
Hybrid Control and Learning with Coresets for Autonomous Vehicles

Guy Rosman1, Liam Paull1 and Daniela Rus1

Abstract— Modern autonomous systems such as driverless
vehicles need to safely operate in a wide range of conditions. A
potential solution is to employ a hybrid systems approach, where
safety is guaranteed in each individual mode within the system.
This offsets complexity and responsibility from the individual
controllers onto the complexity of determining discrete mode
transitions. In this work we propose an efficient framework
based on recursive neural networks and coreset data summa-
rization to learn the transitions between an arbitrary number
of controller modes that can have arbitrary complexity. Our
approach allows us to efficiently gather annotation data from
the large-scale datasets that are required to train such hybrid
nonlinear systems to be safe under all operating conditions,
favoring underexplored parts of the data.

We demonstrate the construction of the embedding, and
efficient detection of switching points for autonomous and non-
autonomous car data. We further show how our approach
enables efficient sampling of training data, to further improve
either our embedding or the controllers.

I. INTRODUCTION

One key challenge facing real-world, safety-critical au-

tonomous systems is the requirement for robust performance

over a huge variety of environmental and operating condi-

tions. This is particularly true for autonomous driving. Fully

autonomous (“Level 5”) driving is defined as when “the

automated system can perform all driving tasks, under all

conditions that a human driver could perform them” [26].

To handle road diversity and low error tolerance, we wish

to better enable autonomous vehicles to adjust their driving

style to the surrounding conditions. For example, driving on

a congested urban center with unpredictable pedestrians and

cars requires a much more conservative driving style than

driving on a straight highway in the desert, and this is in

turn different than driving on a winding narrow mountain,

on a rainy night. Instead of one single autonomy solution,

we could leverage the problem structure via a hybrid control

approach [3],[21], by having library of autonomy solutions

tuned for different driving situations. We call each potential

solution a “driving mode”, or system mode in the context

of more general robotic systems. In this paper we develop

a method for perception-driven matching of driving modes

to environments. We efficiently learn from the visual data

a representation for the driving modes and efficiently detect

transitions between modes.

* Support for this work was given by the Toyota Research Institute (TRI).
However, note that this article solely reflects the opinions and conclusions
of its authors and not TRI or any other Toyota entity. We gratefully
acknowledge the support of NVIDIA Corporation with the donation of the
DGX-1 used for this research. The authors wish to thank Andrea Censi for
the Duckietown data.

1Authors are with the Computer Science and Artificial Intelligence
Lab, Massachusetts Institute of Technology, Cambridge MA 02139, USA
rosman,lpaull,rus@csail.mit.edu

Fig. 1. Overview of our method: RNNs are used to approximate possible
control changes via an embedding space. The embedding vectors stream is
then processed by a streaming coreset. Coreset segment transitions provide
control points for controller switching, and coreset sampling allows selection
of samples for further training and verification.

A key insight is that mode selection can often leverage

the sensory history of the agent, in a conservative manner.

We make minimal assumptions about the individual driving

modes: each mode is able to output some measure that

represents its estimate regarding the safety of its output (for

example, probability of pedestrian misdetection).

Two key questions arise:

Q1: How to safely and efficiently switch modes given the

system’s sensory history?

Q2: How to leverage the massive amounts of data col-

lected by a modern autonomous car to efficiently train the

system, given that it is very costly to generate negative

samples (failures).

To address these issues, we leverage: deep learning ap-

proach using recurrent neural networks [14] to capture the vi-

sual and temporal structure of the problem, and to encode the

mode in a low-dimensional embedding space, and k-segment

mean coresets [31], [36] for efficient data summarization,

change detection, and querying. An overview of the method

is shown in Fig. 1.

Specifically, since the sensory input of the car may be

insufficient to efficiently determine the best controller, we

shape the encoding mechanism so that the transient behaviors

captured by the coresets help us determine critical points

of possible mode changes. This allows us to limit the

computations of mode identification by querying all modes

for feasibility. Coreset computation over the encoded stream

also allows us to query the data to obtain harder cases for

training in a way that performs well with stochastic descent



training methods.

