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A Topological Approach to  
Map Merging for Multiple Robots

S
imultaneous localization and mapping (SLAM) is required for mobile robots 
to be able to explore a prior unknown space without a global positioning ref-
erence. Multiple robots can achieve exploration tasks more quickly but with 
added complexity. A useful representation of the map for SLAM purposes is 
as an occupancy grid map. In the most general case of multiple-robot SLAM, 

occupancy grid maps from multiple agents must be merged in real time without any 
prior knowledge of their relative transformation. In addition, the probabilistic infor-
mation of the maps must be accounted for and fused accordingly. In this article, the 
generalized Voronoi diagram (GVD) is extended to encapsulate the probabilistic in-
formation encoded in the occupancy grid map. The new construct called the probabi-
listic GVD (PGVD) operates directly on occupancy grid maps and is used to 
determine the relative transformation between maps and fuse them. This approach 
has three major benefits over past methods: 1) it is effective at finding relative transfor-
mations quickly and reliably, 2) the uncertainty associated with transformations used 
to fuse the maps is accounted for, and 3) the parts of the maps that are more certain 
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are preferentially used in the merging process because of the 
probabilistic nature of the PGVD.

Introduction
The ability of an autonomous agent to sense its environment 
and situate itself within this environment is a cornerstone of 
mobile robotics. SLAM is the process of sensing an unknown 
environment and concurrently generating a consistent map of 
the world by fusing the available sensor data. As such, the 
pose of a robot can be estimated and an environment map 
can be built [2].

Extensive literature exists on SLAM for a single robot (for 
a review, see [3]). However, exploring unknown environ-
ments with multiple mobile agents has received comparatively 
less attention and can have significant advantages, including 
the following:

 ● Exploration and mapping can be done more rapidly.
 ● A distributed system is more robust to failures [4].
 ●  The results are more accurate due to the redundancy of data.

With the stated benefits of multiple-robot SLAM comes 
significant challenges in implementation. The two main prob-
lems to overcome are map merging without a global position 
reference and map fusion incorporating map uncertainty. 
This article addresses both issues using only information 
within the maps in a robust and scalable way.

Abstract geometrical perception is a foundation for high- 
level reasoning and knowledge sharing. When multiple 
robots are supposed to explore and map an unknown envi-
ronment cooperatively, there is a need to provide a logical 
infrastructure so that the robots can share their spatial per-
ception and decide how to use the shared knowledge. If the 
salient information from the maps is extracted and shared 
among robots, the speed and accuracy of the mutual percep-
tion will improve, and communication channels will not be 
burdened with large amounts of unprocessed data.

A topological map is an abstract world representation in 
the form of connected paths and intersections. Humans and 
insects use topological maps to navigate, argue about paths 
and positions, and avoid obstacles [5]. As an example, pigeons 
have been shown to use highways and their intersections as a 
topological map to fly over long distances [6].

The general approach taken here is to achieve SLAM 
through graph matching where a graph is some reduced-form 
topological representation of the higher-level map structure 
[7]. The GVD described in the following sections is an appro-
priate graph structure.

Multiple-Robot SLAM
Past approaches to collaborative SLAM can be generally cat-
egorized based on whether they share raw sensor data [8] or 
processed maps [4]. Sharing raw sensor data results in more 
flexibility but requires high bandwidth and reliable commu-
nication between robots as well as more processing power. 
In contrast, sharing maps helps use less bandwidth and 
reduces the need to process raw data; however, the perfor-
mance is dependent on the map quality. The latter method 

is referred to as map merging or map fusion and is the 
approach taken here.

Multiple-robot SLAM can also be categorized based on the 
method used to process measurement data. In feature-based 
SLAM [9], which is usually performed by cameras, unique 
objects called features or landmarks are extracted from mea-
surements and used for localization. The spatial distribution 
of the features represents a model of the world. Feature-based 
multiple-robot SLAM has been implemented using an infor-
mation filter [10], an extended Kalman filter [11], and a parti-
cle filter [12].

An alternative paradigm is view-based SLAM [13], which 
uses entire laser scans. Scans are matched using scan-match-
ing algorithms. Our approach uses view-based SLAM. Thrun 
proposes a probabilistic multiple-robot view-based SLAM 
algorithm in [14]. This method is robust; however, the 
approximate initial poses of the robots are assumed to be 
known before the start of the mission.

A view-based multiple-robot SLAM algorithm is proposed 
by Howard using a particle filter [8], where it is assumed that 
robots will meet each other in the environment to determine 
their relative poses. This method is moderately fast but 
demands high computational power and memory since it is 
based on particle filtering.

An effective and fast approach to multiple-robot SLAM 
rests on the concept of map merging or map fusion [15]. In 
[4], a solution is presented based on occupancy map merging. 
This method uses map distance as a similarity index and tries 
to find similar patterns in two maps based on a random walk 
algorithm. The drawback of this method is that it can fail, 
especially when there are few similar patterns in both maps. 
This method is time-consuming and therefore problematic in 
large-scale maps that are common in indoor environments. A 
similar method is proposed in [16], with simulated annealing 
and hill climbing used to merge maps. This method becomes 
ineffective in maps with fewer overlaps.

