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Abstract— Navigating in a previously unknown environment
and recognizing naturally occurring text in a scene are two
important autonomous capabilities that are typically treated as
distinct. However, these two tasks are potentially complemen-
tary, (i) scene and pose priors can benefit text spotting, and
(ii) the ability to identify and associate text features can benefit
navigation accuracy through loop closures. Previous approaches
to autonomous text spotting typically require significant train-
ing data and are too slow for real-time implementation. In
this work, we propose a novel high-level feature descriptor, the
“junction”, which is particularly well-suited to text represen-
tation and is also fast to compute. We show that we are able
to improve SLAM through text spotting on datasets collected
with a Google Tango, illustrating how location priors enable
improved loop closure with text features.

I. INTRODUCTION

Autonomous navigation and recognition of environmental
text are two prerequisites for higher level semantic under-
standing of the world that are normally treated as distinct.
Simultaneous localization and mapping (SLAM) has been
extensively studied for almost 30 years (For an overview
see [1]). Automatic environmental text recognition has seen
comparatively less research attention but has been the subject
of more recent studies (For example [2]–[13] among others).
The ability to recognize text in the environment is invaluable
from a semantic mapping perspective [14]. One important
potential application (among many) is to provide navigation
assistance to the visually impaired. Text provides important
cues for navigating and performing tasks in the environment
such as walking to the elevator and selecting the correct floor.

Recent graphical approaches in SLAM have shown the
ability to produce accurate trajectory and map estimates in
real-time for medium to large scale problems [15]. However,
the same cannot be said for state-of-the-art environmental
text spotting algorithms. Unlike scanning documents, envi-
ronmental text often occurs in only a tiny portion of the entire
sensor field of view (FOV). As a result, the obtained obser-
vations often lack enough pixels for resolution-demanding
text decoding. Additionally, scene text is highly variable in
terms of font, color, scale, and aspect. Motion and out-of-
focus blurry inputs from moving cameras result in further
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Fig. 1. Integrated SLAM and text spotting: Raw sensor input from the
Google Tango device is combined with the output of the SLAM solver to
generate a prior for “Text Detection”. This representation enables SLAM to
be recognized and used to add loop closure constraints in a SLAM system.

challenges. Furthermore, the state-of-the-art deep-learning
approaches [16]–[18] typically evaluate more than 50,000
region proposals, which cost significant prediction time that
is incompatible with real-time deployment.

In this work, we address these shortcomings through
the development of a new descriptor, termed a “junction”,
that is particularly well-suited to the text spotting tasks
and is fast enough to enable integration into a real-time
SLAM system. We propose to merge the SLAM and text
spotting tasks into one integrated system. Specifically, if
scene text can be reliably identified, it can be used as a
landmark within a SLAM system to improve localization.
Conversely, with access to a prior on the camera pose and
3D scene information from SLAM, text can more efficiently
be detected and identified

To summarize, the contributions of this work are:
1) A new representation for text that is able to quickly

reject non-text region proposals, and match candidate
region proposals to words in a task-relevant lexicon;

2) To extract text quickly and accurately enough to sup-
port real-time decision-making and full integration into
a SLAM system, thereby improving the camera pose
and scene estimates through loop closure.

An overview of the approach is shown in Figure 1. We use
the Google Tango device for experiments, which provides an
integrated visual inertial odometry (VIO) estimate as well as
depth sensor output. The raw sensor data is combined with
the output of the SLAM system to predict the perspective
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transformation of the text since it usually appears on planar
surfaces in the scene. This information is used to separate
the word into individual characters. The junction features are
built for each character (details in Sec. III). The discovered
characters are matched against existing words in the lexicon
(dictionary) and measurements are added to the SLAM graph
(details Sec. IV).

II. RELATED WORK

In this section we focus on related research in the field
of text spotting, with a particular focus on work related
to navigation and mapping. For a review of SLAM results
we refer the reader to [1]. In our approach we leverage
more recent efficient graphical approaches to solving the full
SLAM problem (entire robot trajectory and map) which are
described in [15], [19], [20].

