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A dream of robots




Robots and Al were once very close

SRI Shakey MIT Copy Demo

Robotics drove advances in artificial intelligence:
planning, learning, reasoning, vision, natural language....
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Should we give it another try?
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The best of times

Good robot hardware

* range sensors, cameras, actuators, ...
Fast computers

Good fundamental algorithms for

* robot motion planning, visual object recognition, ...

Technical advances in

* probabilistic inference, machine learning, knowledge
representation



The worst of times

Super-human robot fallacy:

* Focus on optimality limits our vision

Fragmented research community

* Subfields with individual standards, vocabulary,
benchmarks

* Pieces won't fit together

Many other attractive and important applications
* Web applications, data mining, finance, ...



The age of wisdom

How to build the ‘central’ computational mechanisms for
* closed-loop control of a system with
* sensors and actuators that has
* long-term goal-directed interactions with
* acomplex

* imperfectly predictable
external environment
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Three technical levers

Compact description of functions and sets in large spaces
* continuity, geometry
* factoring, logical languages

Explicit representation of uncertainty

* knowing what you don’t know

Approximation

* independence, optimism, ...
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Interaction with an external environment

/ observation > action \\
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What to learn? What to build in?

observation

action/
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Prior + Experience = Learned competence

How ‘big’is the prior? Where does it come from?

Engineers must do for robots what evolution did for us

* Build in architectural constraints and fundamental truths
(e.g. physical laws)

Agents must learn niche-specific competences
(and things the engineers can't articulate)

* sensory-motor loops
* world model at several levels of abstraction
* strategies for managing internal computation
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This talk: getting leverage

Sample points in the technical space
* state estimation method
* combining logic, probability, and approximation
* 3 action selection examples

* combining logic or geometry, probability, and
approximation

* model learning method
* combining logic, probability, and approximation

Important areas neglected:

* perception, actuation, language and human interaction,
multi-agent systems, ...



The epoch of belief and of incredulity

observation

state belief
estimation

action

State estimation: Explicitly represent state of knowledge
about external environment using probability

Joint work with Luke Zettlemoyer and Hanna Pasula
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State estimation

Problem: given history of past observations and actions, what
do we know about the current state of the world?

Lazy: store history of observations, do inference when
necessary

Eager: maintain an explicit representation of the current
distribution over the state of the world (“filtering”)



Filtering: Bayesian belief state update

Update after executing an action and receiving an observation

Pr(s¢i1 | ag,0¢41) < Pr(oggt | seq1) ZPT(St+1 | s¢, a) Pr(s)

St

| J | J ! ) | J
i i i i

posterior observation transition prior
belief model model belief
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Representing the belief state

Gaussian Histogram

Bayesian network

Dieter Fox
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A big (toy) world

 dimensions are unknown
(possibly infinite)

* walls between some locations
* |ocations have appearance

* R moves (with error) through
the world

R observes (with error) the
color at his location
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A day in the life

R is booted up,
* seesared square
* tries to move right
* seesagreensquare

What does R know about
the world?

Combine logic and probability to get compact
representations of beliefs in complex domains

Leslie Pack

Kaelbling, AAAI2010



First-Order particle filtering

Hypothesis: set of states that are indistinguishable based on
the history of observations and actions

PI(S ‘ 00:t, a1:t) X Pr(OO:t ‘ S,y a1:t) PI‘(S)

posterior observation and prior
belief transition probability belief

Use logic sentences to describe hypotheses

Only represent likely hypotheses



R wakes up

* One hypothesis

P—
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R sees a red square

[ Fx.at(R,x) /\ red(x) ] 0.8

[ Ix.at(R,x) /\ green(x) ] 0.2

. [ P(see red | at red square) = 0.8 }
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R tries to move right

