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Abstract

This work addressethe computationatomplexity
of solvinglarge Markov decisionprocesseby par
titioning their statespacesnto nearly-independent
regions. We proposea methodfor developingpar
tial plans,or macros,over suchregionsthatyields
a polynomial numberof macrosfor eachregion.
Each macro representknowledge about how to
achieve one particular sub-goalwithin its region
of interest,and we demonstratea simple, linear
time rule for combiningthesemacrosinto a sin-
gle full policy over the region and for propagat-
ing valueinformationbetweerregions. We empir
ically demonstrateéhe efficacy of our approacton
small MDPs, for which exact solutionis feasible,
andgive asymptoticanalyse®f its scalability

1 Introduction

Markov decisionprocesse$MDPSs) have provento be effec-
tive andprincipledtoolsfor modelingmary typesof planning
andactionproblemsthataresubjectto uncertainty{ Boutilier
etal., 1999. It hasbecomeclear though,that one of the
largestbarriersfacing the widespreaddeployment of these
modelsis a lack of scalability While exact solution tech-
niguesfor MDPs run in time and spacethat is polynomial
in the numberof modelstatesthe numberof statess often
exponentialin quantitiesof real interestsuchasthe number
of domainvariables.Furthermorepftenfor explicitly repre-
sentablendrelatively modesiproblemsgventhepolynomial
solutiontime may be unacceptabléasin realtimeplanning
andexecution).

Thus, therehasrecentlybeenintenseinterestin methods
for improving thescalabilityof MDPs. Researchensave pro-
posedtechniquedasedon factoringthe transitionmodel of
the MDP [Koller and Parr, 2004, exploiting irrelevant vari-
ables[Boutilier andDearden1994;Dietterich,200d, or ap-
proximatingthe model's valuefunction [Bertsekasand Tsit-
siklis, 1996. We draw on two othertraditions, both based
on developingmacios, or local plansfor accomplishindim-
ited sub-goalsover restricted,semi-autonomousegions of
the statespace. The first follows Kaelbling’s HDG work
[1994 which exploits a nearest-neighbaelationto partition
the statespacefor approximatelysolving the point-to-point

navigationtask.HDG, however, doesnot handlepropagation
of informationbetweerregionsandis restrictedto unitaryre-
wards.Mooreetal. relaxsomeof theserestrictionswith their
airport datastructure[1999, which encodesknowledge of
how to (sub-optimally)navigatebetweerary pair of statesn
theMDP. They areconcernedvith one-shogoalsof achieve-
mentanddo nothandletradeofs betweerdifferentgoals,nor
do they allow modificationof the reward function. The sec-
ondtraditionfollows thework of Precupetal. [Precup2000;
Suttonet al., 1999, which shavs how to knit togethera
hand-craftedsetof regionsandmacrosinto a single plan by
solving a meta-level decisionprocess. This approachcor-
rectly handlespropagationof information betweenregions
and both Hauskrechtet al. and Parr extendit with methods
for automaticallydeveloping macrosby selectingsub-goals
asmacrotargets. The latter approachesequirecertainlim-
iting assumptionsand yield, typically, exponentially mary
separatemacrosfor a givenregion. Our goalis to leverage
the strengthsof thesetwo approacheswe usethe naviga-
tional insightsof HDG andthe airportwork, acceptingtheir
sub-optimalresults, but incorporatethe region and macro-
handlingapproachof Precupet al. which allows usto treat
moregeneraoalfunctions.Theapproximationghatleadto
sub-optimalperformanceallow usto generateonly polyno-
mially mary macrosyatherthanthe exponentialnumberthat
Hauskrechetal. andParrrequireto achiesze nearoptimality.