The contribution of this research is a novel map fusion al-
gorithm that exploits the properties of the GVD to achieve 
fast and accurate map fusion for large maps. In addition, the 
uncertainty in the maps is used to build a PGVD that encap-
sulates not only the topological structure of the map but also 
the confidences associated with different areas of the map. 
Once the PGVDs are built, the edges are matched using a 
two-dimensional (2-D) cross-correlation that will preferen-
tially match the areas of the maps that have higher confidenc-
es. The resulting transformation can align maps to generate a 
global map. However, there is an uncertainty associated with 
this calculated transformation, which should also be propa-
gated to the maps. The novel linearized uncertainty propaga-
tion (LUP) approach proposed in this research accounts for 
the uncertainty of the transformation. In LUP, if the transfor-
mation for each cell of the map is linearized, then the Gauss-
ian uncertainty of the transformation is propagated to the 
transformed cell. This process is performed on all trans-
formed cells; therefore, the resulting map carries the uncer-
tainty of the transformation. Final map fusion is then 



62 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  JUNE 2014

achieved with an entropy filter. The result is a fast, reliable, 
and robust method of fusing maps for multiple-robot SLAM.

It should be mentioned that the assumption in this article 
is that the individual maps developed by each robot are accu-
rate and consistent.

To summarize, the proposed novel method for map fusion 
has the following key advantages.

 ●  It accounts for uncertainties in the occupancy grid maps 
using the PGVD.

 ●  It considers the uncertainty of the calculated transforma-
tion by linearization.

 ● It is fast and robust compared to other methods.
 ●  It is able to preferentially match areas of the maps that are 

more certain.

Background
The GVD is a type of roadmap [17] that is the locus of 
points that are equidistant to at least the two closest obsta-
cles. The GVD has the following two important properties 
that will be exploited.
1)  The GVD is connected because the set of free space is con-

nected and connectivity is maintained under a deforma-
tion retraction [17].

2)  The GVD of a map is unique and is invariant to transfor-
mations because it is a retraction [17].

The GVD can be interpreted as a topological representation 
of the map structure that contains the key information intrin-
sic to the map but in a much more compact form.

There are different methods to generate GVD for a map. 
Mathematical morphological operations [18] are a fast and 
reliable method to build a GVD. In Blum’s method, intro-
duced in [19], the GVD is developed using a maximal 
inscribed circle method that is inefficient for large maps. A 
dynamic version of the GVD, which improves performance 
near nonconvex obstacles, is proposed by Lau et al. [20]. 
Although this method has good results, it is time-consuming.

Beeson et al. [21] propose an extended Voronoi graph 
algorithm to improve the efficiency of building the GVD 
when the robot is limited with its sensory horizon. This 
method performs well in noisy environments by eliminating 
spurious junctions.

Previous Topological Approaches to SLAM
Voronoi graphs and graph matching in its different forms 
have many applications in SLAM. There are many topological 
solutions for single-robot SLAM, such as the works by Choset 
et al. [22], [23], the annotated generalized Voronoi graph 
(AGVG) [24], the work by Beeson et al. [25], Bayesian infer-
ence [26], and the semantic approach with place labeling by 
Friedman et al. [27].

Choset and Nagatani [22] propose a topological SLAM 
algorithm for a single robot based on the GVD. In [24], an 
AGVG is used for single-robot SLAM. The proposed method 
is based on a matching scheme for solving the data associa-
tion problem. This method identifies the corresponding parts 
of the map in two tree-formed Voronoi graphs. One form 

represents a local observation, and the other form represents 
the internal map of the robot.

In [28], a solution to detect and recognize topological fea-
tures is proposed using Delaunay triangulations. In [27], a 
semantic approach is used by a robot to generate a topological 
map that can identify different places. Identified places can be 
used for different autonomy applications.

A multiple-robot SLAM based on topological map merg-
ing using both structural and geometrical characteristics of 
the Voronoi graph is proposed in [29]. The assumption in this 
article is that a robot will be able to recognize areas of the map 
that correspond to vertices. In this case, the topological map is 
built on the occupied space as opposed to the free space. The 
method in [29] is claimed to be fast. However, a limitation is 
that the maps are not updated.

In this article, a skeletonization approach is extended to be 
probabilistic and used for map matching of multiple robots. A 
common problem encountered when using skeletonization 
for SLAM is that the skeleton has no closed-form solution, 
and heuristic methods for generating it tend to be slow. In our 
approach, morphological operations are used to generate the 
GVD, as explained in the “Building the Probabilistic GVD” 
section. The proposed approach is fast enough to be used in 
real time and guarantees connectedness of the skeleton [18]. 
In addition, the probabilistic nature of the proposed PGVD 
allows areas of the maps that are known with higher certainty 
to be preferentially matched.

Transforming Occupancy Grid Maps  
with an Uncertain Transformation
In general, any type of uncertainty in this context is identified as 
having five main causes: environment, sensors, robots, models, 
and computations. Thrun et al. state that “uncertainty arises if 
the robot lacks critical information for carrying out its task” [3].

Map fusion involves dealing with two types of uncertainty.
1)  Uncertainty due to pose and sensor measurements: This 

kind of uncertainty is represented within the occupancy 
grid map. Specifically, it originates from the uncertain 
pose of each robot and is embedded in the map of the 
robot. This can be considered as a form of uncertainty at 
the individual robot level. Throughout this article, the 
terms uncertainty and map uncertainty refer to this type 
unless otherwise stated.

2)  Uncertainty due to transformation: If we can estimate the 
uncertainty in the transformation that relates two maps, 
then we can account for this uncertainty in the fusion pro-
cess. In this article, the terms transformation uncertainty, 
rotation uncertainty, and translation uncertainty are used to 
refer to this type of uncertainty.
The uncertainty associated with the relative transforma-

tion matrix is represented as a covariance matrix. The covari-
ance error is propagated through the probabilistic transfor-
mation function using the LUP formulation, a novel 
map-merging method introduced in [1] and expanded upon 
here. This section addresses the propagation of the uncer-
tainty in transformation given the transformation matrix and 
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its covariance as a map is being transformed so that it may be 
merged with another.