Ix,y.at(R,y) /\ red(x) /\ rightOf (y, x) 504 . §
Ix,y.at(R,y) /\ green(x) /\ rightOf (y, x) 126 . g
Ix,y.at(R, x) A red(x) /\ rightOf (y, x) 056 .[
Ix,y.at(R,x) /\ green(x) /\ rightOf (y, x) 014 .:
Ix.at(R, x) A red(x) /\ —3y.rightOf (y, x) 0.24 .I
Ix.at(R,x) /\ green(x) /\ —=3y.rightOf (y, x) 0.06 .I

e
Prob wall toright: 0.3

Prob fail to move (if no wall): 0.1
Prob fail to move (if wall): 1.0
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R tries to move right: sample

Ix,y.at(R,y) A red(x) /A rightOf (y, x) - L3
Ix,y.at(R,y) /A green(x) A\ rightOf (y, x) . 5
3x,y.at(R,x) A red(x) A rightOf (y, x) .[
[ Ix.at(R,x) A red(x) A\ —3y.rightOf (y, x) ] .I
4 )

Prob wall toright: 0.3

Prob fail to move (if no wall): 0.1
Prob fail to move (if wall): 1.0
N | | v
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R sees a green square

:Elx.at(R,y) A red(x) /\ rightOf (y, x) /\ red(y)
:Elx.a,t(R,y) /\ green(x) A\ rightOf (y, x) /\ red(y)
3, y.at(R,x) A red(x) A rightOf (y, x)

:Elx.at(R x) /\ red(x) A —3y.rightOf (y, x)
:Elx at(R,y) A red(x) /\ rightOf (y, x) /\ green(y)

:Elx at(R,y) A\ green(x) /\ rightOf (y, x) A\ green(y):
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R sees a green square: sample

[Elx.at(R,y) A red(x) /\ rightOf (y, x) /\ red(y) ]

( x. at(R,x) /\ red(x) A\ —3y.rightOf (y, x)

Elx at(R,y) A red(x) /\ rightOf (y, x) /\ green(y)
Elx at(R,y) A\ green(x) /\ rightOf (y, x) A\ green(y):

- Leslie Pack Kaelbling, AAAI2010




Technical Story

Rao-Blackwellization:
EPI‘(X1 ,Xz)f(x1 >X2) — EPI‘(Xz)EPI‘(X1 |X2)f(x1 )XZ)

]
-2 E Z EPI‘(X1 |X2)f(x1 )XZ)
samples from Pr(x>)

For us:

/ created dynamically
x7 : logical partition depending on observations
X1 : state within the partition

f(x1,%x2) : Am I in room 67 \
X1, 2)\ SOIL. € depends only on prior
Many other pOSSib'E f Leslie Pack Kaelbling, AAAI2010




Demand-driven complexity

Logical particle filter:
» complexity of logical form driven by observations
* concentrates on most probable part of the space

Be lazier!

 focus on small set of objects and properties relevant to
current goal

* dynamically change focus
* use observation history to initialize new filters



Action selection

observation

state
estimation

belief
—_—

action
selection

action

»

Plan in belief space:

* every action gains information and changes the world

» changes are reflected in new belief via estimation

* goalisto believe that the environmentis in a desired state



The spring of hope and the winter of despair

In domains that lack terrible outcomes:

* plan assuming actions will result in most likely
transition and observation

* replan if expectation is violated at runtime

Great success of FF-Replan at ICAPS probabilistic planning
competition

Same principle as feedback control using an idealized model



Optimistic (re)planning in belief space

* control with state-dependent observation noise:
continuous state, action, observation spaces

* robot grasping with tactile sensing:
continuous state, action, observation spaces

* household robot with local observation:
mixed continuous and relational spaces



The season of light, the season of darkness

* robotinx, yspace
* good position sensing in light regions; poor in dark

4

starting mean belief

2 ;‘ i

> 1 -
goal

Joint work with Rob Platt, Russ Tedrake and Tomas Lozano-Pérez

X




Control in belief space: underactuated

Gaussian belief:

State space:

Planning ¥ = T . X,

objective: £ 10 p 0
Underactuated . ,

dynamics: 0 = f(H,H,u) 2707



Belief space dynamics

Dynamics specify next belief state, as a function of previous
belief state and action

* state update: generalized Kalman filter

(Met1,Ze+1) = GKF(oy, at, pe, 2¢)

* substitute expected observation in for actual one
add Gaussian noise

(e, Ze41) = Flag, e, Z¢) + N
= GKF(o(pt), at, te, 2¢) + N

* continuous Gaussian non-linear dynamics:
apply tools from control theory



Light-dark plan

4

>




Replanning

Replan when new belief state deviates too far from planned
trajectory




Replanning: light-dark problem

actual trajectory
of mean

actual location




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem

actual trajectory




Optimistic (re)planning in belief space

* robot grasping with tactile sensing:
continuous state, action, observation spaces



Goal: pick up object of known shape with specific grasp

Visual localization and detection works moderately well...

Joint work with Kaijen Hsiao and Tomas Lozano-Pérez

restre'Pack Kaelbling, AAAl2010



Hypothesis space

Robot pose:
11 DOF

* model as fully
observable

Object pose:
* 3DOF

* model as partially
observable

State estimate: probability distribution over object pose

Leslie Pack Kaelbling, AAAl2010



Macro actions

Execute a trajectory:
* stop moving arm if
any contact is felt

* close each finger until
it makes contact

Fixed set of parameterized trajectories, always executed with
respect to most likely state

Leslie Pack Kaelbling, AAAI2010



Observations

* Arm trajectory
according to
proprioception

Leslie Pack Kaelbling, AAAI2010



Observations

* Arm trajectory
according to
proprioception

* 6-axis force-torque
sensors on fingertips

Leslie Pack Kaelbling, AAAI2010



Observations

* Arm trajectory
according to
proprioception

* 6-axis force-torque
sensors on fingertips

* Binary contact sensors

Leslie Pack Kaelbling, AAAI2010



Observation model: Pr(o | s, a)

Nominal observation fors, a: o*

Contact no contact
Gaussian density on dist Gaussian density on dist to closest
to closest a’ that would not have a’ that would have caused contact
caused interpenetration X
X Gaussian density on dist between
Gaussian density on dist between contact positions and normals

Contact

contact positions and normals

Actual o

Gaussian density on dist to closest a’ | Max value of Gaussian density
that would not have caused contact | used for nominal contact case

N

Leslie Pack Kaelbling, AAAI2010




Transition model: Pr(s¢41 | S¢, a¢)

No contact: no change

@ Contact: probability of being

\ bumped depends on observation
Reorientation: similar to contact
with large rotational variances '

Leslie Pack Kaelbling, AAAl2010




Initial belief state

Leslie Pack Kaelbling, AAAI2010



Tried to move down — finger hit corner

Leslie Pack Kaelbling, AAAl2010



Updated belief

Leslie Pack Kaelbling, AAAl2010



Another grasp attempt




Goals in belief space

 Specify set of desirable rangesinX,Y, ©
 Satisfied if probability that the pose is in that set is high

10

y

o
++20000000000000000 0 ¢+ .| - .
-o....m....lo-..
R R N N R R R R N N NN L

195 5 0 5 10
X
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What if Y coordinate of grasp matters?

10

0% B 0 5 10
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Action selection

How to select among the actions?

 Until probability of failure given belief is < eps
* Select WRT by searching forward from belief
* Execute WRT, and get observations o
* Update belief

WRTs include:
* target grasp
* information-gain trajectories
* re-orientation



Forward search

* Compute k-step risk using
backward induction

* Prune and clusterto /%
decrease observation m'mmim

branChing stop

] /I

* Depth 2 sufficed in % w *
our problems .°“°2 °-3 ‘°1 °°2 03.0 ‘01 °.2 03.