We demonstrate this approach using driving data from

Duckietown [28], a scaled-down prototype of an urban

center, as well as driving data using over 60 hours of driving

through different landscapes that transition between dense

urban, suburban, and rural environments, as well as parking

lots.

The paper contributes:

1) An encoding approach for the detection of possible

driving mode switching based on the robot’s recent

history, using deep learning, RNNs and k-segment

mean coresets.

2) Use of this encoding to improve the safety-vs-

efficiency tradeoff (addressing Q1).

3) Use of coresets for life-long datasets where labeling is

an expensive bottleneck (addressing Q2).

The remainder of the paper is structured as follows: we

summarize the related literature in Sec. II, we describe the

assumptions and the model in Sec. III, describe how this

model can be used for control and for learning in Sec. IV,

and demonstrate results in Section V.

II. RELATED WORKS

Our work ties into several fields of active research. Hybrid

systems have been used for a long time in control, from mul-

tiple linear controllers systems [3], through to more general

theory [22]. Moreover, while we use autonomous cars as

our main motivating example, a hybrid systems approach

is relevant for many other robotic systems, such as the

humanoid robots used in the DARPA robotics challenge [8]

or for quadrotors performing complicated aerial manuevers

[13]. However, we are focused on application cases where the

environment and task are suffeciently complex that it is hard

to generate the switching functions from simple heuristics or

close-form solutions. For example, in the case where linear

control is sufficient, the optimum control law can be chosen

in an online fashion [3]. However, as agents’ tasks and

environment become more complex, deciding the optimal

mode is more challenging and requires significant resources.

Autonomous driving is a clear example for this, containing

a vast array of potential scenarios and operating conditions.

We are not placing any assumptions or limitations on the

choice of control, perception and planning algorithms that

are operating in each mode. For example, individual control

modes could employ an end-to-end approach as in [38], [5],

allowing simpler individual networks that are working in

harmony over a broader set of conditions, with our system

sitting at a higher level to arbitrate them. Other approaches

are more specific and structured, such as lane following [30],

platooning [4], or other modes. Another important automo-

tive example is the bimodal case that combines an human

driver and an autonomy solution. Some recent works have fo-

cused on defining the switching function between human and

autonomous system modes through a minimal intervention

approach. For example, formal methods approaches are able

to provide rigorous theoretical guarantees that a dynamical

system (e.g. an automobile) will not crash by ensuring that

it does not enter the set of states that will result in crashes

(referred to as inevitable collision states [12], capture sets

[10], [16], or target sets [23]). These sets tend to be very

costly to compute in all but the simplest real-world sce-

narios, often reasoning about geometry alone, and ignoring

sensor limitations and complicated uncertainty models. An

alternative approach is to consider this as a shared control

problem and minimize the discrepancy between the human

and autonomous system input subject to safety constraints

[2], [32]. However, solving these optimizations can also be

costly in practice, and may not generalize well to other

system modes. Here, we are considering a more general

formulation, where there are N control modes and we are

using sensory inputs to select which is the most appropriate

mode for any given scenario.

As our decision takes as input the system’s sensory history,

we need an efficient representation for this vast space that

leverages its invariance and structure. In recent years, learn-

ing approaches such as RNNs [14] and Long-Short-Term-

Memory (LSTM) networks [15] have proven very useful

for audio, video and other temporal or spatial signals. In

our work, we use RNNs as our function approximator,

but other temporal architectures are also possible. The link

between deep learning features and embedding spaces has

been considered before in the neural network literature, see

for example [18].

Finally, as our work deals with efficient modeling of piece-

wise behavior, it ties in to a large work of probabilistic rea-

soning over switching system [11], [24], [19], [27]. However

our problem is a co-design problem, where we both design

the embedding space, and track variations in time.