2 Separating Planning and Acting

We addresghe problemof planningin domainsin which the
world dynamic— the stateandactionspacesandtransition
effectsof the actions— is fixed and reward function of the
MDP is unknawn, but the statesin which reward canbere-
ceived are limited to a small, fixed subsetof the full state
space.In otherwords,the world is stationary but the goals
or tasksof the agentchangeover time. Navigationdomains,
in particulay oftendemonstrat¢his property— anagentmay
exist in a limited, unchangingnapwith afixed setof primi-

tive actions,but berequiredto navigateto differentlocations
at differenttimesor with changingpriority. For example,a
delivery robotmight know thattherearea fixed setof possi-
ble destinationsbut which areto receve packagegi.e.,gen-
eratereward) dependon the particularassortmenbf pack-
ageson agivenday. We areattemptingto separatehe navi-

gationproblemfrom the particularsof rewardassignmentto



improve aggr@yateperformanceover multiple problemsolv-

ing instances We exploit two propertieso achieve this sep-
aration: approximateindependencef goalsand a sparse,
Markov transitionfunction. The first allows us to develop

separatenavigation macrosthat describehow to seekeach
goal alone,while the secondallows us to isolatethe effects
of rewardsin one subsebf the statespacefrom otherareas.
Notethat,thoughwe conceptualizeéhis approachin termsof

roboticnavigation, it is notrestrictedsolelyto suchdomains.
Any fixeddomainwith multiple goalsof achiesementmeets
theseconditions(thoughwe introduceotherrestrictiondater
thatmay be moredifficult to fulfill).

We refer to the setof goal stateswithout reward assign-
mentsasa problemdomainandthecombinatiorof goalstates
with specificrewardvaluesasa probleminstance Ourmodel
is a slight generalizatiorof that employed by, e.g., Precup
etal. [2000;1999, Hauskrechetal. [1994, or Parr[1994,
who all develop macrosonly by consideringhe exit periph-
ery stateqe.g.,“doors”) betweenmmacro-rgions,but who do
not accountfor goal statesthat may occur within a macro-
region. We alsoput differentconstraintson possiblereward
valuesthan do someof theseprior authors: Hauskrechtet
al. andParr both constrainthe possiblevaluesoccurringat a
peripheralstateto fall within someboundedrangewhile we
boundpossiblevaluesonly to be non-negyative.

Intuitively, our approachdependsn the obsenationthat,
for aproblemdomainwith a singlegoalstate the structureof
the optimal policy for achieving that goal is independenof
rewardscalé: thesameseriesof actionsmaximizeaggreate
rewardwhetherthe particularrewardinstancefor thatgoalis
oneor onethousandA macrofor achieving a particulargoal
remainssuitableno matterhow the reward value is scaled.
We thereforedeveloponemacrofor achieving eachpotential
sub-goalwithin the full MDP independentlyfrom all other
sub-goalsln apartitionedVIDP statespacewe alsodevelop
independeninacrosfor moving from every region to eachof
its neighbors Givenaparticularinstantiationof arealreward
function(e.g.,a particularassortmentf packagesndplaces
to deliverthem),we re-scaleheindividual macrosin propor
tion to theirinstantiatedewardsandcombinetheminto afull
policy in time andspacehatis linearin thenumberof states.

Of course sub-goalsarenot truly independenandignor-
ing onewhile achieving anothemaybedeleteriousTo fully
addresghis difficulty requireshandlingthe combinatoricsof
multipleinteractingsub-goalsTheapproachesf Hauskrecht
etal. andParr treattheseinteractionsexactly andyield macro
cachesthat achiese an e-optimal value for ary possiblere-
wardfunction(overaboundedange) butthey cannotescape
the combinatoricdifficulty and, in the worst case,their ap-
proachegproducemacrocacheghat are exponentiallylarge
in the numberof exit peripherystates We explicitly sacrifice
optimality in favor of a guaranteeof a polynomial number
of macros. Parr doesdemonstratdnow to begin with a few
macrosfor aregion andto addnew macroswhenthe current
cacheis found to be inadequatdor a particularproblemin-

Thoughit doesdependon the sign of the reward: negative re-
wards,or penaltiesyield structurallydifferentpoliciesthando pos-
itive rewards.Currently we addres®nly non-ngative rewards.

stance.Unfortunately his approachrequiressolvingalinear
progranmto detectinadequag andoneor moreMDP planning
problemgo updatethe cache— bothrelatively expensve op-
erations— andputsno boundon the numberof macrosthat
the cachewill accumulateovertime. Our approachretainsa
smallfixed setof “basis” macrosfrom which we composea
final planfor aregionin asingle,lineartime pass.

