulation and actual vehicle implementation. State
estimation is now performed on the backseat and raw sensor data is passed from the

frontseat.
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4.6 Results

4.6.1 Simulation

The simulation is used to validate the proposed approach. The results from the unstructured
planner are shown in Fig. 4.14. In the figure, the vehicle surfaces for a GPS fix eight
times, and each time it surfaces the sliding window criterion is applied. The portion of the
trajectory that is being maintained in the sliding window filter after each of the updates is
shown in red.

The final total smoothed path and actual path from the simulator are shown in Fig. 4.15.
The mean probability of coverage for the smoothed planner is shown in Fig. 4.16 yielding
an expected coverage of 98%. The actual coverage is shown in Fig. 4.17 and is 98%.

4.6.2 In-Water Trials

Many field experiments have been performed to test the proposed method. One such ex-
ample is shown in Fig. 4.18 and Fig. 4.19. This experiment was performed on the same
workspace that was shown in Fig. 4.1 and Fig. 4.8, which is a rectangular box approxi-
mately 200m by 300m. The vehicle runs on the surface but the GPS data is not incorporated
into the state estimate unless the vehicle is at the beginning or end of a track (when a GPS
fix might normally occur). Each time a track is completed, the optimization (4.38) is re-run
until convergence. In some cases acquiring the GPS fix and computing the optimal track
takes some time, so the vehicle executes a loiter pattern while this is ongoing.
In this case, the criterion for mission completion is given by:

N
% > E[W/] > 0.985 (4.40)
i=1
or mean average probability of 98.5%.

In Fig. 4.18, the yellow box represents the workspace, the red plot represents the achieved
AUV position from the GPS logged data, and the blue represents the trajectory that is
currently being estimated in the sliding window filter. Each time a new GPS update is
received, the sliding window criterion is run and old poses are eliminated.

The final trajectory and actual coverage map from the GPS data are shown in Fig. 4.19.
The actual average coverage in this case was 98.9% when the mission was terminated. It
is important to note in this case is that even though the ability of the AUV to follow the
tracks is extremely poor, it is still able to achieve its coverage objective.

4.7 Summary

In this chapter we form an an explicit link between area coverage and state estimation for
a general robotics area coverage problem. The framework is then applied specifically to the
AUV seabed coverage problem.

We have presented a probabilistic framework within which paths can be generated that
will guarantee coverage based on new probabilistic coverage criteria, notwithstanding the
uncertainty in vehicle pose. In the proposed method, the pose belief is used to generate a
coverage distribution that is maintained as the vehicle navigates the workspace. It is also
shown that trajectory estimation should be used since minimizing the uncertainty over the
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Figure 4.14: The eight plots show the state of the system after each GPS update yellow:
The area to be covered. red: The portion of the trajectory that is being estimated by the
adaptive sliding window filter. blue: The portion of the trajectory that has been smoothed
but is no longer being updated. Figures progress from left to right and from top to bottom
with time. Units are in metres and sensor characteristic is considered fixed and is the lateral
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Figure 4.15: The achieved (red) and smoothed (blue) trajectories at mission completion.
The smoothing approach yields a better estimate of the entire robot trajectory than a
standard filtering approach. Units in the plot are in metres.

Figure 4.16: Smoothed coverage estimate (Mean probability of coverage = 98%)

Figure 4.17: Achieved coverage (98%)
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Figure 4.18: The eight plots show the state of the system after GPS updates are obtained
nearing the end of each track. Time progresses from left to right and top to bottom. Units
are in metres. The sensor characteristic used is the 10m depth cobble seabed shown in Fig.
2.14. In each plot: yellow: The workspace to be covered. pink: The track that has just
been followed. red: The achieved trajectory that has been followed to that point based on
the GPS data. blue: The portion of the trajectory that is being estimated by the sliding
window filter. Each time a track is finished the location of the next track is optimized based
on (4.38) so that the workspace is guaranteed to be covered. The AUV is able to cover the
area to 98.8% even though it is drifting more than 20m over a 200m track.
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Figure 4.19: The final estimated trajectory overlayed on the coverage map (darker area
indicates higher coverage). Path starts at red dot and ends at blue dot. Final path length
is 4959 metres.
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entire trajectory maximizes the effective coverage in most cases. To maintain scalability of
computation with time, a sliding window filter approach is utilized. A criterion is defined
for which old poses can be removed from the state space based when their information gain
resulting from global position updates is sufficiently low. Upon removal, the coverage map
at the time of the oldest pose still being estimated is stored and used as the starting point
for subsequent updates.

The method is then applied to the autonomous seabed coverage where it is shown that
with this adaptive approach we can guarantee that the seabed coverage mission objective is
achieved even in cases of very poor ded reckoning. In the case of a safety critical application
such as MCM, it is crucial that we have the most accurate estimate possible of the confidence
of coverage of the workspace to prevent the possibility of missed mines.
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Chapter 5

Cooperative AUV Trajectory
Estimation

5.1 Introduction

Using multiple survey robots has many potential benefits, such as increased efficiency and
robustness. In the absence of any coordination or cooperation, a team of robots could cover
an area of seabed more quickly by partitioning the workspace into smaller areas with each
covering a smaller piece. An additional possible benefit of using multiple robots is that, in
the case that they are able to communicate and make relative measurements of each other’s
range, localization can be improved [192]. However, operating with multiple robots does
come with the added overhead required to deploy, control and recover the extra platforms,
so it is important to maximize the potential benefits.

In the previous chapter the link was made between coverage and state estimation and it
was motivated that full trajectories should be estimated rather than just present states. In
this chapter, cooperation amongst AUVs is exploited for trajectory estimation to increase
the efficiency of coverage for a multi-AUV survey team.

It has been shown theoretically and experimentally that a team of agents without access
to a global location reference can localize themselves more accurately if they can make
measurements of range relative to one another and communicate those measurements [192].
This is referred to in the literature as cooperative localization, for a review see Chapter
2.4.5.2.

In the underwater scenario, AUVs can make range measurements relative to each other
using the TOF of acoustic transmissions in water and the known speed of sound in water
(~ 1500m/s):

relative range = time of flight x speed of sound, (5.1)

and these relative range measurements can be used to perform cooperative localization.
Performing cooperative localization in an underwater environment is challenging because
inter-vehicle communications are challenging. Higher frequency signals attenuate rapidly
with range in water, so for robots to communicate any appreciable distance requires using
acoustic signals. The amount of raw data to be shared amongst robots in order to recover
a consistent centralized multi-robot state estimate incorporating the inter-robot measure-
ments is large and the communications bandwidth on the acoustic channel is limited.

A depiction of the AUV cooperative localization setup is abstractly shown in Fig. 5.1.
Bandwidth is so limited that robots must take turns transmitting data at the same carrier
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frequency. In the figure, AUV 1 transmits at time ¢, AUV 2 transmits at some later time
to and then finally AUV 3 transmits at time t3. If the AUVs are equipped with precisely
synchronized clocks (for example by synchronizing to the GPS time signal at the surface
before submerging) and transmit at known times, then, upon reception of an acoustic data
packet, the receiver can also calculate its range relative to the sender. Each reception of a
data packet combined with the associated relative range measurement allows the receiving
robot to reduce its position uncertainty in the direction relative to the sender.

In AUV cooperative localization, the job of the system designer (and the topic of this
chapter) is how to most effectively select information to be transmitted to other AUVs to
achieve the cooperative localization objective.

/

\ _ g
~_ _ ~N_ -~ — — —
AUV 3 t=13

7 After Acoustic Reception 7, Before Acoustic Reception

Figure 5.1: Depiction of a three AUV team performing cooperative localization. Each
AUV in the team takes a turn to make an acoustic transmission (dark arrows). As robots
move, their position uncertainty (indicated by dashed ellipses) grows. Upon reception of
an acoustic transmission the receiver can calculate the TOF of the acoustic signal from the
source and use knowledge of the sender’s location (which was contained in the data packet
itself) to reduce its position uncertainty in the direction of the sender (gray ellipse to dark
ellipse).

5.1.1 Problem Statement

It is desirable that a team of AUVs use their ability to communicate and make relative
range measurements to improve their trajectory estimates while performing a seabed survey
mission.

It is infeasible to transmit all raw sensor data through the limited and unreliable un-
derwater acoustic channel. The challenge is, therefore, to devise a method in which each
AUV can use the relative range measurements of other members of the team to improve
own-vehicle localization, without becoming overconfident about localization accuracy, using
the underwater acoustic communications channel.
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5.1.1.1 Acoustic Modem

Additional to the on-board sensor suite described in Table 3.2, each robot is equipped with
an acoustic modem that is capable of sending and receiving acoustic data packets (~ 192
byte packet every 10s). The acoustic modems have precise clocks that can be synchronized
on the surface before submersion using the GPS time signatures. These clocks drift on the
order of one ms over a 14 hour period [224], resulting in about a 1.5m error range. For
surveys that are significantly shorter than 14 hours the drift in the synchronized clocks can
be considered negligible. Transmitting robots initiate communications precisely at the start
of a second and receiving robots can calculate the inter-robot range measurement based on
TOF which is calculated as the fractional portion of the second on arrival.