A. k-Segment Mean Coresets

We leverage k-segment mean coresets for temporal signal

summarization [31]. These coresets have found numerous

uses for localization [36], tracking [7], and medical video

analysis [35]. Coresets techniques in general facilitate big-

data analysis for a variety of clustering and data modeling

problems. Coresets are constructed to represent the data by a

subset of elements, selected such that computing a function

on the reduced data returns approximately the same result as

the original data, with provable approximation bounds. See

for example [1], [31], [29] and references therein.

k-segment mean coresets approximate a temporal stream

of high-dimensional vectors by a set of linear representatives,

with respect to the l2 norm fitting of any k-segment. The

coreset is computed in streaming mode, where for each

block of data 1) the data complexity bound is estimated

via the Bicriteria algorithm. Then 2) the data is divided

into a fine partition of segments (coreset segments) via

the BalancedPartition algorithm, dividing the data according

to on-line fitting error estimation. See [31] for additional

details. Aside from efficiently computing segmentation, k-

segment mean coresets have proven useful for reasoning

about lifelong visual streams [36]. Utilizing a coreset allows

us to both efficiently detect changes, and perform retrieval

and sampling from points of interest in the stream.



III. MODEL DEFINITION

We assume a hybrid controller for the system, and we are

collecting data in order to optimize it. We denote by x(t) and

o(t) the state and observation at time t, taken respectively

from state space X and observation space O. o(t) denotes

the observation history at time t, with some finite horizon.

We assume a hybrid system that includes individual modes

{Ci}
C
i=1. While C isn constant, in a life-long learning setting,

we may discover additional modes that should be added. Our

design accomodates such an eventuality – a good arbitration

design should be robust to minor controllers additions or

removals, and not require processing of the existing data.

In order to ensure safe execution in a generic setting, we

assume there is always a system mode that is safe to use, and

that each mode can reason about whether it is safe to use at

time t. We assume safety of each mode i is a binary-valued

function of the state, yi : X → {−1, 1}. Since the state is not

directly observable, and safety regions are mode-dependent,

we assume the system mode defines a function gi(o(t)) that

estimates based on recent observations and the robot state.

Assumption 1: Each system mode is safe to use in some

region of state-space.

Assumption 2: For each state x there is at least one safe

system mode.

Assumption 3: Each system mode outputs a function gi
that represents its confidence relative to its output.

Controllers are designed with an operational envelope, and

with a good estimation of when the control state may exceed

that envelope. For example, an inference engine may be able

to output an information-theoretic measure in addition to a

belief (e.g., [17]).

However, computing this function may be costly as it

requires processing of a significant history, for example

dependencies on previously seen traffic signs, or even telling

apart road lanes on a rainy night. We therefore prefer to be ju-

dicious about the computation of gi(o(t)). We define an em-

bedding [6], [25] f(o(t)) such that changes in gi(o(t)) (for

any i) are captured by changes in f(o(t)). In other words, for

every pair of time points tj , tk, ‖f(o(tj)), f(o(tk))‖
2 should

be small if yi(x(tj)) = yi(x(tk)) for every controller i, and

sufficiently large otherwise. Given such a mapping f , jumps

in f(o(t)) correspond to switching in controller safety, and

should be examined – these are transition candidates and no

other time points would require such checks.

This view leads to an embedding criteria similar to metric

learning [37]. While many metric learning approaches can

be used, we chose a penalty formulation

F (Θ) = E(tj ,tk) si(tj , tk)‖fΘ(otj )− fΘ(otk)‖
2 (1)

where f is parameterized by a vector Θ, denoted as fΘ for

emphasis. si(tj , tk) = sign
(

gi(otj )gi(otk)
)

is a ±1 indicator

whether observation histories tj , tk agree on the safety of

controller i. Here we use gi(o(t)) as yi is never available

– we assume that gi must be perfected to approximate yi
to ensure safety. We use gi as a surrogate for yi when

running the system. It is the task of a system designer to

have sufficient examples of state and observations history

to improve both the controller and the surrogate function

gi. This includes as few as possible off-policy examples

[33], for safety reasons (since these require actually causing

the system to fail). Detecting the changes in the temporal

stream f(o(t)) allows us to compute gi(o(t)) sparingly, and

to reason about places where we are not sure about which

controller to employ. Reasoning about safety and collision

sets, especially in the presence of other agents, and partial

sensor models, is a field in itself, and is beyond the scope of

this paper. We note that the dimensionality of the embedding

space need not equal the number of sub-controllers – in fact,

we do not need to assume a fixed number of sub-controllers.