Assume that q q qi j
T= 6 @  is a multivariate random vari-

able denoting the position of the cell ,i j^ h from map .m  The 
probability density function (PDF) of q  is shown by qp^ h 
and it is assumed to be a delta function. The mean value of q  
is shown by .q q q

T
i jn n n=6 @  The point q is transformed to 

another point, ,r  with the PDF of .p r^ h  The transformation is 
performed by f ·^ h defined as
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In general, the nonlinearity and uncertainty of the transfor-
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with a Gaussian distribution. By linearizing the transformation 
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where the mean of the normal distribution, ,rn  is calculated 
by (1). Assume that the covariance of the transformation 
matrix has the form
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Through linearization, the covariance of the transformed 
point, ,rR  is calculated by

 ,F F F Fr xy tr xy
T
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where Fxy}  and Fq  are the Jacobians of ( )f $  defined as
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and qR  is the covariance of the point q which is zero. Note 
that the covariance rR  is a function of ,q  the location of the 
cell. Figure 1 depicts the problem with a hypothetical nonlin-
ear function representing the transformation. Figure 1(a) 
shows the point ,q  which should be transformed by the given 
transformation function. The position of this point is deter-
ministic, therefore its distribution is a delta function. How-
ever, the transformation function is not certain, shown by set-
ting boundaries around the nominal transformation function 
[Figure 1(b)]. A Gaussian distribution is assigned to the trans-
formed point [Figure 1(c)].

Equation (4) gives the shape of the Gaussian distribution 
for every transformed point. Figure 2 shows this process. The 
point q from map m is transformed to point .rn  By applying 
the Gaussian defined in (4), depicted by ; , ,rN r rn R^ h  the 
point rn  takes a Gaussian form.

The next step is to extend this formulation to all points of 
the map. Algorithm 1 explains this process. For simplicity, we 

use ( )T q, ,x y }  to denote that the point q is rotated according to 
} and then translated according to , .x y^ h  The same concept 
applies for transformation of a map, ,m  shown by ( ).T m, ,x y }  

First, the map m is transformed according to the given 
transformation, shown by ( )T , ,x y $}  (line 1). This is shown in 
Figure 2, where the resulting map is marked by .mn  In line 2, 
the final map, which includes the uncertainty of the transfor-
mation, is initialized by .mn  In line 4, for every point of the 
transformed map, the covariance is calculated using (4). In line 
5, the Gaussian kernel based on the covariance is calculated. 
Note that the Gaussian kernel is center originated, which 
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Figure 1. (a) A point q  with the distribution of p q^ h is transformed 
by an uncertain transformation function. (b) The uncertainty of the 
transformation function is shown by setting boundaries around the 
nominal function. (c) After linearization, the transformed point, ,r  
will have a Gaussian distribution, .p r^ h  
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Figure 2. The linearized transformation uncertainty propagation. 
Point q  is transformed to point rn  according to the rotation }  
and the translation , .x y  Then a Gaussian kernel, ( ; , ),rN r rn R  is 
convolved with the transformed point. rR  is calculated through 
linearization.
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means that the center point of the kernel is ( , ).h 0 0  The mean 
of the kernel is the transformed point, while its 2 # 2 covari-
ance matrix is calculated by (4). It is important to note that for 
each point of the transformed map, the kernel takes different 
values. Then, in line 6, every transformed point is convolved 
with the Gaussian kernel. The operator U denotes the convo-
lution of a Gaussian kernel with the map [18] and is defined as
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For simplicity of implementation, it is assumed that the 
size of the kernel is the same as .mn

Now 'm  can be fused with its pair map using the entropy 
filter method detailed in the “Map Fusion with the Entropy 
Filter” section.

Probabilistic Map Merging with the GVD
In this section, we present the details of the map fusion pro-
cess with the probabilistic GVD introduced in [1]. Consider 
the case of two mobile robots, R1  and ,R2  equipped with laser 
rangers exploring an environment and building occupancy 
grid maps (OGMs) [3]. In an OGM representation, each cell 
in map ( , ), , ,m i j k 1 2k = " ,  is a binary random variable (RV) 
where ( ( , ) ) ( ( , ))p m i j p m i j1k k= =  is the probability that 
the cell at location ,i j^ h is occupied in the map of robot .k  It 
is convenient to represent the OGM using the log odds repre-
sentation of occupancy [3]

 ( , ) ( ( , ))
( ( , ))

.logl i j p m i j
p m i j

1k
k

k
=

-
 (7)

Without loss of generality, assume that R2  transmits its 
local map, map2 to R1  through a wireless channel. R1  is now 
responsible for incorporating the transmitted map into its 
own local map, map1. There are three main challenges that 
need to be overcome.
1)  The relative transformation from map1 to map2 needs to 

be found.
2)  The uncertainty of the transformation should be accounted for.
3)  The OGM probabilities from map2 need to be incorpo-

rated with the OGM probabilities of map1.
An overview of the elements of the algorithm is shown in 

Figure 3(a). The subsequent sections will describe each of the 
block components in detail.

A simulated example accompanies each step of the algo-
rithm to aid with explanation. Figure 4(a) shows the simulated 
environment, where three poles are located inside a rectangular 
room. The two robots map the room starting near the big pole 
but moving in opposite directions. Figure 4(b) and (c) shows 
the two local maps after some time has passed. Without loss of 
generality, it is assumed that the second map [Figure 4(c)] is 
fused into the first map [Figure 4(b)]. Free, occupied, and 
unknown cells are shown by different shades of gray, using the 
OGM standard. The darker the grid cell, the higher the proba-
bility of occupancy.