A. Environmental Text Spotting

Text spotting algorithms typically start with extracting
features (keypoints, edges, strokes, and blobs) in order to
distinguish text from other texture types. Some corner feature
detectors have been shown to be particularly successful for
this task, such as Harris corners [21] as used by Zhao et al.
[22]. An alternative is to consider edges since text is typically
composed of strokes with strong gradients on both sides.
Edge-based methods are effective when the background is
relatively plain; however, in real-world scenes, strong edges
are very common so extra effort should be devoted to
reducing false positives. For example, inspired by face and
pedestrian detectors [23], Histogram of Oriented Gradients
(HOG) based approaches include edge orientation or spatial
information, and perform multi-scale character detection via
sliding window classification [2]–[4]. However, due to the
large search space, at present HOG-based approaches are
too computationally expensive for real-time implementation.
Another common feature used is stroke width and orientation
(e.g. [24], [25]). One such method uses the assumption
of nearly constant stroke width to transform and filter the
input [26]. Similar to edge-based methods, stroke-based ap-
proaches can produce an intolerable number of false positives
in the presence of regular textures such as brick walls or
fences.

Neumann and Matas [5]–[7] used extremal regions (ERs)
to extract candidate blobs and shape descriptors. In [5],
an efficient detection algorithm was reported using two
classifiers of sequential selection from ERs. This method
is now publicly available and state-of-the-art in terms of
efficiency [8]. However, ER alone is insufficient for full end-
to-end text spotting since a robust decoding method is still
required.

Instead of hand-designed features, a visual dictionary
learning approach has been proposed to extract mid-level
features and their associations for decoding (classification)
problems. Such work was introduced in object detection
as “sketch tokens” [27]. A similar approach has been ap-
plied to text spotting by combining Harris corners with
an appearance and structure model [28]. Lee et al. [10]

proposed a multi-class classification framework using region-
based feature pooling for scene character classification and
scene text recognition tasks. In [11], “strokelets”, or essential
substructures of characters, were learned from labelled text
regions and subsequently used to identify text. One notable
downside to the dictionary learning approach is that it relies
on large amounts of labelled data and may be limited due to
the lack of a representative dataset. For example, degraded
or warped text observed from a moving camera can cause
missed detections.

Recently, deep learning approaches have been applied to
text spotting problems and have obtained top results on
major benchmark datasets [16]–[18]. Such methods rely on
massive labelled training data and have high computational
resource requirements. For example, the PhotoOCR [12]
system extracts features with a fully-connected network of
five hidden layers (422-960-480-480-480-480-100) trained
with ≈1.1×107 training samples containing low-resolution
and blurry inputs. The system operates at 600 ms/image
on average with processing offloaded to the cloud. Instead
of collecting and labeling real data, there are also attempts
to produce highly realistic synthetic text for training data
augmentation [29].

An end-to-end text spotting system is usually tuned to high
recall in the detection stage, and then rejects false positives
in the decoding (recognition) stage. The key for real-time
text spotting is to efficiently and effectively reduce the
number of region proposals for later more computationally
expensive decoding. Here, we develop methods that exploit
the structure inherent in characters and text to increase
prediction speed.