During system construction we may add sub-controllers, and

yet we do not wish to recompute the embedding space from

scratch.

Next, we require a way to reason about the changes in

f(o(t)). The embedding f is important in two respects. First,

it allows us to detect transitions between modes. Secondly, its

behaviour allows us to reason about possible points of failure

from the data, and guide sampling of examples to improve

both f and the controller of each system mode. From a safety

perspective, we need to handle the large scale data required

to train such controllers over diverse environments and with

small margins of errors, requiring the right tools.

In order to represent the data in a way that affords temporal

reasoning for both short and long time spans, we feed the

the stream f(o(t)) into a k-segment means coreset to obtain

a representation that enables such efficient reasoning about

the stream. See Subsection II-A for more details about this

specific structure. Utilizing the coreset enables detection of

possible changes in controllers, while minimizing the number

of times gi(·) needs to be computed in order to decide

on a controller change, addressing (Q1). It also enables

easy collection of time points that should be important for

training, such as transition and uncertainty region, addressing

(Q2). This is all done with minimal assumptions on the

underlying controllers set, and while scaling to infinitely

large datasets by sampling.

While storage and computations become increasingly

cheap, accurate training feedback is still costly for complex

robotic systems such as cars. Unlike standard reinforcement

learning literature, in autonomous driving the cost of policy

failure are often unacceptable. This requires indirect ap-

proaches such as training with human annotation, simulators,

or other approaches. While semi-supervised approaches to

controller training can help [9], there is still a significant

cost for every supervised training point, and these must

be chosen judiciously from the data. Unlike the standard

stationarity assumed in stochastic training methods, we want

to be able to sample from the data while giving preference

to cover possible failure cases when the system is uncertain

or transitions occur. Using k-segment mean coreset allows

us to do so, in an efficient manner.



IV. METHODS

We now demonstrate two algorithms based on our ap-

proach. The first is a method to detect transitions at a smaller

computational cost based on k-segment mean coresets, ad-

dressing (Q1). The second one allows training controllers in

a more efficient way (with respect to required annotations),

addressing (Q2).

A. An Embedding Approximation for Controllers

To detect transitions, k-segment mean coresets are con-

structed as piecewise approximations to the data, as part of

the BalancedPartition algorithm [31]. The algorithm creates

coreset segment bounds when a large change in the data is

detected. It is those changes that we would like to capture.

The coreset algorithm runs in streaming mode, a small

latency (depending on coreset leaf size), and allows us to

detect transition candidates in the data, as we describe in

Alg. 1.

Algorithm 1 Coresets-based hybrid control

1: for Every new observation o(t) do

2: Obtain embedding vector fΘ(o(t)) for the time frame.

3: Update the coreset stream in streaming mode [31]

4: When a new coreset segment is created, compute

gi(o(t)) for all i, switch mode.

5: end for

For sufficiently large changes, these can be detected in-

stantenously after computing f , with a verification from the

coreset segments arriving within a short latency, allowing

to rule out transient outliers. Such an instantenous approach

is close in spirit to dead-reckoning algorithm over feature

space, which was compared to k-segment mean coresets in

[31] and found to result in a worse compression ratio. Our

specific choice of embedding function f is a recursive neural

network, as these allow us to capture features in the temporal

visual history of the car, without committing to a specific

temporal window. We use a transfer-learning approach, fine-

tuning visual classification neural net (such as Googlenet

[34]) by replacing the top classification layer with a linear

layer, feeding into an 8-state RNN. An additional linear layer

applied to the RNN’s internal state forms f . The network

topology is illustrated in Fig. 2. The parameters of the fine-

tuning network define Θ in our case. While more complex

network topologies can be used, we found this topology

sufficient for all of our datasets, as we show in section V.

B. Coreset Sampling for Embedding Learning

Next, we show how to efficiently sample from the data in

the limit of a large scale data streams such as the ones needed

to detect and address rare yet dangerous events in the data.