* Risk at leaves s P Py Pi P

Pr Pr P Py

likelihood of failure of
target grasp

mlnlmum

stop

o
A A\ Po
exp tlon exp ectatlon exp ctatlon

o1 02 03 o1 02 03

C‘O‘CCCCC

Po Po Po  Po Po Lgslle Pa& KaePHng, AAR 2010



Objects and desired grasps




Dark blue box:
most likely state

Leslie Pack Kaelbling, AAAI2010



Light blue boxes:
belief state
§ variance (1 std)




Brita results: 10 / 10 successful grasps

Grasping a
Brita Pitcher

50x

[.ow deviation




Powerdrill: 20 / 10 successful grasps




Optimistic (re)planning in belief space

* household robot with local observation:
mixed continuous and relational spaces



Classes of robotics problems in which:

Problems are huge:
* long horizon
* many continuous dimensions
* combinatoric discrete aspects
No terrible outcomes
Geometry is not intricate

Partial observability:
local but fairly reliable




Symbols to Angles

Initial state known in geometric
detail

Goal set is abstract, symbolic

tidy(house) A charged(robot)

Operator descriptions:
» STRIPS-like, with continuous values
* procedures suggest values for existential vars
* geometric reasoning

Leslie Pack Kaelbling, AAAI2010



Wash a block and put it away

storage

washer

—
/(‘
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Clean(a) and In(a, storage): Regression structure

7 primitive steps; 3000 search nodes

Wash[a]

[

Place[a, washer]

Pick[a, washer]

[

Pick[a, aStart]

Place[a, storage]

clearX[sweptVol(path(a, washer, storage)), [a]]

!

remove[d, sweptVol(path(a, washer, storage))]

I

Place[d, parking]

T

Pick[d, dStart]

Leslie Pack Kaelbling, AAAl2010



Hierarchy crucial for large problems

Subtrees represent serialized subtasks

Leslie Pack Kaelbling, AAAl2010



Hierarchical semantics

Subgoal is an abstract operator:
single multiple
input op | possible
state results

What does it mean to sequence two subgoals?

op1 ‘ 9 op2 ‘ 9

Depends on who gets to choose the outcome:

nature Wolfe, Marthi, Russell

Ceslie PackKaelbling, AAAl2010



Planning in the now

* maintain left expansion
of plan tree

* execute primitives

* planas necessary

Leslie Pack Kaelbling, AAAl2010



Satanic semantics

We have to handle any outcome the devil picks

op1 , > op2 , 9

Okay if: Preconditions of op2 can be achieved from
any state resulting from op1

Op2 | Q

Leslie Pack Kaelbling, AAAl2010
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Wash a block and put it away

storage

washer

—
/(‘
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AO:Place(a, Washer)

v

in(a, Storage)
clean(a)

N\

AO0:Wash(a) AO:Place(a, Storage)
| |
| |
v v
T clean(a)

—

in(a, Washer)

N\

Al:Place(a, Washer)

A1l:Pick(a, a)

l

\4
Holding() = a
A1l:Pick(a, a)

|

|

l

v
Holding() = a

|

|

l

v

PickUp(a, a)

v
in(a, Washer)

v

l

Placeln(Washer)

in(a, Storage)

b

Al:Wash(a) Al:Pick(a, aX)
| |
| 1
v v
clean(a)
Lol Holding() = a

l

A1l:Pick(a, aX)

v
clean(a)
Holding() = a
|

v
PickUp(a, aX)

Al:Place(a, Storage)

!
|

v
clean(a)
in(a, Storage)

~
~
~
~

AO:clearX(Swept_aX, (a))

v
clean(a)
Holding() = a
clearX(Swept_aX, (a))

l

AO:remove(d, Swept_aX)

v
clean(a)
clearX(Swept_aX, (a, d))
Holding() = a

overlaps(d, Swept_aX) = False

-
-

‘/
Placeln(&x)

Pickapi(d, id)

- 7 \ ~

/ \
/ \

4 4

Placeln(Parking)