Uncertain Rotation Alignment
In structured environments such as urban or indoor settings, 
the relative rotation between maps can be found easily using the 
Radon transform, as shown by [30]. The Radon transform is the 
projection of the image intensity along a radial line oriented at a 
specific angle. The peak points in the Radon transform will cor-
respond to the straight line segments in the image. As a result, it 
is possible to resolve the relative rotation, ,}  between two 
images by looking for peaks in the Radon images of both maps. 
However, due to environment similarity, four rotation hypothe-
ses are considered and only one is accepted by a similarity index 
[30]. At the output of this block, there are the two aligned maps, 
m1  and ,m2  with the same size of ,M N#  given by

 map , (map ).m m T , ,1 1 2 0 0 2= = }  (8)

Uncertain Rotation

Uncertain Translation

Fusion

Map1 Map2

Fused Map

(a)

(b)

Rotation Alignment

Rotation Uncertainty

Probabilistic GVD

Graph Representation

Edge Matching

Translation Uncertainty

Entropy Filter

Figure 3. (a) The proposed map fusion algorithm. Two input 
maps, map1 and map2, are fused by finding their relative 
transformation matrix. No prior information is available 
regarding the relative position of the two respective robots. 
(b) The experimental robots, CoroBots, each equipped with a 
laser ranger and wheel encoders.

Algorithm 1. Linearized uncertainty propagation.
Require: Occupancy grid map: m,
 Transformation: ,}  x, y,
 Uncertainty of the transformation: .trR
Ensure: Transformed occupancy grid map: '.m
1: ( )T m, ,m x yn = }

2: 'm mn=
3: for all [ , ]r r r

T
mi j !n n n n=  do

4: Calculate rR  using (4)
5: ( , )h N r r! n R
6: ' , , ,m hr r m r r r ri j i j i j! Un n n n n n n^ ^ ^h h h
7: end for
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The uncertainty in the relative rotation must be 
accounted for in the subsequent calculation of the relative 
translation. This is performed using Algorithm 1. This 
means that after finding the rotation, its uncertainty on the 
map is propagated using Algorithm 1, assuming zero trans-
lation and .0xx yy xy

2 2 2
v v v= = =  Now, the process of finding 

the relative translation can be done knowing that uncer-
tainty of the rotation is already incorporated into the 
rotated map. Figure 5(b) shows the aligned map after apply-
ing the uncertain rotation alignment. More details about the 
rotation alignment process can be found in [30].

Building the Probabilistic GVD
Finding the relative translation between maps is much more 
challenging than finding the relative rotation. The search for 
overlapping parts of maps can be slow. As a result, we use a 
novel probabilistic topological representation of the map as 
described in this section. The proposed solution is based on 
the idea that the search for overlaps in the topological space, 

which represents salient information, is easier and conse-
quently faster, than in the metric space. The PGVD is found 
for each of the two maps, m1  and .m2  This process is com-
pleted in two steps.
1)  Find the GVD efficiently using mathematical morphologi-

cal operations on the binary OGM.
2)  Compute the associated probabilities of each cell in the 

GVD based on the actual probabilities in the OGM.

Finding the GVD Using Mathematical Morphology
Mathematical morphology defines the application of set oper-
ations on binary images using convolution between the image 
and defined masks. It has been used extensively in computer 
vision and image processing. A set of basic operators is 
defined in mathematical morphology such as erosion, dila-
tion, opening, closing, skeleton, and hit-or-miss transform 
with different properties. The most important property is that 
they are translation invariant.

The GVD of the binary map is generated using eight 
D-type hit-and-miss transform masks [18]. Each mask is 
designed for a particular situation to guarantee the connect-
edness (using the connectivity-eight model). The GVD is rep-
resented as a matrix, [ ],S s ,i j=  with the same size as the map, 

,M N#  defined as

 [ ]
if ( , ) GVD

otherwise.s
m i j1

0, 1.. , 1..i j i M j N
!

== = '  (9)

(a)

(b)

(c)

Figure 4. (a) A simulated environment to show the process 
of map merging. (b) The first OGM covers the right part of the 
environment. (c) The second OGM covers the left part of the 
environment.

(a)

(b)

Figure 5. (a) The first OGM. (b) The second OGM after being 
rotated. The relative rotation is calculated by comparing the 
Radon images of the maps.
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Figure 6(a) and (b) shows the GVDs of the two aligned 
maps. The probabilistic GVDs will be based on these GVDs.

Finding the Probabilistic GVD
The skeleton developed by the proposed probabilistic GVD 
approach does reflect the uncertain nature of the OGM. 
While the GVD structure is generated from a binary version 
of the OGM, the probabilistic information in the OGM 
should be reflected in the GVD structure. A new structure, 
the PGVD, is built that combines the structure of the GVD 
with the probabilistic nature of the OGM.

Definition 1: Contact Points. The contact points of a cell in 
the GVD are all the occupied cells in m that have the same 
distance from the cell as the closest occupied cell. The proba-
bilities of the contact points in the OGM are used to build 
the PGVD.

Definition 2: Probabilistic GVD. Each cell in the GVD is 
represented by a binary RV representing the probability that it 
has two or more occupied contact points based on their prob-
abilities of occupancy in the OGMs.