Coresets are approximation methods that summarize the data

with respect to a family of analysis functions, representing it

in a compact way. k-segment coresets allow us to represent

an incoming data stream with guarantees on the quality of

later segmentation analysis [31].

Fig. 2. The network topology: a trimmed GoogleNet, connected to a 10-
neuron layer, is input into an RNN with a state of 8 elements. The RNN
output is fed into another 10-neuron layer, and output as the embedding
vectors.

Coreset segments are by construction segments of few

changes in the data stream (for a piecewise-constant model).

If the data is piecewise-constant, which is expected according

to our optimization criteria in Eq. (1), the transitions between

coreset segments should capture the transitions in the data.

It is therefore of interest to sample these points in the stream

more intensely.

In order to sample from the full data while favoring

endpoints of coreset segments, we sample first a coreset leaf,

then a segment within that leaf. Finally, we sample points

within that segments with a Beta(0.5, 0.5) distribution. This

favors sampling with emphasis on transition points, as shown

in Fig. 3.

Algorithm 2 Coreset sampling for metric learning

1: for Samples s = 1, 2, . . . do

2: Sample coreset segments cj , ck based on coreset tree

sampling ([36], Alg. 1)

3: Sample time points tj , tk from within cj , ck using a

Beta(0.5, 0.5) distribution.

4: Query (approximate) annotations for ytj , ytk
5: compute ∇Θf(Θ), f(Θ), and gradients/values for gi

and their parameters.

6: Update controller parameters and safety indicator

function gi (controller-specific)

7: Update Θ by stochastic optimization

8: end for

Fig. 3. An illustration of coreset tree sampling between coreset tree nodes.
Random sampling is done from the last (rightmost) keyframe according to
the tree edges, in a way that balances variability in the stream and in time,
see [36] for details.

In our implementation we used ADAM [20] to optimize

Eq. (1) with respect to Θ. However, other algorithms can be



used as well. In order to reason about the sampling points,

we look at the case where y(X(t)) is a piecewise-constant

vector signal that has sufficient variability per time interval

(i.e., there are ample controller changes). Furthermore, let us

assume that f, g faithfully approximate g, y respectively in

most of the data, and that places where this approximation

fails appear independently between the signals. The follow-

ing assertion can be made:

Lemma 1: Given two points tb, tg such that: 1) in the

neighborhood of tg , f faithfully represents g and g faithfully

represents y, and 2) there is no controller switch. Further-

more, 3) at tb, one of the three conditions does not hold.

Then, f changes at tb, but not in tg .

Proof: At tg , y is a constant signal (2), therefore g is

constant (1), and therefore f is constant (1). Conversely, at

tb one of the three conditions fails (3). If theres a controller

switch but, f, g are faithful – g switches and therefore f

changes. If g isn’t faithful but y is constant – g changes,

therefore f changes. If f doesn’t approximate g – g doesnt

change but f changes. This means that around tb there is a

large change in f

An overview of the sampling algorithm is shown in

Alg. 2. By definition of the BalancedPartition algorithm in

k-segment coresets, change points in a piecewise constant

stream f(o(t)) tend to have coreset segment boundaries

around them. Since in Lines 2,3 of Algorithm 2 we sample

more frequently around coreset segments boundary, intu-

itively there is a neighborhood of tg that will be sampled

less than tb. While this is a limit case which requires already

a good deal of training for the controllers and embedding

function, we note that this is the behaviour observed in

practice in our experiments in Section V.

V. RESULTS

We now demonstrate our approach on two datasets. One

dataset (Dataset I) we used comes from the Duckietown

autonomous vehicles course [28]. In this setup, small-scale

vehicles are able to navigate a small scale city. We have

utilized logs recorded from 10 robots used in the course.

We used the transitions between discrete controllers in these

robots as annotation data to train the the embedding on the

forward-facing camera raw footage. While we have allocated

two dimensions to the embedding, the resulting embedding

is 1D, and includes two tight clusters that correspond to

these two modes. Embedding streams, and the transitions

candidates detected via the coreset segments are shown in

Fig. 6. In this case, the robot operates in one of two modes:

LANE FOLLOWING, or INTERSECTION TRAVERSAL.