* solves 10 planning problems
*sizes 3, 3,6,5,2,7, 6, 8, 13,
129

* takes g primitive steps

* Flat: 2 problem, 3000 nodes,
7 primitive steps

~
~

~Aa
Placeln(Storage)

~
~

PickUp(a, aX)



Planning in the Know

Plan in the now in belief space:
* Make a single plan that will succeed with high probability
* Replan on unexpected observations
Plan at the "knowledge level” Petr:\fs NI
* Traditional to plan in the powerset of the state space
* We have infinite state space

* Use explicit logical representation of knowledge and lack
of knowledge

Plan at level of abstraction supported by current belief state



Going on a tiger hunt

move(Room):
res: robotLoc = Room

listen:
pre: robotLoc = hall
result: KV(tigerLoc)
shoot:

pre: robotLoc = tigerLoc
result: deadTiger

P(tigerLoc = leftRoom) = 0.8

Leslie Pack Kaelbling, AAAl2010



Going on a tiger hunt: regression search tree

cost=0
move(Room): TigerDead() = True
res: robotLoc = Room ﬁs}mm“\é()zsm)m“
listen:
cost=3.231 cost=17.094
pre: robotLoc = hall RobotLoc() = leftRoom RobotLoc() = rightRoom
_ TigerLoc() = leftRoom TigerLoc() = rightRoom
result: KV(tigerLoc) KV(TigerLoc()) = True KV(TigerLoc()) = True

shoot: lA ‘
0:MoveTo[leftRoom]|

pre: robotLoc = tigerLoc
cost=4.231

result: deadTiger T =
KV(TigerLoc()) = True
P(tigerLoc = leftRoom) = 0.8 Roboti oc0 = hallway

AO:MoveTo[hallway] lAO:Move'l’o[hallway]

cost=25.231 cost=25.231
TigerLoc() = leftRoom TigerLoc() = leftRoom cost=5.231
KV(TigerLoc()) = True KV(TigerLoc()) = True RobotLoc() = hallway
RobotLoc() = leftRoom RobotLoc() = rightRoom

Leslie Pack Kaelbling, AAAl2010



Monitor execution and replan

Plan 2
TigerDead() = True

L/

AO:Listen() AO:MoveTo(leftRoom) AO0:Shoot()

! ! !
I I I

v v v

ListenPrim MoveTo(rightRoom) ShootPrim

—

AO:MoveTo(rightRoom) AO0:Shoot()

Leslie Pack Kaelbling, AAAl2010



Cleaning house

Goal: vacuum four of the rooms in the house
* have to put away junk items before vacuuming
* location of junk is unknown

* |ocation of vacuum is unknown

Leslie Pack Kaelbling, AAAl2010



Leslie Pack Kaelbling, AAAl2010




Plan hierarchy can pose small filtering problems

B(loc(Joe), loc(friend(Joe)) | Ogp.+)

B(loc(Joe), hidingPlaces(Room1), locked(Closet) | Og.¢)

B(loc(key(Closet)) | Op.¢)

Leslie Pack Kaelbling, AAAI2010



Learning a model

» model learning

€

v

r World model —l

observation

state belief N
estimation

action
selection

>
action

Joint work with Hanna Pasula and Luke Zettlemoyer
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Blocks with physics

Leslie Pack Kaelbling, AAAI2010



Representing a world model
Probabilistic state transition dynamics:
Pr(s¢ | st—1,0a)

Representation should:
* allow effective generalization
* be useful for planning
* be efficiently learnable



Probabilistic dynamic rules

Combine logic and probability to model effects of actions in
complex, uncertain domains

pickup(X): {Y: on(X,Y)}
clear(X), inhand-nil, size(X)>2, size(X)<7 =
0.803 :-on(X,Y)
0.093 : no change

Leslie Pack Kaelbling, AAAl2010



IsXonY?