5.1.1.2 Restrictions of Acoustic Communications

Communicating through water using acoustics imposes several constraints that do not ex-
ist in radio-frequency communications. While detailed acoustic communications theory is
outside of the scope of this thesis, a brief description is given here on the aspects of com-
municating though water that make it particularly challenging:

1. Reduced bandwidth: Bandwidth is so limited that only one node (robot) can transmit
at a time. As a result, a TDMA medium access control (MAC) protocol is used so that
the channel may be shared. Robots are allocated, for example, 10s slots in a cycle that
repeats. In this work, the slots in the TDMA cycle are assigned before the mission,
but other MAC schemes are possible that would allow for robots to dynamically join
and leave the network.

2. Reduced throughput: Allowable data packet size for one transmission is 192 bytes
(rate #1 of the Woods Hole Oceanographic Institute micromodem [83]).

3. Unacknowledged: Acknowledgment of individual packets is generally prohibitive. Adding
new nodes or robots to the system increases the duration of the TDMA cycle. If nodes
acknowledge individual packets, then the length of the TDMA cycle scales ~ O(N?)
where N is the number of nodes, which quickly becomes unwieldy even for small team
sizes. If communications are broadcast without acknowledgment, or if acknowledg-
ments are included in the normally scheduled transmissions, then the length of the
TDMA cycle scales as only ~ O(N).

4. Low Reliability: In field tests we have experienced packet drop rates from 20-50%
depending on conditions, relative orientation of sender and receiver, ambient noise,
etc. AUV cooperative localization algorithms should make no assumptions about the
success rate of the acoustic communications.

The challenges listed above are certainly severe, but acoustic communications does come
with a few benefits: 1) The fact that data packets travel at the speed of sound in water (~
1500m/s) makes accurate ranging possible based on the TOF and 2) Communications are
broadcasted so a transmission from any node in the network could be received by all other
nodes within acoustic range.
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5.1.1.3 Inter-Robot Range Measurements Through Time-of-Flight of Acoustic
Data Packets

For a group of N robots, TDMA cycle ¢ and slot duration in the cycle of T' seconds, a
transmission will be initiated at time ¢t = kT £ t, where k is an integer indexing the
transmission number. If we assume that the first transmission is made by robot 1 in cycle
¢ = 0, then the transmission at time k7" will be made by robot £k — Nc. Each broadcast
transmission has the potential to result in N — 1 range measurements. For example, if a
range measurement of robot ¢ by robot j at time ¢ is denoted by ri;j , a transmission by

robot ¢ at time t; will result in the N — 1 range measurements rf;j,j = 1..N,j # ¢ if all
transmissions are successfully received.

The distinguishing aspect of underwater cooperative localization is that the inter-robot
measurements (ranges) are a result of the inter-robot communications and therefore ranging
and communications happen concurrently. This differentiates it from cooperative localiza-
tion performed above-water where measurements and communications are not concurrent.

5.1.1.4 Selecting the Right Information to Transmit

Cooperative localization in the presence of perfect communications amounts to a distributed
sensor fusion problem and can be solved using a centralized filtering [192] or smoothing [159]
approach.

In the general cooperative localization literature, the underwater domain is often cited
as a potential application space. However, the vast majority of algorithms for above-water
cooperative localization in the literature make one or more assumptions that violate the
constraints of the underwater acoustic channel listed above.

For AUV cooperative localization, there is simply too much data compared to the band-
width available to send everything. The essential aspect of any AUV cooperative localization
algorithm is how this problem is overcome.

5.1.2 Objectives and Significance

In this work, we assume that the team of AUVs are homogeneous, meaning that all of
them are equipped the same suite of sensors. The overall objective is to utilize cooperative
localization amongst this homogeneous team of AUVSs to estimate the AUV trajectories and
consequently achieve the seabed coverage mission as efficiently as possible.

Cooperating AUVs will have a reduced rate of position uncertainty growth while sub-
merged due to their ability to cooperatively localize. This is beneficial from a seabed
coverage standpoint for two main reasons:

1. AUVs can surface less for GPS fixes and thus have more efficient coverage missions
and reduce energy consumption.

2. AUV localization error will be reduced over the entire trajectory, resulting in more
rapid convergence towards coverage, based on the probabilistic coverage framework
presented in the previous chapter.

After surfacing for GPS position fixes or receiving acoustic packets, the entire trajectory
is re-optimized to provide the best estimate of the coverage over the workspace in a manner
similar to the approach in Chapter 4 but extended to multiple AUVs. In the absence of
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communications failures the proposed algorithm provides optimal estimates, but in some
cases communication failures will result in loss of optimality without significant impacts.

The area to be covered should be equally partitioned amongst the robots. Although it is
possible to use the state updates from other robots to update the local coverage map, this
coverage map would only be, at best, an approximation of the actual global coverage since
state updates are only intermittent.

5.1.2.1 Localization Overconfidence

A consideration in any cooperative localization algorithm design is avoiding overconfidence
in the location estimate. As described in [191], if cross correlations induced by the estimation
of one robot position relative to another are not considered, the result will be an inconsistent
or overconfident estimate (i.e. the estimated covariance will be less than the actual or
optimal covariance).

Given that accurate localization is a critical requirement for successful MCM, overconfi-
dence in the state estimate should be avoided. It leads to an overly optimistic representation
of the coverage achieved over the workspace, making the real risk associated with the area
higher than estimated.

5.1.3 Overview and Contribution

Cooperative localization is formulated here as a least-squares problem and an algorithm is
proposed that operates within this framework to estimate the entire trajectory of AUVs.
The contribution of the chapter can be summarized as follows:

1. Formulation of cooperative localization as a least-squares optimization problem in
Section 5.2.

2. An algorithm that provides near-optimal estimates of entire AUV trajectories on-
board each robot with a communication throughput that scales linearly with the
number of robots in the team and constantly with time. This is the first known
algorithm where packet size scales linearly with the number of robots in the team and
is not affected by communications failures.

The benefit of the proposed approach for AUV seabed surveying is that robots will have
to surface less often resulting in AUVs being able to spend a higher percentage of their time
in water actually performing the survey. In addition, the smoothing approach is beneficial
since, as was shown in the previous chapter, optimizing the entire trajectory allows for
more rapid convergence towards coverage meaning that mission completion is achieved
more rapidly.

5.1.4 Chapter Nomenclature

A table showing the nomenclature used in the rest of the chapter is presented in Table 5.1.

5.1.5 Chapter Outline

The remainder of the chapter will be organized as follows: in Section 5.2 AUV cooperative
trajectory estimation is formulated as a least-squares optimization problem. In Section 5.3
the algorithm for decentralized multi-robot trajectory estimation is presented. In Section
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Variable

Description

t Time index
tr Time of the kth acoustic transmission
t}; Time of the kth acoustic transmission either transmitted or re-
ceived by robot ¢
c Number of TDMA cycles that have been completed
N Total number of AUVs
T Length of a slot in seconds in the TDMA cycle
X RV for state of robot i at time . Pose given by RVs [X}, Y}, U}]
Ri: RV for range measurement by AUV j of AUV ¢ at time ¢
: RV for control of robot 4 at time ¢
VA Proprioceptive measurement on-board robot ¢ at time ¢
Gz C7Zi GPS and compass measurement RVs
A A Linear velocity readings from the DVL in the bow (u) and star-
board (v) directions
¢ Additive Gaussian noise associated with process model on robot

¢ at time ¢ with mean 0 and covariance Q}

5, O, 7]

Additive Gaussian noise associated with GPS, compass, and

inter-robot range measurements respectively with associated co-
variances A, A®, and AR

f0

Process function

e (),hC0), ()

Measurement functions for GPS, compass, and inter-robot range
respectively

¢

Factor function in factor graph

Table 5.1: Chapter 5 nomenclature.
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5.4 the multi-AUV experimental setup is described. In Section 5.5 results are presented.
Finally, in Section 5.6 some general discussion and conclusions are given.

5.2 Cooperative AUV Trajectory Estimation as a Least-Squares
Problem

In this section AUV cooperative trajectory estimation is formulated as a least-squares opti-
mization problem. First, cooperative trajectory estimation is presented in two different but
related forms: the Bayes’ network and the factor graph. The relationship between these
representations is outlined and finally a derivation of the least squares formulation for AUV
trajectory estimation is obtained which draws on elements of each.