In the system, the mode transitions are triggered by detecting

stop lines and completing open-loop intersection traversal

actions. However, our learns the transitions from the raw

visual input without explicitly knowing about things like

“stop lines” or “lanes” – more generally, it is unaware of

the controllers’ inner structure.

To simulate controllers in a more challenging visual envi-

ronment, we have collected a dataset (Dataset II) of 130 car

rides within a 20km radius, for a total of 60 hours. We used

human annotation to approximate driving types according

to a set of 4 scene types (Set I): “parking lot”, “suburban

driving”, “urban area”, “highway”. The dataset contained 140

annotation of the different ride segments.

For the purpose of training the networks for Set I, we used

70% of the annotation, sampling 20K pairs of time points

from the videos, and embedded the images into a 2D feature

space. We used data augmentation with respect to the field-

of-view (FOV) of the camera by subsampling windows from

the camera’s FOV, and found it sufficient for this nuisance

factor.

The resulting feature streams are shown in Fig. 5, along

with the coreset segments at the top layer of the coreset

tree. The feature space is shown in Fig. 4, for six 45-minute

drives. As can be seen, the same clusters form in all videos

where they appear, corresponding to the four categories of

“parking lot”, “suburban driving”, “urban area”, “highway”,

and are robust to different illumination conditions and dif-

ferent locations. Utilizing the coreset segments, compared

to uniform segmentation, we obtain improved fit of the

detected transitions, as shown in Table I, where we com-

puted a modified Rand index for both datasets, compared to

manual annotations. More importantly, the coreset segments

edges cover the transitions of the embedded stream, and the

transitions in the locations in the videos.

We then utilized the resulting coresets to sample data

points according to Alg. 2, to see their distribution and cov-

erage of different regions in the data. The resulting samples

are concentrated around transition regions, and regions of

uncertainty in the embedding, which are the regions the often

require more training data to cover well. This demonstrates

the utility of the coresets for extracting training data for

annotations from a set of large-scale datastreams.

Fig. 4. Top: embedding space for different time points, sampled from 6
rides in our car dataset. Different colors show different rides at different
times of daylight and different weather (sunny, slight rainy/clouds), with
different colors representing separate rides. The embedding was train
according to the controllers in Set I (parking, city, suburb, highway). Clusters
in the data can be clearly seen to capture prevalent modes (Top - “highway”,
right - “city”, bottom - “parking”, left - “suburb”). Bottom row shows images
from different rides.



(a)

(b)

(c)

Fig. 5. Example embedding vector streams from the videos, each rows represents a 30-60 minutes driving sequence, the horizontal and vertical axes
represent time and feature space elements respectively. Black vertical lines represent coreset segments boundaries, and red vertical lines demonstrate the
resulting segmentation into k = 6 via the dynamic programming approach, which the coreset approximates. As can be seen, coreset segments capture the
transitions, with multiple segments in regions of uncertainty.

TABLE I

SEGMENTATION MEASURES – MODIFIED RAND INDEX RESULTS WITH

OUR APPROACH, COMPARED TO THOSE OF UNIFORM INTERVALS OF THE

SAME AVERAGE FREQUENCY. AS CAN BE SEEN, THE CORESET

SEGMENTS PROVIDE A GOOD PARTITION OF THE STREAM THAT

NATURALLY FOLLOW TRANSITION POINTS.

Rand index, Rand index,
Dataset our approach Uniform Intervals

Dataset I
(Duckietown) 0.9357 ± 0.0231 0.6862 ± 0.1156

Dataset II 0.8198 ± 0.0328 0.5798 ± 0.0784

VI. CONCLUSIONS

In this paper we developed a deep embedding approach to

allow switching of driving modes based on the car’s visual

feed, and showed how k-segment coresets allow us both

easy transition detections and data collection for training the

embedding and the controllers. This work raises important

questions as to the unsupervised case where both control

modes and embeddings are learned in parallel, as well as

the optimal controller and embedding structure for complex

autonomous robots in order to improve safety and perfor-

mance for these systems.