3 Formal Modd

Here,we overview theterminologywe usein this paper We
briefly summarizethe backgroundof Markov decisionpro-
cesgheory;for amorein-depthdiscussiorof MDPs,werefer
theinterestedeaderto Putermars text [1994].

3.1 Markov Decision Processes

A Markov decisionprocessP = (S, A, T, R), is adescrip-
tion of a synchronougontroldomainspecifiedby four com-
ponents:a statespace S = {si, s2,... ,sn}, of cardinality
|S| = N; asetof primitive actions A = {a1,as,-..,ax},
of cardinality | A| = k; a transition function T' : S x
A xS — [0,1]; andareward function R : S — R.
The transition function, written 7'(s'|s,a), determinesthe
probability of arriving in states’ upontaking actiona from
states and must representa valid probability distribution:
Vs,a Y .csT(s'|s,a) = 1. An agentactingin a given
MDP is, at ary time step,locatedat a single states € S.
The agentchoosesan actiona € A andis relocatedto a
new state,s’, determinedby the transitionprobability distri-
bution T'(s'|s, a), whereuporit recevesreward R(s'). The
goal of the agentis to maximizeits aggreyatedreward over
time. Therearea numberof modelsof time-aggrgatedre-
ward, but we will addressonly infinite horizon discounted
rewardsin which the agents expectedfuture reward is dis-
countedby a constantmultiplicative factor 0 < v < 1, at
eachtime step.Thetotal rewardreceivedover aninfinite op-
erationallifetime is ryor = > ;0 Y R(s¢), wheres; is the
statethe agentreachesat time ¢t. The goal of planningin
an MDP contet is to locatea policy, 7 : S — A, thatde-
terminesan action for the agentfor ary possiblestate. In
generalr canspecifya distribution over actionsbut anim-
portanttheoremof MDP planningsaysthat,for afixed MDP,
P, thereis apolicy, 73, thatmaximizesE|[ry.] andthatthat
policy is deterministic[Puterman;1994. Associatedwith a
given MDP and policy is a valuefunction V™ : § — R,
which recordsthe total expectedaggraeyatereward achieved
by anagentthat startsin states andactsaccordingto = for-
ever. Thevaluefunctionfor a particularMDP andpolicy can
befoundexactly by solvingthe Bellmanequationsrequiring
O(N?) timeandO(N?) space.

In this work, we are concernedwvith MDPs having only
partially specifiedrewardfunctions.In particular we assume
thatwe aregivena setof goal states G = {g1,92,--- ,9, },
but thatmary possiblereward functionsareallowed, subject
only to the constraintsthatVs € S,R(s) > 0 andVs €
(8\ G),R(s) = 0. We will referto an MDP with only a
specificationof a setof goal states,? = (S, A,T,G) asa
problemdomainand an MDP with a fully specifiedreward
function (underthe above constraints)P = (S, A, T, R), as
aprobleminstance



For the purposesof this discussionwe will refer to the
original MDP asthe base-leel or primitive MDP andits as-
sociatedstatesandactionsasatomicstatesandactions. Re-
gions and macros,which we definefully below, constitute
meta-statesnd meta-actionsrespectiely, in a higherlevel
semi-Marlov decisionprocess.

3.2 Sub-Goals, Macros, and Macro Caches

In our approach,a macrois a plan for achieving one goal
statein isolation. To modelthis, we definesub-goalasa re-
striction of the reward function of an MDP to a single state,
9: Ry(s) = 1 whens = g andR,(s) = 0 otherwise.(As
notedabove, for a lone goal state,the scaleof R(g) is im-
materialto the optimal planfor achieving it.) A macmo, 7,
for achieving a sub-goal,g, over an MDP, P, is a policy
over P where R is restrictedto R,, and canbe found via
astandardechniquesuchaspolicy iteration.A macio cade,
C = {mg,,mg,,... my, } is simply a setof suchmacrosfor
achieving distinctgoalsgy, g2, - - - g,