5.2.1 Problem Formulation

We formulate the problem in two dimensions since AUV depth can be accurately measured.
Extension to higher dimensions is straightforward. Let the pose of robot ¢ at time t be
represented by the array of RVs: X! = [X7, Y}, U{]T. Each robot generates an estimate
of its own pose through control values, U, and proprioceptive measurements: either GPS,
GZi or compass CZt.

Robots communicate with each other using the acoustic modem in a TDMA scheme as
described previously. AUV j sends an acoustic transmission at time t; £ ti and it is
received on robot i at time t; + Azj = ti; where AZ’j is the time of flight of the acoustic
packet initiated by robot j at time ti and received by robot ¢ at time t}'c. Robot ¢ can
estimate its relative range at time t}; from j at time t{g when the packet was sent. This
measurement is represented by the RV Rikj (It should be noted that in reality the acoustic
transmission is sent from point to point in 3D space. The measured range is actually the
result of projecting the 3D range onto a 2D plane which requires knowledge of both robots
depths since depths can be easily an accurately measured using pressure sensors as described
in Section 2.4).

The process model is given by:

Xe = f(Xi 1, UY) + ¢ (52)
where the additive noise term, ¢}, is assumed to be Gaussian with mean 0 and covariance

Qi

The GPS measurement model is given by:
“Z; =h"(X},98) (5-3)

where ¢87 ~ N (0, A®) is zero mean Gaussian noise associated with the GPS sensor reading
(covariance assumed constant with time and across all robots).
The compass measurement model is given by:

“Z; = n°(X},°5}) (5.4)

where ¢8; ~ N(0, A®) is zero mean Gaussian noise associated with the compass measure-
ment ©Z} (covariance assumed constant with time and across all robots).
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The range measurement model is given by:

7] — hR(Xiz,

Xii )+ H8;7 (5.5)
where Réi;j ~ N(0, AT) is zero mean Gaussian noise associated with the inter-robot range
measurements, whose covariance is assumed to be constant with time and independent of
range, a claim experimentally validated in [224]

For completeness, details of all process and measurement models are included in Appendix
D.

The process and measurement equations can be represented as conditional probabilities
by collecting all non-noise terms on the left hand side and utilizing the assumption that
noise distributions are Gaussian:

. . . . o ; 1 1 . . .
X — [(Xi1,Up) = ¢ = p(xglxi_q,wp) = o exp{—5[|f(xt-1,ut) — xillg: )

i i i T 1 1 i i
Gzt - hG(Xt) = G5t — p(Gzt|Xt) = ZQXP{_§HhG(Xt) - GZtHiG}

7}~ (X)) = 8~ p(Cailed) = Lo [GINCG) - Callh} 69
L P0G X)) = 0] plei b )
— - exp( 5 W )~ i)
where ||e||3 = ef¥7!e is the Mahalanobis distance notation and the variables v.4 are

scaling constants.

The goal is to generate an estimate of the entire trajectory of all AUVs in the team, X1 il
on-board each vehicle conditional on all control (U}:N), proprioceptive sensor (GZM and
CZ1N), and inter-robot range (RiﬁrklN) data. This is expressed by the following posterior

distribution:

1:N‘u1N G, 1:N C

1:N,1:N :
p(Xlt 1t Ll 1]5\[ 1N) (57)

1:
Zit 5T, X0

which is distinguished from filtering where we only wish to estimate the current AUV poses,
1:N
x4

:N C_1:N _L:NI:N _1:N
s D1y 7rt1 ity » X0 ) (58)

5.2.2 The Information Flow Graph

A useful topological representation of the communication and range measurement between
robots is the “information flow graph” [138]. An example of such a structure is shown in
Fig. 5.2. First AUV 1 transmits at time ¢;. Upon reception, AUVs 2 and 3 are able to
measure their relative range to AUV 1. Then AUV 2 transmits at time t5 and so on.

5.2.3 Cooperative AUV Trajectory Estimation as a Bayes’ Network

The standard representation for conditional dependencies in robotics state estimation is
through a Bayes’ network (BN) [215]. The BN graphical representation for AUV cooperative
localization, here between two AUVs, is shown in Fig. 5.3. In the figure, AUV 1 transmits
at time ¢; and AUV 2 transmits at time ¢s.
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AUV 1

Odometry
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Communication

Range
—

AUV 3

to t1 to i3

Figure 5.2: Information flow graph for three AUVs depicting inter-robot communications
and measurements as a function of time.

Each arrow in Fig. 5.3 represents a conditional dependance. As a result we can estimate
the joint probability distribution at time ¢ over all variables in the network as a product of
priors, process conditionals and compass, GPS, and range measurement conditionals:

‘N
it

N G
t

1 N 1:N,1:N 1:N
» Uy, t

~+

X H Hp Xy [Xy_1,up)

t'=11=1

X HHp 7l |x)

t'=11=1

X HHp 7l |x%)

t'=11=1

k N
i,k'—Nc i
p rtk/ |th 7th:/—Nc)
k/

k'=11i=1

(5.9)

X

where oc denotes proportionality and & — Nc¢ is the index of the transmitting robot at time
t. as described in Section 5.1.1 (Recall N is the total number of robots and ¢ is the TDMA
cycle number).

In what follows we omit the priors p(x}) since in reality all robots start on the surface
and their state is initialized through compass and GPS sensor measurements.
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Figure 5.3: Bayes’ network representation of cooperative trajectory estimation with two
AUVs. There are two inter-robot observations shown. Implicit in this network is the
assumption that measurements at time ¢ only observe states at time ¢, and that states at
time ¢ are only depend on control at time ¢ and states at time t—1 (the Markov assumption).
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5.2.4 Cooperative AUV Trajectory Estimation as a Factor Graph

An alternate representation of cooperative AUV trajectory estimation from the BN is as
a factor graph [124]. A factor graph is a bipartite graph where the measurements CZU ,
GZEN and Ri 1]¥k1N and control UL are represented by factors nodes, and the variables to
be estimated, X}:) are variable nodes. Edges connect factor nodes to variable nodes where
an edge indicates that the factor operates on that variable.

In a factor graph each factor represents a potential function, denoted here by ¢, over
some of the unknowns, usually one or two.

The joint density in (5.9) can then be factored as a product of these potential functions
or factors:

: : : N,1:N 1 N
p(XEN, ULN, CZEN CziN RSN = H ép(X) 1P (5.10)

where X%i\f (v} represents the subset of variables of XHV that are adjacent in the graph to
factor ¢p,.

The factor graph representation has a close relationship with the measurement Jacobian
A as each row in A is representative of one factor as will be derived below. The structure
of the measurement Jacobian is included in Fig. 5.4 where shaded elements are non-zero.
The information matrix € is related to the measurement Jacobian through Q = AT A.

The factors in (5.10) are proportional to the elements of the joint distribution given in
(5.9).

It is important to stress that these two BN and factor graph representations are inherently
different views of the same system.

5.2.5 Cooperative AUV Trajectory Estimation as a Least Squares Opti-
mization

In this section we use properties of the BN and factor graph representations of cooperative
localization just shown to derive a general least-squares optimization form for the coopera-
tive localization problem. Once the general form is derived, any new measurement models,
or factors, can easily be incorporated into the framework without changing the fundamental
underlying procedure of how the least-squares problem is solved to yield an estimate.

The maximum a posteriori estimate of X1V denoted xiLV, is the value of x}:)V that

maximizes the joint probability [57]: p(xiiV, €zl GzhN u% iv, r%lj:[kl My

*1:N :N C_L:N G,L:N _1:N _LNL:N

X1t —arganaxp(x AP TR ST IS TR (5.11)
1
X1t

The probability p(x}:N, CzhN GzliN whN r;];]klN) is a multi-variate Gaussian, therefore
maximizing it is equivalent to minimizing the negative log [57]:

: 1:N,1:N
it = angmin— log p(xl, 2wl V) .12
X1t
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Figure 5.4: Factor graph representation of BN in Fig. 5.3. The factor graph has a natural
representation with the measurement Jacobian where each new factor adds a new row and
operates over the variables that are adjacent to it. Shaded elements of the measurement
Jacobian are non-zero with non-shaded elements being 0.
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which allows the joint density defined in (5.9) as a product to be represented as a sum:

x3 N = argmin const+
oE

D) log{p(xii|xiy,uf) )+

t'=11i=1

t N
Z Zlog{p(czi/|xi/)}+ (5.13)

t'=11i=1

t N
> > log{p(“zplxp)}+

t'=11=1

k N
i, k' —N i k'—N
> > toa{p(ryy g XN}
X

k'=11i=1

where const is the sum of the logs of the normalization constants v;,i = 1..4 and can
be neglected since it would not affect the argmin operation. Replacing the conditional
probabilities in (5.13) with the distributions derived in (5.6), the logs and exponents cancel
out to yield:

*1:IN

X]; = argmin{

1:N
X1t

AR | , A A
DD gl ) = xillg,

t'=111=1

tN ' '
Z Z §HhG(X@) — %zl [Re+ (5.14)

t'=11=1

t N 1
S5 L) - i e+

t'=11=1

kLN ,

Ryi  K-N ik —Ne) 2
o> e x ) = Re)-
i KT ’

which is a non-linear least squares problem. Such a problem can be solved with a non-
linear optimization method such as Gauss-Newton or Levenberg-Marquardt algorithm [58].
In either case, linearization via first order Taylor expansion is performed on (5.14) around a
linearization point, ™x}:¥, where m is the iteration number of the non-linear optimization.