Useful symbolic vocabulary should be learned

Leslie Pack Kaelbling, AAAI2010



Neoclassical learning T
- 0\_
| - 4
Given experience, {(st, Qt, St+1)} Y\"
Find rule set that optimizes ?'3

score(R) = ) logPr(s¢yq | s¢, a,R) — «lR|
t

Start with one default rule: “stuff happens”
* Symbolic: add, delete rule; change rule conditions

* Greedy: choose set of outcomes
* Convex optimization: find maximum likelihood

probabilities

Leslie Pack Kaelbling, AAAl2010



Concept invention

New concepts allow predictive theory to be expressed more
compactly and learned from less data

p1(X) :- -3Y. on(X,Y) X is in the hand
p2() :- =3Z. pl(Z) nothing is in the hand
p3(X) :- -3Y. on(Y,X) X is clear

p4(X,Y) :- on(X,Y)" X is aboveY

p5(X,Y) :- p3(X) A p4(X,Y) X is on the top of the stack

containingY

fo(X) :- #Y. p4(X,Y) the height of X

Leslie Pack Kaelbling, AAAl2010



Rules learned from data

pickup(X): {Y: on(X,Y)}
clear(X), inhand-nil, size(X)>2, size(X)<7->
0.803 :-on(X,Y)
0.093 : no change

picking up middle-
sized blocks usually

Leslie Pack Kaelbling, AAAl2010



Rules learned from data

p1ckup(X):
clear(X), inhand-nil, -size(X)<7 >
0.906 : no change

it’s impossible to
pick up very big
blocks

Leslie Pack Kaelbling, AAAl2010



Rules learned from data

pickup(X): {T: table(T)}, {Y: on(X,Y), on(Y,T)}
clear(X), inhand-nil, size(X)<Z2 =
0.105 :-on(X,Y)
0.582 :-on(Y,T)
0.312 : no change

if a tiny block is on
another block that is on
the table, and we try to
pick up the tiny block,

we’ll often pick up the
other block as well, or
fail

Leslie Pack Kaelbling, AAAl2010




Planning with learned rules

human performance

14 A

12 - human performance

10 -

Total Reward

6 T T T T T

250 375 500 625 750 875 1000
Number of Training Examples



Planning with learned rules

16 -

14

=8= N0 concepts
12 -

human performance

Total Reward
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Number of Training Examples



Planning with learned rules

16

b=
© =8= |earned concepts
<12 - =8= N0 noise outcome
) =8= N0 concepts
(0’4 human performance
©
210 |
=

8

6 I T T T T T

250 375 500 625 750 875 1000
Number of Training Examples
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observation

model learning
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¥

£— World model -—1

state
estimation

belief _

action
selection

o

action

compact representation
explicit uncertainty modeling
approximation
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What should we be doing?

Thinking hard about representation in open, uncertain domains
* What do you know about your house?

Everything else: planning, learning, reasoning, ...

Talking to each other

* vision, natural language, robotics, logic, probability,
learning, ...

Leslie Pack Kaelbling, AAAl2010



Thanks!

Collaborators: Stan Rosenschein, Tom Dean, Tomas Lozano-
Perez, Michael Littman, Tony Cassandra, Hagit Shatkay, Jim
Kurien, Nicolas Meuleau, Milos Hauskrecht, Jak Kirman, Ann
Nicholson, Bill Smart, Luis Ortiz, Leon Peshkin, Mike Ross,
Kurt Steinkraus, Yu-Han Chang, Paulina Varshavskaya, Sarah
Finney, Kaijen Hsiao, Luke Zettlemoyer, Han-Pang Chiu,
Natalia Hernandez, James McLurkin, Emma Brunskill, Meg
Aycinena Lippow, Tim Oates, Terran Lane, Georgios
Theocharous, Kevin Murphy, Bruno Scherrer, Hanna Pasula,
Brian Milch, Bhaskara Marthi, Kristian Kersting, Sam Davies,
Dan Roy, Jenny Barry, Selim Temizer, Rob Platt, Russ Tedrake
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