3.3 Regions, Peripheries, and Partitions

By regionwe will denotea subsebf the statespaceP C S,
alongwith the correspondindransitionandrewardfunctions
when restrictedto P, Tp : P x A x P — [0,1] and
Rp : P — R. (Whennecessaryor clarity, we will use
subscriptdo denotethe underlyingstatespaceof a function,
e.g.,Ts vs. Tp.) We adda special,zero-ravard absorbing
state,o, to eachregion anddirectall outgoingtransitionsto
it: Vs € P, Tp(ols,a) = Yy cs\p Ts(s'|s,a). Thereward
functionis the correspondingestrictionof the base-leel re-
ward function: Vs € P, Rp(s) = Rs(s). Thus,theregion
P itself constitutesa properMarkov decisionprocesandwe
candefinepoliciesandmacrosover it. We denotethe setof
goalstatesoccurringwithin aregionby Gp = G N P.
Theexit peripheryof aregion, Xp, is thesetof stateshav-
ing non-zerotransition probability out of a region: Xp =
{s € P :Ts(s'|s,a) > 0} for somes’ € S\ P. Informally,
the exit peripherystatesare“doorways”: stateshat mustbe
reachedeforeanagentcantransitionfrom oneregionto an-
other Correspondingdo exit peripheriesareentranceperiph-
eries:Ip = {s € P : Ts(s|s',a) > 0} for somes’ € S\ P.
The peripherystatesare a separatingset: the valuefunction
within aregion is independenbf the valuefunction outside
theregion, giventhevaluesatits peripherystates:

A partition of an MDP is a division of the MDP into sep-
arateregions that collectively cover the statespace: S =
U, Pi. We constrairtheregionsto bedisjointexceptfor their
peripherystates¥i # j, P;NP; € Xp, UXp,, andwe note
thatevery exit peripherystateof someregion corresponds$o
anentranceeripherystateof anotherregion.

2In the sensethat, given the value function at the exit periphery
statesfor a region, one can exactly calculatethe value function at
all other stateswithin that region with no further information. In
particular giventhe exit statevalues,knowvledgeof valuefunctions
outsidetheregionis irrelevantto computatiornof the valuefunction
within theregion.

4 Applying Macros and Regions

We cannow describeour planningandexecutionalgorithmin
full detail. Local macroplanninghandlegradingoff theim-
portanceof achieving differentgoalswithin a singleregion,
while theregion-integrationalgorithmintegratesthelocal re-
sultsinto a globalplan.

4.1 Building and Executing from a Macro Cache

Ourmodelof macroplanningdiffersslightly from thatof Pre-
cupetal., Hauskrechet al., andParr. They treatmacrosas
discreteactionsthat“solve” a given MDP or regionin apar
ticularway andselectasinglemacroperregionfor eachprob-
lem instance.Our approachreatsmacrosasbuilding-blocks
which, givena probleminstancewe memgeto form a single
policy for the region. In anintuitive senseyou canthink of
ourmacrosasbeing“basispolicies” from whichwe construct
full policiesfor aregion.

Given an MDP problemdomain? with goal statesG =
{91, 92,--- ,9»}, We constructa macrocachecorresponding
to the goal statesof P: Cg = {my,,7gs,...,7g, }. INtu-
itively, eachof thesemacrosrepresentshe “shortestpath”
informationfrom eachatomicstateto oneparticularsub-goal.
Associatedvith eachmacrois its correspondingaluefunc-
tion, V9.

Now, givena probleminstancewe re-scaleeachmacros
valuefunctionaccordingo theinstantiatedewardof its goal

state: V9(s) = R(g)V9(s) for all s € S. In generalwe
will useatilde to indicatea function afterincorporatingthe
effectsof a probleminstancewhile the plain nameindicates

the instance-independenersion. V9 is now a measureof
how “close” every stateis to g relative to the importanceof
attainingg underR. We wish to constructa singlepolicy, 7,
that combinesthe information from eachmacro. The sim-
plestrule, which we employ here,is to choosethe action
correspondingo the macrowith the greatestvalue at each