Analytical derivations of the Jacobians required for the first order Taylor expansion are
given in Appendix D.

Once the nonlinear functions in the exponents have been replaced by linear approxima-
tions (i.e. matrices), the Mahalanobis distances can be removed from (5.14) by a change of

variable based on [57]:
el[§ = "= le = (7)) )T ()2 Te) = I((EHYA) ). (5.15)

Finally, we collect all the Jacobians into one matrix A and all the residuals into a “right-hand
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side” vector b and obtain the linear least-squares form:

xi = argmin{ |AGY — ") - bi?) (5.16)
X1t

which can be solved by differentiating with respect to x3:V — ™x1:N and equating to zero
to yield:
ATAGG = "xii) = ATb (5.17)

A is the measurement Jacobian shown in Fig. 5.4.

Recently, effort has gone into finding efficient incremental solutions to (5.16) in the context
of SLAM by factoring the measurement Jacobian A into a square root form using either QR
[111] or Cholesky [57] factorization. A key consideration in these algorithms is choosing the
ordering of the variables being estimated to maintain sparseness of the square-root matrix,
R. It has been shown that obtaining the optimal variable ordering is an NP-hard problem
[111], heuristics have been proposed that can provide near-optimal solutions very efficiently,
for example “COLAMD” [55].

5.2.6 Data Throughput for Optimal Centralized Estimate

The optimal (in terms of minimum mean square error and minimum covariance) centralized
multi-robot trajectory estimate is obtained by solving the full least squares equation given in
(5.14). From inspection of (5.14), it is clear that to solve this equation requires knowledge of
all control and measurement data from all robots for all time. Unfortunately, it is generally
infeasible for any robot to obtain all raw data for all robots up to the present time ¢ due to
the restrictions of the underwater acoustic channel.

5.2.6.1 Best Case

In this context, “best case” refers to 100% communications packet success rate. If the
DVL and compass frequencies are 10Hz and each piece of data can be encoded with 1byte
(8 bits) and the TDMA slot length is 10s and the number of robots in the team is NV,
then each robot would potentially need to transmit (8bits/piece of data*30 pieces of data
/second * 10seconds/slot * N slots)*N robots, which would be 21.6Kbits of data per trans-
mission for a modest team size of N = 3. While this may be feasible using radio frequency
communications, such throughput rates are unachievable in water.

5.2.6.2 Worst Case

In the inevitable case there are communications dropouts, the data required to be trans-
mitted is unbounded and grows linearly with time. In the worst case all robots would need
to transmit all their sensor data from the start of the mission.

5.3 Multi-Robot Trajectory Estimation

We showed in Chapter 4 that maintaining the entire robot trajectory in the state space is
advantageous from the standpoint of coverage efficiency. Specifically, if an AUV receives
some information at time ¢ that allows it to improve its estimate of a past state X/, ¢’ < t,
then this information can be used to update the estimate of the coverage of the workspace.
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In this section, an algorithm is presented whereby all robots in the AUV team can coop-
eratively estimate their entire trajectories, which is useful for coverage estimation, and also
has better scalability of data throughput required on the underwater acoustic channel.

5.3.1 Overview

In overview, on each transmission a robot transmits its accumulated change in position
and associated uncertainty from times of known previous contact with the other members
of the team to guarantee that the multi-robot trajectory graph will remain connected and
consistent.

The following two definitions are useful for bookkeeping purposes

Definition 5.3.1. An incoming contact point, denoted C. [j], is the time of the last
successful communication from robot j to robot i known to robot i.

Definition 5.3.2. An outgoing contact point, denoted C. ,[j], is the time of the last

out
successful communication from robot i to robot j known to robot i.

Each robot 4 maintains two sets representing the incoming (C!,) and outgoing (C¢,,)
contact point times. At data transmission, the accumulated change in position to each of
these contact point times are calculated and sent. This data along with any other GPS
data received or inter-robot ranges calculated locally comprise the data packet contents.

To summarize the salient aspects of the proposed algorithm:

e Each robot estimates its own trajectory as well as the positions of other robots at the
times of inter-robot measurements.

e Through the acknowledgment bits, each robot tracks its last outgoing and incom-
ing contact points (times of most recent successful communications), and transmits
accumulated change in position to these contact points to ensure connectivity and
consistency of the estimator.

e In the case that a robot has no knowledge about whether a previous communication
was successful or not, it is always assumed that it failed. It will be shown that this
assumption has little to no impact on the performance since the receiving robot can
recover the correct data in the case that the assumption is incorrect. This assumption
is the key that allows for packet size to grow linearly with the team size and be
constant with respect to time even in the case of communications failures.

The proposed method has the following advantages:
e Data throughput remains constant with time.
e On-board computation required does not grow with time.

e Data throughput scales linearly with AUV team size, O(N), where N is the number
of robots in the team.

e Data packet size is not correlated with communications success rate.

e Able to produce a consistent estimate of multi-robot trajectory in the presence of any
combination of communications failures. In the worst case (all failures) the estimate
reduces to non-cooperative trajectory estimation.
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e Robust to complete robot failure.

An overview of the algorithm is given in Algorithm 10.

Algorithm 10 Cooperative AUV trajectory estimation

1: while Coverage mission not complete do

2:  Add control factor to least-squares formulation

3 Add proprioceptive measurement factors to least-squares formulation

4:  if Scheduled to transmit then

5: Algorithm 11

6 end if

7. if Data received then

8 Algorithm 12

9 end if

10:  Perform least-squares optimization

11:  Update coverage map and plan path to achieve coverage based on method presented
in Chapter 4.

12: end while

In the remainder of this section, it is shown how the proposed method can be implemented
with the least-squares framework described in Section 5.2. Further detail of exactly what
data should be communicated is given and algorithms are presented for data transmission
and reception. Finally, case studies are described to show the performance of the algorithm
under varying circumstances.

5.3.2 Least-Squares Formulation

Consistent with the previous section, the proposed method will be formulated as a least-
squares optimization problem.
The change in position for robot 7 at time ¢ is given by:

Xi=X! | +AX+ ¢ (5.18)
where: ) . )
) AX] cosUt sinWi| |V¥
i |[BA t Ll |V
axie [l =ae 5N o] 7] (519

is a RV that represents the change in position from time ¢ — 1 to ¢ and At is the reciprocal
of the frequency of the DVL sensor. 5} ~ N(0, Qi) is the Gaussian noise with mean 0 and
covariance Q;@ associated with the change in position that results from the fact that velocity
sensor data from the DVL (V" and V;¥) contain noise.

The accumulated change in position from time ¢; to time ¢ can be calculated by summing
all changes in position between time t1 and time ts:

to
AX] L, £)AX] (5.20)
t=t1

The additive noise term for the accumulated change in position can be similarly calculated
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as:

&1—%2 Z Ct N(0, Qt1_>t2) (5.21)

t=t1

where the covariance Qy, _,,;, is calculated as:

to
Qo = Y Qf (5.22)

t=t1

Finally we can write an equation for the accumulated change in position for robot ¢ from
time ¢; to time t9 as: ‘ ' ‘ B
Xi, =Xi, + AXG L, + G (5.23)

The same procedure as described in Section 5.2 is followed by collecting non-noise terms
on the left hand side to generate the following least-squares formulation (5.14) in this case
for robot j:

xi LN = argmin{
1:N
X1t
t .
Z*Hf( o) = x5, +
t'=1 v

k k 1
> o> > Sl A, Ly xR
) 2 ky k1 kg ka2 th —ty,
k1=1ko=k1 i=1..N 2
i#£]

e (5.24)
>o> " SlIhC ) = Szl et
t'=11i=1
¢ 1 . .
> S ed) = Callet
t'=1
—-N i k! — N
ZZthR xp, V) = xR
k'=11=1

which is identical to (5.14) except that the control factors have been re-organized into own-
robot (first term) and other-robot accumulated changes in position (second term) and that
the compass factors have been removed for all other robots (fourth term).