B. Using Text to Support Navigation

Although the extraction of text has been investigated
extensively, there has been less work on the challenge of
performing robotic deployments of text-spotting with nav-
igation objectives. Perhaps the first to deploy a real robot
to identify text was Posner et al. [30], who proposed to
“query” the world and interpret the subject of the scene
using environmental text. They trained a cascade of boosted
classifiers to detect text regions, which were then converted
into words by an optical character recognition (OCR) engine
and a generative model. Subsequently, Case et. al. [31] used
automatically detected room numbers and names on office
signs for semantic mapping. They trained a classifier with
a variety of text features, including local variance, edge
density, and horizontal and vertical edge strength, in 10 × 10
windows. An OCR was then used to decode candidates
into words. Rogers et al. [32] proposed to detect high-level
landmarks, such as door signs, objects, and furniture, for
robot navigation. The detected landmarks are then used for
data association and loop closure. They first detected visually
salient regions, and then trained an SVM classifier using the
HOG features. They used the Tesseract OCR software [33] to
obtain semantic information. In our work, we do not require
extensive training data for classification. A more closely
related approach is that of Samarabandu and Liu [34] who
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use an edge-based algorithm to extract text. However, this
approach is not incorporated into a SLAM system.

C. Using Navigation to Support Text Spotting

In our previous work [13], we proposed to use SLAM to
extract planar tiles representing scene surfaces. We integrated
multiple observations of each tile from different observer
poses. Subsequently, text is detected using the Discrete
Cosine Transform (DCT) and ER methods [5], and then the
multiple observations are decoded by an OCR engine. The
results showed an improved confidence in word recovery in
the end-to-end system. The focus of [13] is on fusing multi-
ple consecutive text detections to yield a higher confidence
result. Here, we use the SLAM and scene information, as
well as the junction features described below, to reduce the
number of region proposals and therefore improve the overall
efficiency.

III. THE PROPOSED JUNCTION FEATURES

Similar to many other robotic vision tasks, discovering a
good representation for text is critical. We adopt the notion
of “junctions” as locations where one or more oriented line
segments terminate. For example, an image patch containing
the character “E” typically holds one T-shaped (“`”), two
L-shaped (“L” and its inversion), and three terminal junc-
tions (the horizontal segments). Text in a written system
is designed explicitly as a certain combination of strokes,
and therefore the intersections and corners in letters are
highly constrained. For instances, there are more L-, T- or
X-junctions in Chinese; curves and upside-down T-junction
and its variants are likely to appear in Arabic; English text
lies somewhat in between. The key insight is that junctions
occur frequently in text, are robustly detectable, and allow a
sufficiently discriminative representation of text.

Junctions in text tend to share common characteristics and
become useful properties for text spotting.

1) The pointing direction: the upper one third partitions
are typically pointing down and the lower ones other-
wise.

2) junctions are highly constrained and can be explicitly
designed for a given written system or lexicon.

A. Junction Detection

In order to detect junctions, we propose a locally discrimi-
native image operator which produces a mid-level descriptor,
the “junction binary pattern (JBP).” This process is shown in
more detail in Figure 2. The JBP represents the combination
of oriented line segments emanating from the center of an
image patch. The output is either 0 (non-junction) or an
N -digit binary number, where N is the total number of
orientations (N = 8 in Figure 2). JBPs are a variant of
local binary patterns [35], and are performed on multiple
scales with a way to reject a non-junctions quickly. JBPs are
also a “simplified” log-polar representation, such as shape
contexts [36] or self-similarity descriptors [37] in order to
limit the dimensions of representation. In contrast with the
SIFT descriptor [38], which uses a histogram of eight bins

(a) (b)

Fig. 2. The junction binary pattern: The algorithm loops clockwise from
direction d0 to d7, testing intensity variation between sD,R and nucleus
at 3 different radii, r0 to r2. When the intensities of sD,R and nucleus
are similar, sD,R is labelled as 1. (a) The test terminates early, declaring
a partially or fully uniform patch when a number of consecutive 1’s are
found (orange dots). (b) Each direction di is assigned either 0 or 1 when
sdi,r0 , sdi,r1 , and sdi,r2 are all labelled as 1; the detected “`” is encoded
as 00010101.

with varying magnitudes in each direction, our operator
describes the combination of two or more oriented line
segments to describe patterns of interest.