state: L(s) = arg max{V?(s)} and7(s) = mr(5(s). In a
9€g

deterministiccontinuouscontrolprocessthis correspondso
splitting the world into a Voronoi partition aroundthe goal
pointsandgreedilychoosingactionsto seekthenearesgoal.
Unfortunately MDPs are neitherdeterministicnor continu-
oussothisruleis only anapproximatiorandit canyield sub-
stantially suboptimalpolicies. Neverthelessywe find that it
performsreasonablywell in empiricalinvestigationsaswe
demonstratén Section5. This rule doeshave the benefitof
beingquiteefficientto implement;for eachprobleminstance
it requirestime and spacelinear in the numberof atomic
stateswhile exact solutionrequiresgreaterthan cubic time
andquadraticspace In fact,we neednot evenfully generate
7 — we cansimply computethe appropriateaction for the
agentto take atits currentpositiongivenour macrosandour
knowledgeof the reward instantiation. This is still not good
enoughto overcomethe exponentialsizeof mary interesting
statespaceshowever, sowe turn our attentionto partitions,
which offer the possibility of hierarchicallydecomposingn
MDP andrealizingexponentialimprovements.



Procedur e RegionPlan(P)
if P is primitive
foreache € Ip
Rp(e) = max{V9(e)}
9€Gp
else
foreach sub-ragyion, P; of P
RegionPlan(P;)
SolveShortest®hgGp |J; Xp;,V)

Figurel: Pseudocodéor theregion planningalgorithm.

4.2 Planning and Acting with Regions

Wefirst notethatindividualregions,aswe have definedthem,
constitutecompleteMDPs,sowe canconstrucimacrocaches
overthem,asdescribechborve. The questionbecome®neof
communicatiorbetweerregions: how doesthe reward func-
tion instantiationin one region affect the choice of macros
in otherregions? For this purpose we follow Hauskrechet
al. andusethe exit peripherystates.In their model, macros
aretreatedasdiscretemeta-actiongindregionsasmeta-states
which togetherconstitutea semi-Marlov decisionprocess.
As Precupet al. have demonstratedsolution of the semi-
MDP selectsa specificmacroto executein eachregion and
yieldsa planthatis optimalwithin the spaceof policiesrep-
resentablevith only theavailablemacros.

In our algorithm,macrosarenot thoughtof asdiscreteac-
tions but aspartsto be combinednto a singlepolicy specific
to a region and particularreward instantiation. Planningin
the partitionedspaceis not a questionof choosingbetween
macros but of propagatinghe influenceof the reward func-
tion betweerregions. Fortunatelythisinfluenceis quantified
for usby thevaluefunction, V9, associatedvith goal g. We
canusethe peripherystates,I» and Xp, to propagatehis
valueinto adjacentregions. Recallthat exit peripherystates
exist in multiple regionssimultaneouslyandthatan exit pe-
ripherystatefor someregionP; is alsoanentranceperiphery
statefor someotherregionP;. Thevaluefunctioninducedby
agoalstate,g € P;, atanentranceperipherystate,s € Ip,,
canthusbetreatedasarewardatits correspondingxit state,
s = x € Xp,. We treatexit peripherystatesas “synthetic
goals”: placeholdershathave no real reward functionthem-
seles,but to which we assigrestimatedewardbasedon the
realrewardsof a probleminstance.We denotethe synthetic

reward imputedat exit statex by Rp, (). It is important
to notethatthis syntheticreward existsonly in theregion for
whichz is anexit peripherystate notin ary regionsfor which
x is anentranceperipherystate. Thus,anagenthasincentive
to leave a region via an exit state,but no incentive to return
onceit leaves.

The combinationof goals and synthetic goals, coupled
with the value functions,forms a weightedgraph. The in-
sight of HDG and the airport datastructureis that we can
treatsuchgraphsas deterministicdistancegraphs(V' is in-
verselyrelatedto distancevia ) and solve them efficiently
with shortest-patlalgorithms. This is approximatebecause
of non-determinismput for large distancesand fairly uni-
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Figure2: An examplesyntheticmaze. The starsymbolsde-
note goal states,lines and thick lines are walls, and small
squaresare “doors” which allow transitionsbetweenrooms
in spiteof walls.

form transitionfunctions,the law of large numbersensures
achievedvalueswill be closeto our estimates.This leadsus
to a natural, recursve algorithmfor planningwith regions,
givenin Figurel. Regionsare either primitive (possessing
no sub-partitionspr complex. For a primitive region, P, we
apply the value-estimatiorrule of Section4.1 to determine
theinfluenceof goalswithin R onits entranceperiphery For
a comple region, we recursvely plan over its sub-rgions
andthenapply a modified shortest-pattsolver to determine
which goalis mostimportantto achieve from eachperiphery

state,z. Theseestimatesow form R(x), which allows us
to tradeoff headingfor local goalsagainstheadingfor exits
whenacting.