Consider that a GVD, ,S  contains s  cells, , .. .G i s1i =  
Each cell in the GVD has an associated set of ni  contact 
points in the binary map .m

The PGVD, ,S p  has the same structure as the GVD, except 
that each of the s  cells is represented as a binary RV, 

, ..G i s1i
p
=  where ( ) ( )p G p G1i

p
i
p

= =  is the probability 
that cell Gi

p  has been correctly placed in the GVD. Each cell 
in the PGVD has an associated set of contact points 

{ , , ..., },C c c c1i n2 i=  .. ,i s1=  where these contact points are at 

the same locations as the contact points of Gi  except they are 
in the OGM so they have associated probabilities of occu-
pancy. Each contact point is a binary RV where 

( ) ( ) ..p c p c j n1 1j j i6= = =  is the probability that the con-
tact point is occupied taken directly from the OGM.

A cell belongs in the GVD if at least two of the contact 
points are occupied. For each cell in the PGVD ,Gi

p  we must 
determine the probability that it has at least two occupied 
contact points based on their probabilities of occupancy.

To do so, another RV NGi
p  is defined that represents the 

probability distribution of the number of occupied contact 
points of .Gi

p ( )p N kGi
p =  is the probability that cell Gi

p  con-
tains k  occupied contact points. The ( )p N kGi

p =  is defined 
as a function of ,ni  the number of contact points in  
the OGM, and ,k  the number of contact points that are 
actually occupied

 ( ) ( , ).P N k f n kG ii
p = =  (10)

The function ( , )f n ki  can be defined recursively as

 ( , ) ( ) ( , ) ( ( )) ( , ).f n k p c f n k p c f n k1 1 1 1i n i n ii i= - - + - -  
 (11)

Intuitively, this equation says that the probability of having k  
out of ni  contact points occupied is equal to the probability 
that contact point cni  is occupied and that k 1–  of the remain-
ing n 1i-  contact points are occupied, plus the probability 
that cni  is not occupied and k  of the remaining n 1i-  contact 
points are occupied.

The base cases for the recursion are cases where all of the 
cells must be occupied or none of the cells must be occupied

 ( , ) ( ), ( , ) ( ( )) .f n n p c f n p c0 1
1 1

i i j i
j

n

j
j

ni i

= = -
= =

% %  (12)

By induction it can be proven that ,f n ki^ h is a valid probabil-
ity density function that produces all possible combinations of 
contact points and sums to 1 [1]. Now, ( )p Gi

p  is given by
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/

 (13)

The PGVD is now defined as

 .S G1..
p

i s i
p

=
=
'  (14)

The output from this block will be a PGVD Sk
p  for each input 

map mk  with { , } .k 1 2=

Figure 7(a) and (b) shows the PGVD of the maps. In con-
trast with Figure 6, where the GVD cells are deterministic, 
these cells are now probabilistic. The probabilities of the cells of 
the PGVD are represented by their grayscale intensity, with 
darker cells having a higher probability of being true GVD cells.

(a)

(b)

Figure 6. The GVD of (a) the first and (b) the second map. 
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Graph Representation
The PGVD is then processed to be represented as a graph 
with edges and vertices. A vertex can be identified as any cell 
in the PGVD with more than two adjacent occupied cells. 
The set of all vertices is defined as .V

To identify edges in the graph, a dilation mask is applied to 
each vertex in .V  The result of the dilation operation is a new 
map, ,D  that contains the dilated vertices. The edge matrix, 

,E  is found as .S Dp-  This operation is performed on each 
of the two GVDs to produce two edge maps: , { , }.E k 1 2k =

The probabilistic edge matrices (PEMs), E1
p  and ,E p

2  
have the same structure as the edge matrices, E1  and ,E2  
but the cells are the probabilistic ones extracted from the 
PGVD. These PEMs are now used to find the transla-
tional transformation between the two maps m1  and .m2  
The edges with short lengths are removed to avoid pro-
cessing short edges that have a higher chance of produc-
ing false matches.

Figure 8(a) and (b) shows the PEMs for each map where 
the short edges have been removed. The edges of each map 
are marked with numbers. The first map has seven edges, and 
the second map has eight edges. Figure 9(a) and (b) shows 
two enlarged edges of the first map, number 3 and number 7. 
The grayscale intensity of each cell in these edges represents 
the probability of that cell in the PGVD (the probability that it 
is a valid GVD cell). Edge number 3 is located in the area of 
the original map, which has high certainty, so the probability 
of the cells of this edge being in the GVD is high. However, 
edge number 7 is located at the end corner of the map, which 

is less certain. Therefore, the probability of the cells in this 
edge is lower.

Edge Matching for Translation Alignment
The edges of each probabilistic edge matrix are matched using 
a 2-D cross-correlation. To speed up the cross-correlation, 
each edge from each edge matrix is represented as a subma-
trix of E  where its size is such that it is as small as possible 
while still containing the entire edge. For a given edge matrix, 

(a)

(b)

Figure 7. The PGVD of (a) the first and (b) the second map. 

(a)

1

2

5

6

3

4

7

1

2

5

63

4

7

8

(b)

Figure 8. The PEM of (a) the first and (b) the second map.