The center of the image patch is known as the “nucleus”
[39]. For a nucleus pixel p and a set of pixels sD,R sur-
rounding p at a distance of R pixels away in each direction
D = d0, . . . , dN−1, we test the intensity variation between
Ip and Isdi,R , where Ip is the intensity of the nucleus. If
|Ip−Isdi,R | is smaller than a given threshold, sdi,R is labelled
as 1, otherwise 0. The testing starts from sd0,R to sdN−1,R

and continues looping clockwise. This process is repeated at
M different scales: R = r0..M .

The method is designed to efficiently reject non-junctions,
like FAST [40], using computationally inexpensive tests. As
shown in Figure 2(a), the loop terminates early to discard
partially or fully uniform patches when several consecutive
1’s are detected.

When sdi,r0..M are all labelled 1, the bit corresponding to
direction D = di is assigned as 1, otherwise it is set to 0.
The resulting sequence, D = d0, . . . , dN−1, is encoded as
a binary number (the JBP). For example, the sideways “T”
junction ( T) in the character “B” in Figure 2(b) is encoded
as the byte 00010101.

In our implementation, we use a Gaussian pyramid with
four levels with the radius r0 in each pyramid level. We
found values of 30 for region proposal height, a value of
N = 16, and an initial radius, r0 = 7 pixels produced good
results for upper case English letters.

IV. END-TO-END SYSTEM WITH SLAM AND
TEXT SPOTTING INTEGRATION

In this section we describe the full integration of the
text spotting pipeline into a graphical SLAM back-end. We
introduce two implementations to refine region proposals
efficiently: 1) sliding window using junction features and 2)
segmentation with ERs and scene priors. Since the decoding
time is essentially proportional to the number of region
proposals, we wish to reduce that number and retain high
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(a) (b)

(c) (d)

Fig. 3. Examples of detection results in ICDAR and SVT datasets. (a)
Grayscale original image from the ICDAR dataset, with detected junctions
overlayed. The green rectangle shows a region proposal. The blue dashed
rectangle indicates a rejected scan window containing junctions located at
the spatial partitions they unlikely occur. (b) Text energy map of (a). (c)
Image from SVT dataset is typically more cluttered and challenging than
from ICDAR, which contains many regular (yellow rectangle) and irregular
(cyan rectangle) natural scene textures. (d) Text energy map of (c).

(a) (b)

(c) (d)

Fig. 4. Word encoding with junction features: (a) Binarization of
the original image overlaid by detected regions (green rectangles), (b)
visualization of junction binary patterns (JBPs), colored by number of line
segments (1: yellow, 2: orange, 3: blue), (c) junction keypoints aggregated
from (b), and (d) a visualization of JBP by 2x3 grids in each region.

recall, making the entire text spotting pipeline fast enough
for SLAM.

A. Fast Sliding Window Inspection with Junction Features

An overview of the process is described in Algorithm 2.
In the following, we assume that we have access to a camera
image frame I, depth information D, and a lexicon L.

Since the aspect ratio of region proposals of words varies
in each word w ∈ L, we use a window of known aspect
ratio from w to target region proposals for w, in contrast to
previous studies using a sliding window for single characters.
This word-based sliding window setting will increase the
number of total scan windows by a factor of nw, the
number of words in L, compared to a single-character sliding
window.

We first extract FAST keypoints, and then encode every
pixel within a 10 × 10 patch around each detected key-
point. FAST keypoints are typically terminal and L-shaped
junctions. The pointing direction of junctions is a useful

Algorithm 1 Sliding Window with Junction Features
Input: I, L

1: Extract FAST keypoints from I
2: Encode pixels around FAST keypoints into junctions
3: Compute integral images of Top-Down and Bot-Up

junctions
4: Given words in L, exhaustively search region proposals

of each word in L pass criteria CJBP .

property to detect text. Specifically, junctions in the upper
partitions are pointing down and the lower ones otherwise.
We compute the number of junctions pointing down in the
top partition (Top-Down) and the number pointing up in the
bottom partition (Bot-Up). We analyze I at multiple scales:
the window height is set to 24, 36, 48, ..., and 120. The
strides (steps of sliding window) is set to 1/3 of the text
height in the x and y directions. The computation of the
criteria CJBP of a region proposal is implemented in integral
images to quickly reject non-target windows successively.
Examples of detection results in ICDAR [41] and SVT [2]
datasets are shown in Figure 3 images on

1) at least a certain number of junctions,
2) at least a certain number of Top-Down and Bot-Up

junctions at the top and bottom partitions,
3) each characters in w contains enough Top-Down and

Bot-Up junctions.