We notethat the planningalgorithm doesnot form a full
policy over the MDP, but only finds value estimatesat exit
peripherystates.Theagentactslocally by choosingbetween
macrosassociatedvith the goalandperipherystatedocal to
its currentprimitive region, asin Section4.1. Thus,actionis
nearlyconstantime andplanningrelativeto agivenproblem
instanceis polynomialin the numberof goal and periphery
statesper region. We discussthe asymptoticsof this algo-
rithmin Section6.

5 Empirical Performance Evaluation

Although we areultimately interestedn handlingextremely
large MDPs, we begin by empirically examining the per
formanceof our planningmechanismén small domainsfor
which exact solutionis still feasible. We examineonly the
quality of solution here;we deferissuesrelatedto compu-
tational complexity and asymptotictime and spaceperfor
manceto Section6. Theseresultsare preliminary — they
examineonly small,geographidviDPsandonly binaryparti-
tionsof thestatespace— but they provide a proof-of-concept
demonstratiomhatour planningheuristicsoperateeasonably
in someplausiblespacesln Sectionss and7 we discussthe
scalabilityof theseresultsandthe typesof MDPswe expect
to beamenabldo ourapproach.

We have examinedthe performanceof our approacton a



numberof syntheticmazedomainsof the type illustratedin
Figure2. Thisis a grid-world mazewith four actionsavail-
ablefrom eachstate:North, South,East,andWest. If these-
lectedactionsucceed$with probabilityp), the agentis taken
to the statein the indicateddirection; if it fails, the agentis
depositedn oneof thethreeotherorthogonaktateswith uni-
form probability. Walls areimpermeableand an attemptto
move in the directionof a wall (deliberatelyor accidentally)
leavestheagents stateunchangedDoorsaresimply holesin
thewall — they allow unimpededgrogressn bothdirections.

We generatednazeswith between25 and 900 states,p
rangingbetweerD.5and0.9,andavariablenumberof rooms
andcorridors? In this framework, we performedwo experi-
ments:oneexaminingtheperformancef ourmacroplanning
systemon an unpartitionedstatespaceand onewhich splits
the statespacento two regionsandbuilds macrosseparately
for eachregion.

In thefirst experimentwe randomlyselecte®, 3, or 5 goal
statesn the mazeandassignedhemrandomrewardsin the
range(0, 100]. We solved for the optimal policy, =*, with
standardgolicy iterationandbuilt amacrocacheasdescribed
in Section4.1. We constructeda full policy for the MDP, 7€,
by combiningthemacrosusingtheassignedewardsfor their
sub-goalsandevaluatedthat policy by solving the Bellman
equationsfor the value function at eachstate, V¢ (s). We
summarizahe performancef a particularpolicy with regret

rgleagc{V*(s) —VE(s)}1—7)
max{fi(g)}

This quantity expresseghe differencebetweenthe optimal
and constructedpoliciesin termsof the Bellmanerror (the
maximumdifferencein valuefunctions)scaledn proportion
to themaximumrewardachiezablein the MDP. Thefactorof
1 — ~ scalesvaluefunctionsinto the samerangeasreward
functions.

Over the 864 mazeswe generatedn this experiment,the
meanregret was only 1.4%, indicating that our policy con-
struction techniqueis performing reasonablywell over a
rangeof conditionsin thesesmall mazes.The largestvaria-
tion in regretappearso berelatedto thedistancebetweerthe
goal states,we found a roughly inverserelationbetweerre-
gretandthe minimumgoaldistancgmeasuredn Manhattan
distance).This is a consequencef the greedygoal selection
we use:for distant,well separatedjoals,the optimalstratey
is to headfor oneandstaytherewhenyoureachit. Optimally
handlingclosegoals,however, requiressubtlerplansthanour
heuristicscangenerate.