This new least squares equation can be solved using the same method as described in
Section 5.2.

5.3.3 Bookkeeping - Contact Points

Central to the approach is that each robot should maintain a set of NV — 1 incoming and
outgoing confirmed contact points. These contact points are represented as the times of
most recent confirmed communications and rangings. An incoming contact point is the
time of last data reception from a given robot, and an outgoing contact point is the time of
most recent successful data transmission to a given robot.
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As an example, for the information flow graph of Fig. 5.2, the incoming contact point
time sets after the communication at time t3 are given by:

Czln = {_7t%7té}
Czn = {ti _7t§} (525)
ngn - {t%,t%, _}

and the outgoing contact point times sets are given by:

C(}ut = {_7t%7t%}
Cgut = {t(Q)a _atg} (526)
Cgut = {t87t33 _}

where a ‘—’ represents the entry in the set that corresponds to the robot on which it resides
(CE ] = C,li] = “="). All contact points in this case were initialized to to. For example,
the outgoing contact point times for C3,, are still ¢y because AUV 3 has no knowledge if
the communications that it sent out at time t3 were successful and won’t until it gets a
confirmation through the acknowledgement bits on the next cycle, at time ¢4 from AUV 1
and time t5 from AUV 2.

Incoming contact points are easily detectable based on the times at which communica-
tions are received. However, outgoing contact points necessitate the use of communicated
acknowledgment bits that are sent in subsequent data packet transmissions. In the case that
an acknowledgement communication also fails, the contact point time will not be updated,
in essence assuming that the previous outgoing communication from that robot failed. How-
ever, it will be shown that, in the case that this assumption is incorrect, the receiving robot
will still be able to recover the appropriate factor.

These contact points are important because they determine which change in position
factors need to be sent so that other vehicles in the cooperative can build the constraints
for their own least-squares optimizations.

5.3.4 Data Transmission

In this subsection the details of what data should be sent and how it is generated locally
before transmission, are presented. The process is summarized in Algorithm 11.

Consider the case where robot i makes an acoustic transmission at time t. The following
data should be included in the data packet:

e The accumulated change in position factors from incoming and outgoing contact point

times to the present time: AX@- (]t and AXE,- ]t for all j =1..N,j # i and the
in out

associated covariances Q. . and Q% . .
chn[j]%t QC;ut[j]%t

J

., for all
in []]

e Range data associated with each of the incoming contact point times: R’
j=1.N,j #i.

e A GPS measurement if one has been made since the oldest contact point and an
accumulated change in position to the time of the GPS measurement.

e A set of N — 1 acknowledgment bits: 1 indicates success reception and 0 indicates
failure on the last cycle.
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Algorithm 11 Generating data packet for acoustic transmission on-board robot ¢

1: Transmission queue is empty
2: for all j =1..N,j #ido
3:  Calculate AXéi

nlil—=t

and AXZCi

]t and associated covariances QZCZ- and
out (3

nli]—t

QZL ., and add them to transmission queue.
Cout[]]*)t .
4:  Add range measurement chf U] to transmission queue.
5: end for

. G ; . . . . . ; ;

6: if GPS update, “Z; received since oldest contact point time (t, < min{C;,,Cs.})
then

7. Add GZ%g, AX; 4 and Qj _,, to the transmission queue.

8: end if

9: Add acknowledgement bits to the transmission queue.

10: Push transmission queue to the modem hardware for transmission.

5.3.5 Data Reception

Upon reception of an acoustic communication containing the data just described, the re-
ceiver must generate the correct terms to compute the maximum a posteriori estimate by
solving (5.24). Generating the correct accumulated change in position factors that relate
the positions of other robots to own robot poses can possibly require using the subtraction
property of the accumulated change in position factors in the case that a previous trans-
mission that was assumed to have failed was actually successful. For example, consider the
case where AUV i receives two accumulated change in position factors from robot j at time
t, AX{ _,, and AX; _, with t; < tp then AX] can be recovered using:

t1—to

AXI

t1—t2

= AXgl—nf - Ang—nf (5.27)

An overview of the method for processing the received data is given in Algorithm 12.

In line 1 the new range factor is generated by calculating the range based on the TOF of
the acoustic transmission and the assumed lock-step synchronization of the on-board clocks.
The incoming accumulated change in position data is sorted into a set X with the most
recent first, and then are processed individually in the for-loop (line 4 to line 28). For each
accumulated change in position in the set, we see if we can decompose it using an already
existing accumulated change in position in the factor graph that shares the same end time
but a later start time (if statement at line 8) or shares the same start time and has an earlier
end time (if statement at line 14). In either case we can decompose the accumulated change
in position using the subtractive property defined in (5.27). The decomposition process
(while loop from line 6 to line 20) continues until the accumulated change in position can
be decomposed no further. At this point, any new position states that need to be generated
are created and added to the state space (lines 22 and 25) and then finally the decomposed
accumulated change in position constraint can be added that operates on these two states
(line 27). Subsequently, the range and GPS factors can be added (lines 29 and 30) and the
contact point times can be updated (lines 31 and 33). Finally, the least squares optimization
is performed to generate a new estimate over the newly expanded state space containing
own-robot poses and other-robot positions.

The essential aspect of this algorithm is that robot ¢ can recover what is needed for its own
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Algorithm 12 Reception of acoustic data packet on AUV ¢ from AUV j at time

1: Build range constraint Ri;j based on TOF of clocks and covariance A,

R

10:

11:
12:
13:
14:

15:

16:

17:
18:
19:
20:
21:

22:

23:
24:

25:

26:
27:

28:
29:
30:
31:
32:
33:
34:

Collect the P received accumulated change in position factors into a set X £ {X[p]},—1. p Where
X[p] = AXY, . » and similarly with the associated covariances into a set Q
1 2
Order X and Q in terms of decreasing t1: t]* < 52 if p; < ps
for all p=1..P do
repeat_flag < true
while repeat_flag do
repeat_flag < false '
if there already exists some AX] |, , with ¢ > ¢} in the factor graph then
2
J _ J J
X[p] A AXt{’—n - AXt{’—wg B Axt—>t§
J —_ 0O J
Qlp] Qt‘l’ﬁt TPl T gl
th <t
repeat_flag < true
end if '
if there already exists some AXip L, with t < t5 then
1
J _ J J
Xp] AXtetg - AXt’fﬁtg o AXt’fet
)J —_ 0/ )J
Qlp] Qt—)tg = T iy
tht
repeat_flag < true
end if
end while
if X7/, not in state space then
1 .
Add X}, to state space
1
end if
if X/, not in state space then
2 .
Add Xig to state space
end if ' _
Add accumulated change in position as a constraint (X'[p], Q[p]) between nodes X7, and X,.
‘1 2
end for

Add all range constraints (both the ones received in the packet and the one just generated)
Add GPS constraint (“Z,,, A®) if we received one
Cholil -t
if acknowledgment bit received for last transmission time ¢’ then
gut []] — t/

end if
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local factor graph and the appropriate range, GPS, and accumulated changes in position
can be added to the factor graph that are guaranteed to stay connected to yield an estimate
of the own-robot’s entire trajectory.

5.3.6 Data Throughput Analysis

The major advantage of the proposed method is the reduced data throughput on the un-
derwater acoustic channel and robustness to communications failures.

Maximum total data to be transmitted is 2 x (N — 1) accumulated change in position
factors (comprising value and associated covariance), N — 1 range factors, one GPS factor
with associated accumulated change in position, and N — 1 acknowledgment bits regardless
of communications failures, for a total of 4N — 3. Scaling is linear with respect to the
size of the AUV team N and constant with respect to time ¢ even in the worst case of
communications dropouts. This represents an improvement over any AUV cooperative
localization algorithm presented in the literature.

5.3.7 Case Studies

In this section three examples are presented to further illustrate the operation of the pro-
posed algorithm.

5.3.7.1 2 Robots with No Communications Failures

An example of the evolution of the factor graphs is shown in Table 5.2.

First AUV 1 transmits at time ¢; and on reception AUV 2 is able to calculate Rfl’l and
add and connect nodes for AUV 1 at time tg and ¢;. AUV 2 transmits at time ¢ and on
reception AUV 1 is able to build the complete pose graph with two range factors in it. In
this way the cycle continues.

In this case there are no communication failures and each robot is able to obtain the full
centralized equivalent estimate (the estimate that would be obtained if a centralized agent
had access to all sensor data obtained on-board all of the vehicles).

5.3.7.2 3 Robots with No Communications Failures

The two robot case is quite trivial. For a more complex example, consider the case of three
robots to elaborate on the scalability issue. Fig. 5.5 is the local multi-robot factor graph
on robot 1 after a full cycle of successful range transmissions in the order [1,2,3]. It is now
time ¢4 and robot 1 is scheduled for transmission.