Algorithm 2 Segmentation with ER and Scene Priors
Input: I, D

1: Extract ERs from I
2: Estimate the surface normal of each pixel in I based on

D
3: Reduce the numbers of ERs that pass criteria CER

4: Combine clustered ERs to generate region proposals of
words

1) Segmentation with ERs and Scene Priors: To avoid
looking for text in nearly empty image regions, in the first
stage we extract the low-level ER features. An ER is a region
R whose outer boundary pixels ∂R have strictly higher
values in the intensity channel C than the region R itself
(∀p ∈ R, q ∈ ∂R : C(p) < θ < C(q), where θ is the
threshold of the ER). In our application, ERs are often single
letters, and sometimes incomplete letters or multiple letters
when the inputs are blurry. Since the number of detected ERs
may be large in cluttered backgrounds, for example, a tree
might generate thousands of ERs, we apply a few criteria
from priors.

We reason that in most cases English signage will be more
likely associated with vertical static environmental objects
such as walls, and will be more often occur at a certain
physical size. We use these assumptions as priors to reduce
R that are found and consequently the processing time based
on criteria CER:

1) ERs should contain less than three holes (for example,
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“B” contains two holes),
2) ERs must be on vertical surface,
3) The height hR of ERs must be within a certain physical

size
The first criterion is tested using surface normal estimation

carried out with Point Cloud Library (PCL) [42]. The second
criterion is enforced as the orientation and size of ERs that
we will accept.

Given the pose estimation and the assumption text is
horizontally aligned in real world, we can remove camera
roll rotations. Subsequently we merge R to form a set of
region proposals P by horizontally expanding half of the
height of each ER hR and then fusing them. Each region
proposal ideally bounds a word in L.

B. Text Decoding

Once the region proposals are found we proceed to decode
each region proposal into a word in L. We pre-process
the regions proposals by warping each of them into a
rectangle of 30-pixel height. Three decoding methods are
tested: 1) the Tesseract OCR software [43], 2) deep features
(implemented in Matlab), and 3) junction features, shown
in Figure 4. First we threshold the input, build our junction
binary patterns, aggregate them and then build the 2×3 grid
junction descriptor following the process described in Sec.
III. We use a 3× 4× 4 feature vector to represent an image
patch (e.g., a letter), based on the number of line segments,
vertical and horizontal pointing directions. Depending on the
number of segmentations S in a region proposal, the final
descriptor is a 3× 4× 4× S feature vector.

C. SLAM with Text as High-level Landmarks

Long-term navigation necessitates the ability to re-
recognize features and consequently close loops. We propose
to bound the localization and mapping error by integrating
VIO with high-level landmark observations using incremen-
tal smoothing and mapping (iSAM) [20], [44]. In iSAM, the
SLAM problem is represented is a factor graph as shown in
Figure 5 where the larger colored circles are the states to
be estimated and small black circles are the constraints that
relate these hidden states. The VIO from Tango is used as
odometry u to connect consecutive mobile robot poses xi,
and text detections are represented as measurements mj of
the text landmarks, lk. The constraints mj = {rj , θj} consist
of range a r and bearing θ. The bearing is determined based
on the location of the pixel in the image at the centroid
of the ER and assuming a calibrated camera. The range is

Fig. 5. Factor graph: Hidden states to be estimated are the camera poses
x0..n and text landmark locations l1,l2. These states are connected through
prior p, odometry u1:n and landmark measurements m1..4.

determined by looking up the range value in the co-registered
depth map at the corresponding pixel.