(a)

3

7

(b)

Figure 9. The two edges from Figure 8(a). (a) Edge number 3. 
(b) Edge number 7.
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Ek
p  with Nk  edges, each edge, , ..e i N1k

i
k k

k =  is given by 
m ni i#^  is the size of the submatrix containing ek

ikh 

 ( : , : ).e E pr pr m pc pc nk
i

k
p

i i i i i i
k = + +  (15)

Here, pri  and pci  point to the start of the submatrix. To do 
matching, each edge of E1

p  is cross-correlated with each edge 
of .E p

2

The 2-D cross-correlation of two matrices e1
i1  and ei

2
2  with 

the respective sizes ( )m n1 1#  and ( )m n2 2#  is given as

 ,e eE( , )
1

i i i i
2

1 2 1 2*=  (16)

where ,E( , )i i1 2  the cross-correlation matrix of edge e1
i1  and 

edge ,ei
2
2  has size ( ) ( ).m m n n1 11 12 2#+ - + -  The opera-

tor * denotes the 2-D cross-correlation operation.
The maximum value in the E( , )i i1 2  matrix quantifies the 

best match between e1
i1  and ei

2
2  based on all possible combina-

tions of translations between the two edge matrices. This 
value is computed using (16) for every combination of edges: 

..i N01 1=  and .. .i N02 2=

We can then define the similarity matrix, ,1
2C  between E1

p  
and E p

2  as

 [ ] ,N N1 1.. 1; 1..i i i i
2

21 2 1 2cC = = =  (17)
 max( ).E( , )

i i
i i

1 2
1 2c =  (18)

An overview of the formation of the similarity matrix, ,C  
is shown in Figure 10. First, all probabilistic edges from the 
PEMs are cross-matched based on (16). For instance, the two 
edges shown in blue are matched to generate the correlation 
matrix in blue, .E( , )4 5  The maximum value of ,E( , )4 5  is stored 
at the corresponding location in C based on (17) and (18).

The best candidate for a match corresponds to the maxi-
mum value in the similarity matrix 1

2C

 [ , ] ( [ , ]),argmaxi i i i1 1 12
2

2
,i i1 2

C=) )  (19)

where i1
)  and i2

)  are the indices of the most likely similar edges 
from the two maps.

The relative translation is calculated by resolving the trans-
lation vector that matched these two edges using the follow-
ing relation [30]:

 ( ) ( )
( ) ( )

,T
x
y

e e
e e

1

1

x
i

x
i

y
i

y
i
2

2

1 2

1 2

n n

n n
= =

-

-

) )

) ); =E G  (20)

where the ( )x $n  and ( )y $n  functions return the mean values 
of the elements of the input matrix evaluated along the x  and 
y  axes, respectively.

The final transformed map is defined as

 ' ( (map )) (map ).m T T T, , , , , ,x y x y2 0 0 0 2 2= =} }   (21)

For the PEMs in Figure 8, the C matrix defined in (17) is

 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

0 77
0 28
3 51
0 71
0 49
0 77
0 48

0 26
0 55
2 44
0 71
0 93
0 49
0 48

3 26
1 61
7 38

10 94
5 33
9 90
2 74

2 35
0 60

13 72
10 15
11 86
7 32
0 55

4 71
0 87

19 63
17 59
13 32
0 75

3 23
0 87

19 63

15 85
18 86
0 75

0 35
1 37
2 30
0 91
1 17
0 62
1 18

2 31
0 32
5 13
1 68
1 13
1 79
0 56

52 13
52 081

2C =

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

 
 

(22)

 

There are seven rows corresponding to the seven edges in 
the first map and eight columns corresponding to the eight 
edges in the second map.

From (19), the peak of the matrix is at i 3=*  and .j 5=*  
This means that edge 3 from the first map is the best match 
with edge 5 from the second map (Figure 8, where matching 
pairs of edges have identification numbers with the same 
color). Moreover, edge 4 from the first map is a good match 
with edge 6 from the second map. However, both matching 
results will generate similar translation vectors. Using (20), 
the translation is [ , ] ,T 80 70 T= - -  which is the translation 
required to fuse the maps. In general, if there are multiple 
good match candidates, the translation resulting from each of 
the matches can be used or the results can be averaged. In the 
case in which there are no matching edges in the maps, the 
map-fusion process cannot be completed. The existence of 
the solution and verification of the matches are explained fur-
ther in the “Existence of a Solution” section.

It should be emphasized that the associated probabilities 
for each cell in the edges of the PGVD play an important role 
in determining the values from the cross-correlation. The 
edges with cells with a higher probability of being true GVD 
cells will result in higher cross-correlation values.

Existence of a Solution
False matches can be identified by analyzing the results of the 
2-D cross-correlation. Assume that there is an edge with l1  cells 
within e1

i1
)

 and an edge with l2  cells within .ei
2
2
)

 Assume that the 
best match in the 2-D cross-correlation results in L matching 
cells. Define the subset of cells in ek

ik  that were matched as .k
ik
f  

We can define the average confidence for the matched edge as

e1
1

e1
2

e1
2

C1
2

e1
2e1

3
e1

4

E1
p

e2
1

e2
2

e2
2

e2
3

E2
p

e2
4

e2
5

e2
5

max ()

max ()
f(2, 2)

f(4, 5)

e1
4    e2

5

e1
2    e2

2

Figure 10. The formation of the C  matrix from the PEMs. All 
edges from the PEMs are cross-matched. The peak of each 
match is stored at the corresponding location in C .
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 ( ).p1

1..
k
i

L k
i

l L

k k
a f=

=

/  (23)

By expanding (16), ( )max E  becomes .L1 1
i i1 2a a

Given two edges with lengths l1  and l2  with unknown 
mutual matching cells, the best matching or maximum value 
in the correlation matrix should satisfy the following to be 
considered a candidate match:

 ( ) ( , ),max min l l>E( , )
1 1 1

i i i i
2

1 2 1 2ta a  (24)

where t is a desired matching percentage. If there is no ele-
ment in the 1

2C  matrix that satisfies (24), then the matching 
process fails. For each pair of the edges, i1  and ,i2  the follow-
ing relation should hold to accept them as a valid match:

 
( , )

( ) .
min

max
l l

1>E

1 1 1

( , )

i i

i i

2
1 2

1 2

ta a
 (25)

For our example, .0 74021
3
a =  and . .0 73812

5
a =  Assuming 

that the desired t is 95%, then

 
( , ) ( . ) ( . ) ( . ) ( , )

. ( ) . ,
min min

max
l l 0 95 0 7402 0 7381 96 96

49 83 52 13< E

1
3

1
5

3 5
(3,5)

ta a =

= =
 (26)

which means that the match between edge 3 from the first 
map and edge 5 from the second map is a valid match. This 
matching criterion can be calculated for each pair of the edges 
represented in the C matrix. For the given example, if the cri-
terion in (25) is calculated for all edges in the C matrix, then 
the following matrix is the result:
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,
.

.

0 089 0 030 0 217 0 160 0 225 0 152 0 035 0 191
0 030 0 060 0 156 0 059 0 061 0 060 0 122 0 031
0 277 0 192 0 223 0 637 0 397 0 158 0 289
0 056 0 056 0 327 0 467 0 399 0 062 0 093
0 053 0 101 0 329 0 758 0 778 0 692 0 119 0 088
0 085 0 053 0 627 0 473 0 605 0 846 0 060 0 141
0 062 0 062 0 322 0 065 0 063 0 062 0 128 0 064

1 046
1 045

R

T

S
S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
W
WW

 
 

(27)

in which only the elements greater than one are valid matches.
The aligned maps after applying the uncertain rotation are 

used to find the relative translation. After finding the transla-
tion, Algorithm 1 is used again to propagate the uncertainty 
of the translation, assuming zero rotation and .02

v =}}  We 
now have a fully probabilistic representation of the required 
transformation and can proceed to fuse the maps.

Map Fusion with the Entropy Filter
After finding the relative transformation between the two 
maps, the probabilities are combined and filtered to produce 
the final map. The data received in 'm 2  is akin to a batch of 

sensor data and should be incorporated by using the additive 
property of the log odds representation of occupancy origi-
nally defined in (7)

 ( , ) ( , ) ' ( , ),l i j l i j l i jfused 1 2= +  (28)

for all .. , .. .i N j i M1= =  The probabilities can then be recov-
ered from (7). The entropy filter is applied to the fused map, 
mfused  [31]. The entropy filter compares the original map, ,m1  
and the fused map, ,mfused  and rejects updates that result in 
higher entropy.

For the case of a discrete binary RV, such as each cell of the 
OGMs, ( , )m i j  with ( ( , )) ,p m i j pij=  the entropy can be 
described by

 ( ( , )) ( ) ( ).log logH m i j p p p p1 1ij ij ij ij=- - - -  (29)

Mutual information, ,Iij  is defined as the reduction in entropy 
at location ( , )i j  between the original map, ,m1  and the fused 
map, mfused

 I H( ( , )) H( ( , )).m i j m i jfusedij 1= -  (30)

The final map, ,mfinal  is defined as

 ( , )
( , )
( , ) ,m i j

m i j
m i j

I
I

0
0<final

fused

1

ij

ij

$
= )  (31)

where only values from mfused  that result in positive informa-
tion are kept. It should be noted that, in the case of subsequent 
map fusion operations, the original maps that contain no 
information from others should be used. This is to avoid hav-
ing overconfidence by fusing maps repeatedly. Figure 11 shows 
the final fused map after the proposed entropy filter.

Experimental Results
To demonstrate the effectiveness of the proposed method, 
four experiments are presented. The first one is performed 
on a standard online data set. In the presentation of the 
results for this experiment, most of the details of the pro-
posed algorithm are explained. The second experiment is a 

Figure 11. The final fused maps at the output of the entropy filter.
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real-world experiment performed with two CoroBots in an 
indoor environment in the basement of the University of 
New Brunswick (UNB). The third experiment shows the 
map merging algorithm with three maps of the Department 
of Electrical and Computer Engineering of UNB. Finally, the 
last experiment is performed in a simulated MATLAB envi-
ronment with more obstacles to show the performance of the 
algorithm for more complex environments.

The three robots used are built by CoroWare, Inc., and 
each is equipped with high-speed Phidget Encoders and a 
Hokuyo UTM-30LX laser ranger, as shown in Figure 3(b). 
SLAM on the individual robots is performed with the parti-
cle-filtering algorithm presented in [8].

Experiment 1: RADISH Data Set
The first experiment is performed on the RADISH Fort AP 
Hill data set [32]. Figure 12(a) and (b) shows two input maps 
before alignment. Figure 12(c) and (d) shows the PGVDs of 
the maps after being aligned. The alignment is 5.5°. The 
marked edges are the filtered edges for cross-matching. The 

1
2C  matrix is shown in (34). From (19), i 4=)  and ,j 3=)  

which means the fourth edge of the first map has the highest 
similarity to the third edge of the second map. These two 
edges are used to calculate the translation vector from (20). 
The final translation vector is [ , ] ,T 25 1 T= - -  and the rota-
tion is . .5 5o

} =

From (23), .0 861
4
a =  and .0 892

3
a =  are the average con-

fidences of the matched edges. The lengths of these two edges 
were 44 and 45 cells. The matching percentage, ,t  was chosen 
to be 95%. According to (24),