The incoming contact points set is Cz-ln = {—,t%,té} and the outgoing contact points set
is C;ut = {_vt%’t%}'

Based on the contact point times, robot 1 should transmit AX%M AthS —yty> and Ath2 oty
along with the associated covariances Q,i, Qg 1y, and Q%Q 1, and the range measurements
at the incoming contact point times Rgz and Rgg as well as the acknowledgement bits [1, 1]
denoting success at the last cycle. It is interesting to note that in this case we only need to
send three accumulated change in position factors as opposed to the maximum four (since
2(N — 1) = 4) since the outgoing contact point times coincide for both robots. This will
be a common situation so we will only need to transmit N accumulated change in position
factors.
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AUV 1 AUV 2

Gyl Gry2
z}, z3

(a) (b)

Gl
Zt0

Table 5.2: Evolution of two multi-robot factor graphs while robots take turns transmitting.
In this case there are no communication failures and estimates are optimal. AUV 2 receives
transmission from AUV 1 at time ¢; containing GZth, AX%O _, and is able to add range
factor R? 1’1 from calculation of the TOF. AUV 1 receives transmission from AUV at time
ty containing ngo, AX%O Sty AX%1 oty Rfl’l and is able to add range factor R%2’2 from
calculation of the TOF.
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Figure 5.5: Local multi-robot factor graph on robot 1 at time t4 after a full cycle of successful
communications.

5.3.7.3 3 Robots with Random Communications Failures

For a final example, consider the case where three AUVs are cooperatively localizing, but
there is a communication failure. In this case, the transmissions from AUV 2 at time to
to both AUVs 1 and 3 fail as shown in Fig. 5.6. The resulting local multi-robot factor
graph on robot 1 at time t4 is shown in Fig. 5.7. Robot 1 has never received any successful
communications from robot 2 so there are no nodes corresponding to robot 2. At this time
robot 1 is scheduled to transmit.

The incoming contact points set is given by Ciln = {—,té,t%} and the outgoing contact
points set is given by Cl,; = {—,t(l),t}}. Note in the outgoing contact point set entry for
AUV 2 is tg even though there was a successful outgoing communication at time ¢; because
AUV 1 has no knowledge that it was successful (transmission of the acknowledgment bit

failed).
As a result, to be transmitted should be the accumulated change in position factors
1 1 1 ~ A A
(AXto_m, AXG s AXG s Qtlo_m, Qt11—>t47 Q%3—>t4)7 the GPS measurement (GZ%O), the

range measurement (Ri33) and the acknowledgment bits (]0,1]) denoting failure to receive
from AUV 2 and successful reception from AUV 3 on the last cycle.

However, AUV 2 did actually receive AX%0 ¢, and Qtlo _t, When they were transmitted
at time t; and therefore can determine the appropriate accumulated change in position
(AX] .., Qf ) from AX} _,, —AX] , and Q},_,,, —Qf,_,,, (in this case it happened
to be actually sent because AUV 3 required it).

135



AUV 1

Odometry
—

Communication

AUV 2 Oﬁ o

Range
—

AUV 3

to tq to t3

Figure 5.6: Information flow graph with three AUVs. Transmissions from AUV 2 both
failed.
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Figure 5.7: Local multi-robot pose for AUV 1 at time ¢4 and scheduled for transmission.
At time ¢9 the transmissions from AUV 2 to both AUVs 1 and 3 failed.
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5.3.8 Comparison with Other Methods

In this section we compare the proposed method with three other methods in the literature:
[76] and [14] which were specifically developed for AUV cooperative localization, and then
[138] which is a general framework for cooperative localization.

In [76], a method of cooperative trajectory estimation for a homogeneous team of AUVs
is presented. Data from all robots is sent in a packet meaning that data can be transmitted
to robot ¢ from robot j through a non-direct route. This approach is more robust to data
failures, but results in poorer scalability of the approach (in general O(N?) where N is the
size of the AUV team and also will backlog if communications are poorer than expected. To
compensate for backlogging of data caused by poor scalability and communication failures, a
“keyframes” approach is proposed, which is essentially downsampling. Only a fraction (the
keyframe rate) of the data transmissions are used for inter-robot measurements, all others
are used to marshal data. The multi-robot estimate is only made at the keyframe frequency,
which is an integer fraction of the communications frequency. For example, for a keyframe
rate of 4, 3/4 of the inter-robot range measurements are discarded resulting in suboptimality.
This keyframe rate must be chosen prior to mission start based on beliefs or expectations of
the system communication throughput rate. The advantage of the approach proposed here is
that a much higher fraction of the inter-robot measurements can be used for estimation, and
the rate that data is discarded is adaptive to the communications throughput in situ rather
than specified beforehand. The communication channel will be used more opportunistically
to exploit favorable conditions and achieve better performance. In addition, the choice to
transmit all sensor data from all robots results in poorer scalability, both as a function of
the team size, and as a function of time in the event that communications are worse than
expected.

In [14] a framework for consistent filtering amongst a team of AUVs is presented. A bank
of EKFs is maintained on-board each robot that provide estimates that are independent
of each combination of AUVs in the team. This is referred to as an “interleaved update”
approach. While the main objective of guaranteeing consistency of the estimates is achieved,
it is at the expense of being overly conservative. Estimated covariances are actually much
larger than the covariances that would be obtained by a centralized equivalent estimator.
In stark contrast to [76] where only raw sensor data is transmitted, in this case only state
estimates are transmitted. However, the estimates from all N? filters have to be transmitted
to guarantee consistency.

A last comparison is made with [138], a general framework for optimal delayed-state
filtering for cooperative localization is presented. In the approach, when all data from all
robots is received up to some time, termed the checkpoint time, then the raw data can
be safely replaced with a multi-robot estimate. The advantage of the approach is that
it guarantees optimality of the estimate at the checkpoint time. However, this is at the
expense of having to communicate the full filtered covariance matrix at the checkpoint time
as well as any sensor data since the checkpoint time. Graphs highlighting the data packet
size scalability of the proposed algorithm compared with [76], [14], and [138] are shown
in Figs. 5.8 and 5.9. In Fig. 5.8 the packet size is expressed as function of the number
of consecutively failed communications attempts for a team size of three AUVs. A key
advantage of the proposed approach is that the data packet size is constant in this case,
although the contents of the packets are changing. In Fig. 5.9, the packet size is expressed
as a function of the size of the AUV team, N, assuming no communications failures. The
proposed algorithm is the only one that scales linearly.
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A reasonable assumption is that eight bits can be used to represent each floating point
number, so the vertical axis in Figs. 5.8 and 5.9 can also be represented as a number of
bytes. It is also important to note that these issues will compound, meaning that as team
size grows and/or consecutive communications dropouts occur, data will quickly backlog
and the 192byte limit per packet will be easily exceeded.

In comparison with [138] and [76], it should be noted that the reduced data throughput
does have an impact on the performance of the estimator. Both [138] and [76] can guar-
antee optimal filtered estimates. When communications dropouts occur, we can no longer
guarantee optimality, however, as shown Section 5.5, in all but the most severe dropout
conditions, estimates remain close to optimal for the entire trajectory.
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Figure 5.8: The size of data packets as a function of consecutive failed communications for
the algorithm proposed here and three other comparable algorithms.
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Figure 5.9: The size of data packets as a function of AUV team size for the algorithm
proposed here and three other comparable algorithms.
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5.4 Experimental Setup

The experimental setup is similar to that of the previous chapters, except that now the
acoustic modem has to be added. On the Iver2 AUV the acoustic modem, in this case the
micromodem developed at Woods Hole Oceanographic Institute, is interfaced directly to
the backseat computer. The micromodem driver and also tools for simulating the modem
and interfacing it with MOOS are provided by the Goby suite of tools [199]. Of particular
importance is the ‘pAcommsHandler’ application which handles the interfacing between
the MOOSDB and the actual or simulated modem. As in the setup for the experiments in

Chapter 4 raw sensor data is passed from the frontseat to the backseat.
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Figure 5.10: Overview of multiple robots mission setup within MOOS.
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5.5 Results

5.5.1 Tests with Logged Data

In order to evaluate the effect of varying the quality of the communications channel in
the most realistic way, real sensor data gathered from the field was “played back” using
the MOOS application ‘uPlayback’ and the communications channel was simulated and
controlled. In this way the effect of the communications channel performance can be di-
rectly related to the quality of the cooperative AUV trajectory estimation because in each
simulated run the same real sensor data from the DVL, GPS, and compass was used.