REFERENCES

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, “Geometric
approximation via coresets,” Combinatorial and computational geom-

etry, vol. 52, pp. 1–30, 2005.
[2] J. Alonso-Mora, P. Gohl, S. Watson, R. Siegwart, and P. Beardsley,

“Shared control of autonomous vehicles based on velocity space
optimization,” in ICRA, May 2014, pp. 1639–1645.

[3] M. Athans, D. Castanon, K.-P. Dunn, C. Greene, W. Lee, N. Sandell,
and A. Willsky, “The stochastic control of the f-8c aircraft using a
multiple model adaptive control (mmac) method–part i: Equilibrium
flight,” IEEE Transactions on Automatic Control, vol. 22, no. 5, pp.
768–780, 1977.

[4] C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsug-
awa, “Overview of platooning systems,” in Proceedings of the 19th

ITS World Congress, Oct 22-26, Vienna, Austria (2012), 2012.
[5] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,

P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang,
X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-
driving cars,” CoRR, vol. abs/1604.07316, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07316

[6] C. J. C. Burges, “Dimension reduction: A guided tour,” Foundations

and Trends in Machine Learning, vol. 2, no. 4, pp. 275–365, 2010.
[Online]. Available: http://dx.doi.org/10.1561/2200000002

[7] A. Dubey, N. Naik, D. Raviv, R. Sukthankar, and R. Raskar,
“Coreset-based adaptive tracking,” CoRR, vol. abs/1511.06147, 2015.
[Online]. Available: http://arxiv.org/abs/1511.06147

[8] M. Fallon, S. Kuindersma, S. Karumanchi, M. Antone, T. Schneider,
H. Dai, C. P. D’Arpino, R. Deits, M. DiCicco, D. Fourie, et al., “An
architecture for online affordance-based perception and whole-body
planning,” J. Field Robotics, vol. 32, no. 2, pp. 229–254, 2015.

[9] C. Finn, T. Yu, J. Fu, P. Abbeel, and S. Levine,
“Generalizing skills with semi-supervised reinforcement learn-
ing,” CoRR, vol. abs/1612.00429, 2016. [Online]. Available:
http://arxiv.org/abs/1612.00429



(a)

(b)

(c)

Fig. 6. Embedding results obtained on data from Duckietown, trained using the controllers from the system’s ROS nodes. The resulting coreset segments
boundaries are shown as black vertical lines. Note that in this case the distribution in embedding space is approximately one dimensional, capturing
intersections (yellow-blue columns) and lane-following (light blue columns) modes.

[10] M. Forghani, J. M. McNew, D. Hoehener, and D. D. Vecchio, “Design
of driver-assist systems under probabilistic safety specifications near
stop signs,” IEEE Transactions on Automation Science and Engineer-

ing, vol. 13, no. 1, pp. 43–53, Jan 2016.

[11] E. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “Nonpara-
metric bayesian learning of switching linear dynamical systems,” in
Advances in Neural Inf. Proc. Sys., 2009, pp. 457–464.

[12] T. Fraichard and H. Asama, “Inevitable collision states. a step towards
safer robots?” in IROS, vol. 1, Oct 2003, pp. 388–393 vol.1.

[13] J. H. Gillula, H. Huang, M. P. Vitus, and C. J. Tomlin, “Design of
guaranteed safe maneuvers using reachable sets: Autonomous quadro-
tor aerobatics in theory and practice,” in 2010 IEEE International

Conference on Robotics and Automation, May 2010, pp. 1649–1654.

[14] C. Goller and A. Kuchler, “Learning task-dependent distributed repre-
sentations by backpropagation through structure,” in Neural Networks,

1996., IEEE International Conference on, vol. 1. IEEE, 1996, pp.
347–352.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[16] D. Hoehener, G. Huang, and D. D. Vecchio, “Design of a lane
departure driver-assist system under safety specifications,” 2016.
[Online]. Available: http://hdl.handle.net/1721.1/101596

[17] G. Hoffmann and C. Tomlin, “Mobile sensor network control using
mutual information methods and particle filters,” Automatic Control,

IEEE Transactions on, vol. 55, no. 1, pp. 32–47, jan. 2010.