 ( . ) ( . ) ( . ) ( , ) . . ,min0 95 0 86 0 89 44 45 31 99 32 9<=  (32)

therefore the match is valid. Note that the match of e1
1  with 

,e1
2  given in ( , ),1 11

2C  is disqualified because the average con-
fidences of those edges were higher: . , . ,0 91 0 921

1 1
2a a= =  

and the lengths of the edges are 56 and 62

 ( . ) ( . ) ( . ) ( , ) . . .min0 95 0 91 0 92 56 62 44 54 31 6>=  (33)
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To show the benefit of the probabilistic approach, ,detC  the 
deterministic ,C  is shown in (35). In this case, matching is per-
formed directly on the GVD instead of the PGVD. The edges 
that were on the periphery of the explored area in the GVD are 
now matched quite well when, in reality, those edges do not 
represent well the structure of the discovered map. As a result, 
the correct match is much less clear. By comparing those ele-
ments from ,detC  shown in bold, with the same elements in ,1

2C  
it is obvious how the probabilistic structure can eliminate false 
or weak matches. Figure 12(h) shows the final aligned maps.
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Experiment 2: Two CoroBots
In this experiment, two robots are used. Figure 13(a) and (b) 
shows the OGMs built by the robots. The total area is 
81.02 m2, and the trajectories were 22.5 and 25.9 m. In both 
maps, there are nonoverlapping corridors with almost the 
same size (15.5 and 12.2 m). However, the algorithm is capable 
of rejecting them as matching and finding the transformation 
based on the overlap. Figure 13(c) and (d) shows the PGVD of 
the aligned maps with selected edges for matching marked 
with numbers. The edges marked with number 2 in Figure 
13(c) and number 3 in Figure 13(d) are used to calculate the 
translation. Finally, Figure 13(e) shows the final fused map.

Experiment 3: Three CoroBots
This experiment is performed in a larger environment, with 
an area of approximately 600 m2, and three agents are 
involved. The trajectories of the robots are approximately 60, 
35, and 55 m. By merging the maps, loop closure happens 
successfully. Figure 14(a)–(c) shows the three local maps. 
Maps of Figure 14(b) and (c) are fused to Figure 14(a). The 
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8

(a) (b)

(c) (d)

(e)

Figure 12. (a) The map1, (b) map2, (c) PGVD of map1, (d) PGVD 
of rotated map2, and (e) fused map.
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overlapping region is indicated in the figure. The fused global 
map of the environment is shown in Figure 14(d).

Experiment 4: Simulated Highly  
Cluttered Environment
This experiment is performed in a simulated environment, 
which includes 30 blocks with different sizes and orientations. 
Two local maps are generated that have a 50% overlap. Map 
merging using the proposed probabilistic approach success-
fully fuses the local maps shown in Figure 15(a) and (b). Fig-
ure 15(c) and (d) demonstrates the PEMs of the aligned maps, 
which are probabilistic GVDs with the short edges removed. 
The first PEM has 44 edges, and the second one has 45 edges. 
A few of the matching pairs of the edges are highlighted with 

stars of the same color. Finally, Figure 15(e) shows the final 
maps generated using the proposed entropy filter.

Comparison
As mentioned, a major benefit of edge matching for map 
fusion is the low processing time requirement. The proposed 
method is compared with adaptive random walk (ARW) 
map merging [4] and map segmentation [30] methods.

Table 1 summarizes the comparison of the processing times 
and verification for the data set and real-world experiments. To 
make an accurate comparison, all algorithms and computations 
were implemented and performed on a Core2Duo 2.66-GHz 
laptop. As the results show, the proposed method operates at 
least eight times faster, and the verification index [4] shows the 
accuracy of the results. The comparison results for the simula-
tion are not provided since the other two methods are not effec-
tive for such large and complex environments.

Conclusion and Future Work
A probabilistic multiple-robot SLAM algorithm has been pre-
sented that is fast and robust. The probabilistic GVD is used 
to fuse maps and account for uncertainties in the occupancy 

(a) (b) (c) (d)

Figure 14. Three partial maps are fused together to generate a 
global map. (a) is the base map to which (b) and (c) are fused. 
The overlaps are marked with polygons. (d) The final fused map 
that depicts loop closure.
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Figure 13. (a) The map1, (b) map2, (c) PGVD and PEM of map1, 
(d) PGVD and PEM of rotated map2, and (e) fused maps.

(a) (b)

(c) (d)

(e)

Figure 15. The experiment on a simulated, highly cluttered 
environment. (a) The first OGM. (b) The second OGM. (c) The 
PEM of the first map. (d) The PEM of the second map after 
applying the Radon transform. A few of the matching edges are 
marked with colored stars. (e) The final fused map using the 
proposed PGVD and entropy filter.
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grid map. The proposed method has been shown to preferen-
tially fuse areas of the maps that have low uncertainty. Experi-
ments and comparison with other established methods show 
that it is effective and 9–14 times faster.

In future work, it would be interesting to use the structure 
of the GVD to verify the accuracy of the map matching. If dif-
ferent pairs of edges are matched with high accuracy, then the 
structure of the GVD could allow us to determine that both 
sets of edges correspond to the same transformation, increas-
ing the likelihood of correct matching.
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Table 1. The processing time and efficiency of 
three experiments.

Experiment 1 2 3 1 2 3

Method Processing (s) Verification (%)

PGVD based 12 10 13 95 91 92

Map segmentation [30] 105 83 106 95 92 94

ARW map merging [4] 168 150 152 93 88 92

1 : the Radish data set,  2 : the two CoroBots, and  3 : the three CoroBots.