In the presentation of the results, I first refer back to the two stated objectives in Section
5.1.2 which are restated here. Coverage with multiple AUVs will be more efficient if

1. AUVs minimize surfacing for GPS fixes,
2. Uncertainty is reduced over the entire AUV trajectory.

This should be achieved without violating the constraints imposed by the underwater
acoustic channel.

5.5.1.1 Objective 1: Less Frequent Surfacing for GPS Fixes

Normally, AUVs surface when their location uncertainty reaches a threshold. Therefore,
the longer that an AUV’s location uncertainty can be maintained below the threshold, the
less frequently it needs to surface.

This objective is achieved in the proposed method in two ways that compound.

First, the fact that robots are communicating and making relative measurements causes
their instantaneous location uncertainty to grow more slowly. Consider Fig. 5.11 which
shows the filtered location estimate uncertainties for one of two robots using the proposed
algorithm. Throughout the simulation the robots are communicating acoustically and mea-
suring their relative ranges. Each reception of an acoustic transmission reduces the instanta-
neous location uncertainty, resulting in the sawtooth pattern shown. From the figure, even
for a 20% success rate of data communications (red plot) there is a significant advantage
over no communication (100% failure). In addition, for a success rate of 50% or higher the
robot is able to recover a near-optimal estimate (optimal is represented by 100% success)
after a successful communication.

One of the essential advantages of the proposed algorithm is that the amount of data to
be transmitted does not increase in the event of failed communications. This is certainly
not the case for other algorithms proposed in the literature [76, 14].

Second, the surfacing of one robot for a GPS fix can bound the localization error of all
robots in the team. For illustration of this refer to Fig. 5.12. In this plot communications
was assumed 100% successful. The plot shows both the instantaneous, or filtered, covari-
ances and also the smoothed covariances obtained by re-optimizing the trajectory at time
t = 500s. The uncertainty on the vertical axis of Fig. 5.12 is represented as the sum of the
autocovariances: o2, + inyt' AUV 1 surfaces for GPS twice at which point the instanta-
neous location uncertainty is reduced to & 3m. In between the GPS fixes, the uncertainties
of the two robots are similar, meaning that AUV 2 obtained most of the benefit of surfacing
without ever having to do so, thus saving energy.
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Figure 5.11: The instantaneous (filtered) location uncertainty of AUV 1 using the proposed
method for different dropout rates.
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Figure 5.12: The instantaneous (filtered) and smoothed uncertainties of two robots cooper-
atively localizing using the proposed method. AUV 1 surfaces for GPS twice thus bounding
the uncertainty growth for both robots.
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5.5.1.2 Objective 2: Uncertainty Reduced over Entire Trajectory of all AUVs

The benefits of estimating the entire robot trajectory were explicitly shown in Chapter 4. As
a result, one of the main design objectives was to use inter-AUV measurements to estimate
an entire trajectory. The benefit of full trajectory illustration is shown in Fig. 5.12 by
comparing the instantaneous location uncertainty (solid lines) with the smoothed estimate
uncertainty (broken lines). In this case, since inter-AUV measurements are intermittent
and provide information about the AUV location directly, smoothing has a large effect.
Fig. 5.13 shows the smoothed estimate uncertainties for the cases from Fig. 5.11 that are
computed at time ¢t = 500s. Fig. 5.13 shows that, even for a success rate of only 50%, the
smoothed estimate uncertainties are very close to the optimal case (100% success).
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Figure 5.13: The location uncertainty of the smoothed estimate at time ¢ = 500s of AUV 1
using the proposed method for different dropout rates.

5.6 Summary

In this chapter we have presented a least-squares optimization framework as the basis for a
cooperative AUV trajectory estimation algorithm. The essential advantage this algorithm
has over others proposed in the literature is that data throughput scales linearly with the
number of robots in the team and is independent of the dropout rate on the unreliable
acoustic channel. The algorithm is able to produce estimates of full robot trajectories that
are near-optimal even in the case of a 50% dropout rate.

For multi-AUV coverage this has two main benefits: 1) That robots minimize surfacing
for GPS fixes and 2) Coverage estimates improve due to the reduced uncertainty over the
entire robot trajectory.
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The result is that time can be saved, covertness can be increased, and the time to reacquire
targets can be reduced through better localization.
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Chapter 6

Conclusion

6.1 Summary

We have presented a novel approach to AUV seabed surveying. Historical approaches to
plan these surveys use simple heuristics such as lawn-mower or zig-zag patterns. These
plans are made prior to surveying and are not adapted while the vehicle is underway.

Seabed coverage with an AUV is posed here as a sensor coverage problem. What makes it
particularly challenging is that the performance of the coverage sensor, the sidescan sonar,
is highly nonlinear and variable with respect to many factors. Since these factors are not
necessarily known beforehand the result is that preplanned paths can be suboptimal.

In cases of coverage on land or in air, it is often reasonable to assume that the sensor
is fairly accurately localized and so the uncertainty in the location of the sensor can be
neglected. Once an AUV submerges, it loses access to a global position reference and its
position uncertainty starts to grow. At some point, this uncertainty is no longer negligible
and must be considered in the coverage model. For a mission like MCM this is an important
consideration.

To bound the location uncertainty, the AUV will periodically surface for a GPS fix. This
is very time-consuming. By using multiple AUVs to perform the survey we can greatly
reduce the need for each of them to surface as frequently.

6.1.1 Overview of Contributions

A review of the contributions of the thesis include:

e A sensor-driven approach to AUV seabed coverage planning that is demonstrated
through an AUV MCM example,

e An explicit link between area coverage and state estimation for robotics, including
a novel adaptive sliding window approach for estimating the AUV trajectory that
is well-suited to the coverage problem, and online planning strategies that operate
within the new probabilistic model of coverage. The algorithms are applied to the
AUV seabed surveying problem.

e An algorithm for multi-AUV cooperative trajectory estimation that scales well with
the cooperative size (number of AUVs) and is suitable for multiple AUVs performing
seabed surveying operations.
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6.2 Avenues for Future Work
The following extensions to the work presented here would be very interesting:

e Including uncertainty with obstacle locations into the probabilistic coverage frame-
work within a full SLAM scenario would be a natural progression,

e Evaluating the effects of marginalizing out the along track error and heading uncer-
tainty from the AUV state estimate in Chapter 4 would be interesting,

e Developing multi-AUV planning methods where the surveys are in the same workspace
and can track the coverage of other team members would be extremely challenging
but could be possible.

6.3 Final Comments

Underwater surveying, and particularly MCM is inherently a very dangerous task. Im-
provements to the efficiency of AUV surveys result in less time required at sea and less
personnel in harms way. It is critical for decision makers to get accurate estimates of the
risks associated with moving personnel or assets through a body of water. The worst case
scenario is that the perceived risk is lower than the actual risk, in which case decisions can
be made that put people and assets at unnecessary risk.
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Appendix A

Mission Oriented Operating Suite
with Interval Programming

Mission oriented operating suite (MOOS) is a middleware used by the U.S. Navy to imple-
ment multi-agent systems. The Interval Programming (IvP) functionality was later built
so that higher level behaviours can be defined.

MOOS-IvP utilizes three main philosophical frameworks: the backseat driver, publish-
subscribe, and behaviour-based control.

A.0.0.1 Backseat Driver:

In the backseat driver paradigm, the vehicle control and autonomy are decoupled. FEs-
sentially, MOOS does not worry about how the vehicle’s navigation and control system
function, as long as it receives accurate information from the sensors, and the vehicle can
act upon the autonomy decisions that are sent back.

A.0.0.2 Publish-Subscribe:

All communication goes through the MOOSDB. MOOS applications publish events, which
are variable-value pairs and applications also subscribe to different variables. Most of the
MOOS applications will normally be sensors, actuators or the visualizers etc., but one is
special: the pHelmIvP application. The pHelmlIvP is responsible for reconciling all the
desired behaviours.

A.0.0.3 Behaviour-Based Control:

Different desired behaviours are defined in the mission behaviour file. Behaviours can
be selected from amongst predefined behaviours, or can be defined from scratch. On each
iteration, the pHelmlIvP generates an objective function from each behaviour, and generates
a ‘decision’ consisting of variable-value pairs that define the action that will optimize the
multiple objectives. In addition, attributes of the behaviours can be assigned dynamically
using mode variables and hierarchical mode declarations.