In the secondexperiment,we focussedon the largestof
the mazesthat we could solve optimally, generatingmazes
with 400, 600, or 900 states,andintroducedonly two goal
states.We partitionedthe mazeinto two regionsby locating
thesmallestetof doorsthatseparatethetwo goalstateaus-
ing amax-flov/min-cutalgorithm[Cormenetal., 1997. The
stateson eitherside of thesedoorsformedthe peripheriesof
thetwo regions.Now, with goalandperipherystatesor each

3900 stateds thelimit of our, admittedlynon-optimizedcodes
ability to exactly solve the MDP for anoptimalpolicy.

region in hand,we developeda macrocachefor eachregion

asdiscussedn Section4.2 and evaluatedit in termsof re-

gretwith respectto an optimal policy for the full maze. In

the360MDPswe generatedor this experimentthe meanre-

gretof themacros-oer-partitionspolicieswas0.4%— larger
than the regret of macrosover an unpartitionedstatespace
(which achiered 0.03%regreton thesesamemazes) put not

catastrophié. We againobsenedaninverserelationbetween
regret and Manhattandistance thoughnow doors(i.e., exit

peripherystatesmustalsobe consideredjoals.

6 Toward Very Large State Spaces

Theempiricalresultswe have presentediemonstratéhatour
macroplanningsystemperformsreasonablyalbeit subopti-
mally, in small statespaces.This representdut a first step
toward our ultimate goal of treating extremely large state
spacesin our ongoingwork we areextendingourimplemen-
tation to handlevery large domains(e.g.,domainsspecified
by alarge numberof discretevariableswhosecross-product
yieldsan exponentiallylarge statespace).In this section,we
give asymptoticargumentsabouthow we expect our tech-
nigquesto performin thesedomains.

The major leveragesthat we intend to exploit in scaling
thesealgorithmsarethoseprovided by hierarchicalpartition-
ing andsolutionreuse.Single-shoexactsolutionof anMDP
with N statesequiresatleastO(N?) time andO(N?) space
(to solve for thepolicy andstoreit) while ourmacroplanning
methodrequiresO(vN?) time andO(N? + vN) spacefor
anunpartitionedviDP with v goal states.The importantim-
provementcomeswhenwe considerregions: assumehata
region (e.g.,anentire MDP) with v goal stateds partitioned
into p regions,eachof size O(N/p), andthatthereareato-
tal of X peripherystatesconnectinghe regions. If we solve
the shortestpath problemwith v applicationsof Dijkstra’s
algorithm[Cormenetal., 199, thetime to executetheplan-
ning algorithmfor a givenrewardinstances recursvely ex-
pressedasT(N) = pT(N/p) + vX log(X). If theregions
aresparselyconnectecand X = O(p), thenthis recurrence
hasthe solutionT'(N) = ©(NN). Thus,we spendonly linear,
ratherthancubic,time perprobleminstance.Pre-processing
a problemdomainto locatethe macrosinitially is also effi-
cient; if partitioningstopswhenthe MDP hasbeensplit into
O(N/c) regions of someconstantsize, ¢, thenthe time to
generateall macross O(N ¢®) andthey canbestoredin space
O(Nc?). Furthermorethis stepis easily parallelizable:the
solutionof one macrois independentf all others. Finally,
we can probablyachieve yet more improvementsby ignor-
ing partsof the hierarchyirrelevantto a particularproblem
instanceor by cachingthe value function only at periphery
statesandregeneratingnacrodocally asneeded.

Theseresultsrepresenta substantialimprovementin the
compleity of the solutionof MDPs. Whenhandlingmuta-
ble rewardfunctionswith solutionreusewe achieve one-shot
linearplanningtime andat leastlinear perepisodeaxecution

*We attribute the improvementin regret from the previous ex-
perimentto largermazesvhichleadto a greatemproportionof large
inter-goaldistanceg@ndsmallregrets.



time, asopposedo cubic perepisodeplanningtime. A crit-
ical questionis how to hierarchicallyselectregions. For best
performancewe must have roughly balancedregions with
small peripheriesThis questionhasnot beenwell addressed
in theliteraturebecausé is hardto definewhatconstitutesa
“good” partition. We believe that our asymptoticresultscan
provide anoperationablefinition— anoptimizationcriterion
basedn estimatedsolutiontime andspacecomplexity.