Under mild assumptions (such as additive Gaussian mea-
surement error), the factor graph can be reduced to a nonlin-
ear least squares problem which can be incrementally solved
in real-time as new measurements are added [20].

V. RESULTS

We use the Google Tango device (first generation proto-
type), shown in Figure 1, as the experimental platform for
this work. All data were logged by the provided application
TangoMapper. The VIO algorithm estimates the pose at 30
Hz using the wide-angle camera and IMU. A 1280x760 RGB
image and a 360x180 depth image were recorded at 5 Hz.
We developed a set of tools to parse the logged data into
lightweight communications and marshaling (LCM) [45]
messages, and the proposed algorithm runs on a separate
laptop.

A. Dataset and Ground Truth

The “Four Score” dataset is designed 1) to compare April-
Tags [46] and text detections, and 2) to test the integration
of VIO with text as high-level landmarks.

Twenty-five words (shown in upper case) out of 30 words
were selected from the Gettysburg Address by Abraham
Lincoln:

FOUR SCORE AND SEVEN YEARS AGO OUR
FATHERS BROUGHT FORTH on THIS CONTI-
NENT a NEW NATION, CONCEIVED in LIBERTY,
and DEDICATED to THE PROPOSITION THAT ALL
MEN ARE CREATED EQUAL.

We paired each word with an AprilTag on our experimen-
tal signage. The stroke width of the text is roughly the same
as the grid size of an AprilTag for compatible comparisons.
A ground truth rectangle is obtained from the relative real-
world position to an AprilTag detection. An example is
shown in Figure 6(a).

The signs were spaced roughly 1-2 meters apart. The
experimenter held the Tango device and aimed the camera at
each sign at various viewing angles and walked at different
speeds in each pass 1. As shown in 6(b), there are nine
traverses around the loop resulting in about 3,293 RGB
frames over a period of about 11 minutes. The total number
of AprilTag detections is 1,286. We expect an end-to-end text
spotting system to detect and decode a candidate rectangle as
one of the lexicon words correctly when the paired AprilTag
is detected.

B. Refining Region Proposals

The key to speed-up text spotting is to refine region
proposals in an efficient manner. Table I demonstrates the
numbers reduced by the proposed methods and the running
time of each stage. All were implemented in C++ and

1For a video demonstration please refer to the attachment
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(a) (b)

Fig. 6. Text spotting and ground truth using AprilTags: (a) Top: an
example sign used in the experiment. Bottom: a candidate decoded as a
target in the lexicon is shown in yellow rectangles, and blue otherwise.
Pink: AprilTag detection with center and id number shown in red; green:
ground truth text location acquired using AprilTags the relative 3D position
to the AprilTag detection; yellow: detected target text location. (b) There
are nine traverses around the loop where time is shown on the z-axis. The
colored markers are the estimated text locations at the end of the experiment.

OpenCV, and ran on a standard laptop computer without
using GPU acceleration. The results indicate that junction
features can reduce the number of region proposals of words
from 779,500 to 54 in only around 100 ms, and scene priors
reduce the number of ERs from 45 to 6 only with the
computational cost of surface normal estimation and filtering
(12 ms).

C. Retaining High Recall of Detection

In addition to reduce the number of region proposals, the
region proposals should have high recall. The sliding window
approach we report that the 945 region proposals have at least
50% overlap with the 1,286 ground truth rectangles (recall
rate is 0.73). The correct and missed detections for each
lexicon word are shown in Figure 7(a).

TABLE I
RUNNING TIME (MS) OF EACH PROCESSING STAGE, AND AVERAGE

NUMBERS OF FEATURES/REGION PROPOSALS. DECODING TIME IS IN

PROPORTIONAL TO THE NUMBER OF REGION PROPOSALS (3.5 MS PER

REGION USING TESSERACT OCR ENGINE).