More details are provided in [27].
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Appendix B

Proof of Proposition 3.2.1

For simplicity of formulation, assume that cell ¢’ gets covered twice, once at time t; from
pose Xy, and once at time 5 from pose Xy,, generating T}, and T, respectively and without

loss of generality assume that the look at time ¢; results in higher confidence: p(T til =1)>

p(]v}i1 = 1). If either look indicates the presence of a mine, then we consider a mine to be
present:

(T} = 1|th‘1 =1)=p(T} = 1|TZQ =1)=1 (B.1)
p(T; = 1T}, = 0,1}, = 0) =0 '
Without loss of generality, assume that p(]v“ti1 =1)> p(i}g = 1). «a is calculated as the
acute angle of the intersection of two lines with directions ¥, and v as shown in Fig. 3.4.
The combination of the two looks can be represented by the Bayes’ network (BN) shown
in Fig. 3.3. From the BN we can write the joint probability as:

p(Ttia th'l ) Ttig) = p(ﬂ|Tti1 ) Ttig )P(Ttll ) T’Zz) (B-2)

and we can recover the desired marginal distribution of 7} by marginalizing Tvt"'1 and T}Q out
of (B.2):

p(T} = 1) = p(T} = 1T}, = 1, T}, = )p(T}, = 1, T}, = 1)
+p(T} = 1T}, = 0,1}, = )p(T}, = 0,1}, = 1)
+p(T} = UT}, = LT}, = 0)p(T}, = 1,T;, = 0) (B.3)
+p(T} = 1|T}, = 0,1}, = 0)p(T}, = 0,T}, = 0)
=p(T}, =1, T, = 1)+ p(T}, =0, T}, = 1) +p(T}, = 1,1}, = 0)
and conversely: ' 4 » -
p(T; = 0) =1 -p(Ty =1) = p(T}, = 0,T;, = 0) (B.4)

Proposition B.0.1. In the case that the two looks are independent, then the total confidence
s given by: ' ' '
p(Ty =1)=1-[(1-p(T}, =1))(1 - p(T}, = 1))] (B.5)

Proof. In the case that the looks are independent, then p(Tti1 = 1,Tti2 =1) = p(f’g1 =

165



Dp(T}, = 1) so from (B.4):

p(Ii=1)=1-p(T} =0) =1—p(T} =0,T}, =0)=1—p(T} = 0)p(T}, = 0)

by oy (B.6)
=1-[1-p(Tf =1)Q - p(T}, =1))
O
This extends to K looks as:
K
H p(T})) (B.7)

Proposition B.0.2. If the looks are not independent then the following inequality holds:
p(T} = 1) = max{p(T}, = 1),p(T}, = 1)} (B.8)
Proof. From (B.3) we have:
p(T} =1) =p(Tj, = LT}, = 1) +p(T}, = 0, T}, = 1) + p(T}, = 1T}, = 0)
= p(thl = 1|Tt12 = ]‘)p(TtlQ = 1) +p(TtZ1 = 0‘1\17'2 = 1)p(TZ2 = 1)
+p(j{‘t7/1 = 171\-/?2 = 0)
= p(T}, = VIp(Ty, = 1T}, = 1) + p(T}, = O[T}, = 1)] (B.9)
+p(Ty, = 1,7}, =0)
> p(Tf, = 1)
and a similar factorization yields p(T} = 1) > p(Tti1 =1). Iif p(T} =1) > p(Tti1 = 1) and
p(T} =1) > p(ﬁf2 = 1) hold then p(T} =1) > max{p(i}i1 = 1),17(1%1}'2 = 1)} must hold. O
In the case of K looks, (B.8) extends to:

p(T} = 1) > max{p(T}, = 1),p(T7, = 1), ....p(T}, = 1)} (B.10)
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Appendix C

Derivation of Equation (4.29) and
(4.30)

In order to transform the certain location of the cell i in the global frame 9¢! = [9a¢, 9y¢]T
into the uncertain location of the cell in the sensor frame, °C}, it is mapped through the
uncertain homogeneous transformation *C} = o1t 9¢ct defined in (4.1), where g1t 1s given

by:

cosyy —sinyy Of [1 0 =X,
th = |sintyy cosyy 0| |0 1 -Y;|. (C.1)
0 0 1110 0 1

If we define the 2 x 2 rotation matrix:

R(tr) 2 [cos Ve —sio W] (C.2)

sinvyy  cosyy

then we can express the cell location in the uncertain sensor frame as:
Cp = R(¥e)?¢" — R(¢e)[ X, V] (C.3)
which has has a Gaussian distribution with mean p. = [ytz,, f1y.] and covariance ¥, where:

Me = j(qv[}t)gci - j(¢t)[MXt’ /‘LYt]T7

T (C4)
Ye=TW)ET (Y1)
The expression for ¥, can be expanded with (4.30) to yield:
2 2 2 2 2
5, = 05C°) — Pi0LoyS2Y + O'ySw OLCYSY + progoyc2p — oy sy (C.5)

o2chsi + progoyc2ih — agcwsw 028%) + proyoys2) + 02021/1

where si and ¢y are shorthand for sin v and cos i respectively, s2¢ and ¢21 are shorthand
for sin2¢y and cos 2t respectively, and s2¢ and c?1) are shorthand for sin?4) and cos?
respectively.

As a result of Assumption 4.4.1 the distribution of the cell location in the *z. direction
can be marginalized out:

Py = / e d e, (C.6)

—0o0
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Appendix D

Models and Jacobians

D.1 Process and Measurement Models

As is common in robotics [215], the control inputs are replaced some measure of odometry,
or change in pose. In this case, the odometry is derived from the DVL velocity data. To fit
the standard kinematic model:

we require to transform the velocity in the body frame (V;*, V) into a change in position in
the global frame. Additionally the noise associated with the DVL velocity sensor measure-
ments must be transformed and scaled to obtain a distribution for the additive odometry
noise ¢}

| NG
U; =R(¥)) | VY| At (D.2)
0
where , ‘
' cosWi_; sin¥; ; 0
RV, ;)= |—sin¥}_; cosV¥; ; Of. (D.3)
0 0 1

and At is the reciprocal of the frequency of the DVL. The additive noise term, ¢}, is assumed
to be Gaussian with mean 0 and covariance Qi. The covariance Q! calculated by:

2
o, 0

0 o2

v

Qi = A*R(T;_ ) [ ] R(U,_1)T (D.4)

where o, and o, are the root mean square error values of the DVL sensor obtained from
the manufacturer, and 7 indicates the transpose.
The proprioceptive sensors (GPS and compass) observe the state through the GPS mea-
surement model:
2, =10 (X;,%8)
_[Xi
_ [Yg

where ¢8i ~ N (0, A®) is zero mean Gaussian noise associated with the GPS sensor reading

] L o5 (D.5)
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(covariance assumed constant with time and across all robots), and the compass measure-
ment model:

2{ =h(X}.5)

, , D.6
=V} + 5] (D6)

where ©8} ~ N(0, AY) is zero mean Gaussian noise associated with the compass measure-
ment ©Z} (covariance assumed constant with time and across all robots).
The inter-robot range measurements relate the states of robots through:

Rt i i
R;’ =h"(X; Xii)~|— o,

i
X7 D.
:H Xt}c _ t{c H“‘Réi’j ( 7)
) J k
Yol | Y

where Réz;j ~ N(0, Af) is zero mean Gaussian noise associated with the inter-robot range
measurements, whose covariance is assumed to be constant with time and independent of
range, a claim experimentally validated in [224]. The operator || - || is the Euclidean norm.

D.2 Process and Measurement Model Jacobians

In order to linearize the process and measurement models we require the Jacobians. Here

we assume that we are linearizing around the point x}:V

Process factor:

P wy) —xp ~f (Mg, up) = xgy + T F (X =) — (% — )

, . A : A A (D.8)
= Fy_(xio1 = "'xq1) — In(x; — "'%4) — af
where
m Aaf(xifl7u%)|
t—1 8 17,;_1 Xy _1="xy_4
1 0 At[—Vysin™_1 + V, cos ™| (D.9)
=10 1 —At[V,cos™pi_1 + V,sin™h_1]
0 0 1
is the Jacobian of f with respect to xi_; evaluated at the linearization point ™x:_,,
ap = f("x5_1,up) = "Xy (D.10)

is the residual , and I, is the n x n identity matrix where n is the dimension of the
instantaneous state, in this case 3.
GPS factor:
1) — o = (") — O+ " HE x — x) o)
= P ) |
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where

and

is the residual.

Compass factor:

1) — o (") = O+ M HE

where
mHtC _8hC(X%) ’x g
ox; e
0 0O
=10 0 O
0 0 1
and

Range factor:

T
tk

hR(xi- XZJ) — r;;j ~ hR(mxiz,mxj,) — ri;j + me:L(xlzt — "%
k k

_mygrR/J1:N my1l:N 7
="H; (x13 — "%y ) —dy

where
R(i J 2,J
Oh (xti,xj)—rtk
mHE = Ek
k 1:N
OXYY [y —my1on
1
T J \2 i J \2)1/2
((xti _xj) + (ytl ytj) ) /
k k
| CERCIC G TS
and
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