Unfortunately our bestasymptoticresultsarestill insuffi-
cientfor extremely large statespacesvhere NV itself is ex-
ponentialin the numberof statevariablesand perhapseven
enumeratinghe statespaceis impossible.This caseis diffi-
cult for all of the region-basednacromethodswe have dis-
cussedbecausehey all needto examineevery stateat least
oncewhen constructingmacros. We mustlook for further
extensionsfor progressn this regime. Possibilitiesinclude
solving for macrosonly over a very limited subsetof the
availableregions; discardingsomeperipherystates;reusing
macrosbetweenstructurally similar regions; approximating
the value function over someregions with regressionfunc-
tions,asin neuro-dynamiprogrammindBertsekagndTsit-
siklis, 1994; or searchingonly over relevant subsetf the
state variables, as do Dietterich [200d and Boutilier and
Dearder{1994.

7 Conclusions and Future Directions

We have demonstrated methodfor decomposindarge state
spaces$n two ways: spatially in which the statespaces bro-
ken up into semi-autonomousegions, andteleologically in
whichmacrosareindependentlylevelopedo solve eachsub-
goal of the MDP. The first offers the possibility of decom-
posingthe statespaceinto tractablefragmentswhich canbe
addressedhdependentlandcanbequickly reintegrateddur-
ing anactionphase.The secondbffersthe ability to quickly
adaptto changingewardfunctions(e.g.,in repeategbroblem
solvinginstances)giventhatthe locationsof the goal states
arefixed. By emplgying both, we can potentiallyrealizea
polynomialreductionin the complexity of planning,whichis
now a one-timeoperationper problemdomain,canincorpo-
ratenew reward functionsin lineartime, andcanchooseac-
tionsin nearlyconstantime. We have givenproof-of-concept
empiricalresultswhich demonstratéhat theseheuristicsin-
curonly slight penaltiesat leastin smallmazedomains.

Clearly, the questionof real scalability of thesemethods
is yet to be answered We foreseeno difficulty, in principle,
in scalingthemup to larger mazeworlds. In generalwe ex-
pecttheseheuristicgo work well in MDPswith thefollowing
characteristics:

Non-negativerewards Themacro-actiorule we describe
in Section4.1 turnsout to be suitableonly for non-neyative
rewards. Negative rewards (penalties)are troublesomebe-
causea purely greedyapproach— headdirectly awvay from
thepenalty— is nottypically effective,in thecontext of other
sub-goals.

Sparse reward function It is critical to the scalingof our
approachhattheMDP have only averyfew goalstatesaswe
mustintroducea macrofor each.Furthermoreaswe demon-
stratedempirically, the goal statesshouldbe well separated

(in termsof expectednumberof stepsto transitionbetween
differentgoals), so that thereis little chanceof deleterious
interactionsamongthem.

Many regions with sparse peripheries The greatesben-
efit will be achieved whenthe mazecan be partitionedinto
mary smallregionswhich canbe solvedindependentlylt is
importantthough thattheregionshave sparseperipheries—
i.e.,therebefew transitiondetweerdifferentregionsrelative
to thesizeof each.

Metrictransition functions Ourplanningheuristicseffec-
tively usevaluefunctionasa distance.ln generalan MDP’s
transitionfunctionneednotrepresena metricspace— it can
have irreversibleactionsand “teleporters”that subvert tran-
sitivity. How well our approachwill applyin suchspacess
still anopenquestion.

Therearemary usefuldomainghatexhibit thesequalities;
ary taskbasedon spatialnavigation, especiallyin buildings
or streetmaps,with limited goalsof achievement,would be
suitable,for example. We are currentlyworking on simula-
tors for suchdomainswith muchlarger statespaceswhich
will provide a betterevaluationof thesemethodsaswell asa
testbedfor examiningothertechniques.In addition,we be-
lieve that we canrelax someof the aforementionedestric-
tions. In particular we areexaminingapproacheshich may
allow usto handlenegativerewardsandconstantewardsover
large regions of the statespace(e.g., a constantmovement
costdueto batterydrain).
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