Time (ms) Num.
Junction Features 779,500 windows
Feature Extraction 4 190 FAST pts
Junction Feature Encoding 75 13,383 pixels

421 junctions
Region Proposal Generation 24 54 regions
ERs and Scene Priors
Feature Extraction 143 45 ERs
Surface Normal Estimation 11
Scene Prior Filtering <1 6 ERs
Region Proposal Generation <1 3.60 regions

D. Obtaining High Precision of Decoding

In the decoding stage, we aim at high precision p at
the cost of some tolerable missed detections in order to
minimize false positives that will degrade the performance of
the SLAM system. We compare our method with two from
the literature: (i) Tesseract OCR [43] and (ii) deep features
[18]. The results are shown in Figure 7-(b) and indicate
that the proposed method is comparable to the other two
approaches for images in frontal view.

E. Text Spotting to Support Navigation

We show the trajectory and feature location estimates for
three cases in Figure 8. On the left is the case of VIO alone.
The sign locations drift on each pass. In the middle, we
show the trajectory and feature location estimates using the
AprilTag detections. On the right side is the trajectory and
sign estimates using text as high-level features.

Figure 9 shows the error for both the SLAM with text case
and the VIO alone case along with the uncertainty bounds
calculated as the trace of the covariance matrix. The ground
truth in this case is taken to be the AprilTag trajectory. For
the SLAM with text case, we can see that the uncertainty
in the estimate is bounded as a result of loop closure and
the error and uncertainty are periodic with the size of the
loop in the trajectory. In the VIO case, both the error and
uncertainty grow without bound.

We also evaluated the method using the metric proposed
in [47], which is designed to compare the relative energy
on each link rather than the total error in the global frame.
This involves calculating the relative transformation between
poses in the graph δij and comparing to ground truth. In
this case we choose the poses to be used for comparison as
subsequent poses:

δtextt = xtextt+1 	 xtextt

δV IO
t = xV IO

t+1 	 xV IO
t

δ∗t = x∗t+1 	 x∗t

εtext =

T−1∑
t=0

(δtextt 	 δ∗t )2

εV IO =

T−1∑
t=0

(δV IO
t 	 δ∗t )2

(1)

where xtextt , xV IO
t , and x∗t are the poses of the text with

SLAM, VIO alone, and AprilTags with SLAM trajectories.
The results are εtext = 21.6875 and εV IO = 25.3011
showing a higher relative error according to the metric in
[47].

F. SLAM to Support Text Spotting

The SLAM has also enhanced text spotting by location
priors. The pose estimation landmark estimates from SLAM
act as a verification for loop closures. For a revisited text
region, SLAM further verifies the detection confidence be-
tween this upcoming detection and existing landmarks in
iSAM, resulting in higher accuracy. In the experiment, this
location prior rejects all 4 false-positives.
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Fig. 8. SLAM results: The orange lines are the trajectory estimates for each of three cases: Left: VIO only. Middle: SLAM with AprilTag detections.
Right: SLAM with text as high-level landmarks. Using text as landmarks notably increases the accuracy of the trajectory estimates.

VI. CONCLUSIONS

In this work we propose an integrated SLAM and text
spotting system that highlights the complementary nature of
these two tasks. Previous approaches to environmental text
spotting are generally too slow for real-time operation. To
overcome this, we propose a new junction feature that is fast
and accurate for representing text. We test the performance
of our system on a dataset gathered with a Google Tango
and compare the performance of the text detection system
against a fiducial tag system (AprilTags) as well as state-
of-the-art text spotting algorithms which are much slower.
The result is that our proposed method is able to balance
the performance for recognizing text with the real-time
requirements of SLAM, and the performance for both tasks
is improved.

One important application for such a system would be as
an aid to the visually impaired. Text occurs commonly in
human environments, and thus is a good landmark to use
for SLAM. Moreover, text can help provide robots with a
higher level semantic understanding of the world necessary
for more complex tasks.
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