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international

conference on Multimedia. ACM, 2014, pp. 675–678.

[19] M. J. Johnson and A. S. Willsky, “Bayesian nonparametric hidden
semi-markov models,” Journal of Machine Learning Research, vol. 14,
no. Feb, pp. 673–701, 2013.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[21] J. Lygeros, C. Tomlin, and S. Sastry, “Multiobjective hybrid controller
synthesis,” in International Workshop on Hybrid and Real-Time Sys-

tems. Springer, 1997, pp. 109–123.
[22] ——, “Hybrid systems: modeling, analysis and control,” preprint,

1999.
[23] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent

hamilton-jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Transactions on Automatic Control, vol. 50, no. 7, pp.
947–957, July 2005.

[24] K. P. Murphy, “Hidden semi-Markov models (HSMMs),” Nov. 2002.
[25] ——, Machine learning: a probabilistic perspective. MIT press,

2012.
[26] NHSTA, “Federal automated vehicles policy accelerating the next

revolution in roadway safety,” Sep 2016.
[27] S. Niekum, S. Osentoski, C. Atkeson, and A. G. Barto, “Champ:

Changepoint detection using approximate model parameters,” Robotics
Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-14-10, June 2014.

[28] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap,
Y. F. Chen, C. Choi, J. Dusek, Y. Fang, D. Hoehener, S.-Y. Liu,
M. Novitzky, I. F. Okuyama, J. Pazis, G. Rosman, V. Varricchio, H.-
C. Wang, D. Yershov, H. Zhao, M. Benjamin, C. Carr, M. Zuber,
S. Karaman, E. Frazzoli, D. D. Vecchio, D. Rus, J. How, J. Leonard,
and A. Censi, “Duckietown: an open, inexpensive and flexible platform
for autonomy education and research,” in ICRA, 2017, pp. 1–8,
Accepted.

[29] J. M. Phillips, “Coresets and sketches,” arXiv preprint

arXiv:1601.00617, 2016.
[30] D. A. Pomerleau, “ALVINN, an autonomous land vehicle in a neural

network,” Carnegie Mellon University, Computer Science Department,
Tech. Rep., 1989.

[31] G. Rosman, M. V. Volkov, D. Feldman, J. W. Fisher III, and D. Rus,
“Coresets for k-segmentation of streaming data,” in Advances in

Neural Inf. Proc. Sys., 2014, pp. 559–567.
[32] W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus,

“Parallel autonomy in automated vehicles: Trajectory generation with



(a)

(b)

(c)

(d)

Fig. 7. Examples of sampled locations by the coreset. (a),(c): the original stream of embedded vectors. (b),(d): the histogram of sampled frames in the
videos, computed over 106 samples. As can be seen, location of uncertainty and transitions are the parts that are most often sampled.

(a) (b) (c)

Fig. 8. Examples sensors used in our datasets: (a): A Duckiebot used
for in Duckietown (dataset I). (b),(c) - autonomous vehicle w/ PointGrey
Grasshopper3 6.0 MP, and dashboard-mounted GoPro Hero4 cameras used
in dataset II.

real-time obstacle avoidance and human input optimization,” in ICRA,
2017, pp. 1–8, accepted.

[33] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 1–9.

[35] M. Volkov, D. A. Hashimoto, G. Rosman, O. R. Meireles, and D. Rus,

“Machine learning and coresets for automated, real-time video seg-
mentation of laparoscopic surgery,” in SAGES, Boston, Massachusetts,
Mar. 16–19 2016.

[36] M. V. Volkov, G. Rosman, D. Feldman, J. W. Fisher III, and D. Rus,
“Coresets for visual summarization with applications to loop closure,”
in ICRA, 2015, pp. 3638–3645.

[37] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance
metric learning with application to clustering with side-information,”
in Advances in Neural Inf. Proc. Sys., vol. 15, no. 505-512, 2002,
p. 12.

[38] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of
driving models from large-scale video datasets,” arXiv preprint

arXiv:1612.01079, 2016.


