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Abstract

This work addressesthecomputationalcomplexity
of solvinglargeMarkov decisionprocessesby par-
titioning their statespacesinto nearly-independent
regions. We proposea methodfor developingpar-
tial plans,or macros,over suchregionsthatyields
a polynomial numberof macrosfor eachregion.
Each macro representsknowledge about how to
achieve one particular sub-goalwithin its region
of interest,and we demonstratea simple, linear-
time rule for combiningthesemacrosinto a sin-
gle full policy over the region and for propagat-
ing valueinformationbetweenregions.We empir-
ically demonstratethe efficacy of our approachon
small MDPs, for which exact solution is feasible,
andgiveasymptoticanalysesof its scalability.

1 Introduction
Markov decisionprocesses(MDPs)have provento beeffec-
tiveandprincipledtoolsfor modelingmany typesof planning
andactionproblemsthataresubjectto uncertainty[Boutilier
et al., 1999]. It hasbecomeclear, though, that one of the
largestbarriersfacing the widespreaddeployment of these
modelsis a lack of scalability. While exact solution tech-
niquesfor MDPs run in time and spacethat is polynomial
in the numberof modelstates,the numberof statesis often
exponentialin quantitiesof real interestsuchasthe number
of domainvariables.Furthermore,oftenfor explicitly repre-
sentableandrelativelymodestproblems,eventhepolynomial
solution time may be unacceptable(as in realtimeplanning
andexecution).

Thus, therehasrecentlybeenintenseinterestin methods
for improving thescalabilityof MDPs.Researchershavepro-
posedtechniquesbasedon factoringthe transitionmodelof
the MDP [Koller andParr, 2000], exploiting irrelevantvari-
ables[Boutilier andDearden,1994;Dietterich,2000], or ap-
proximatingthemodel’s valuefunction [BertsekasandTsit-
siklis, 1996]. We draw on two other traditions,both based
on developingmacros, or local plansfor accomplishinglim-
ited sub-goalsover restricted,semi-autonomousregions of
the statespace. The first follows Kaelbling’s HDG work
[1993] which exploitsanearest-neighborrelationto partition
the statespacefor approximatelysolving the point-to-point

navigationtask.HDG, however, doesnothandlepropagation
of informationbetweenregionsandis restrictedto unitaryre-
wards.Mooreetal. relaxsomeof theserestrictionswith their
airport datastructure[1999], which encodesknowledgeof
how to (sub-optimally)navigatebetweenany pair of statesin
theMDP. They areconcernedwith one-shotgoalsof achieve-
mentanddonothandletradeoffsbetweendifferentgoals,nor
do they allow modificationof the reward function. Thesec-
ondtraditionfollowsthework of Precupetal. [Precup,2000;
Sutton et al., 1999], which shows how to knit togethera
hand-craftedsetof regionsandmacrosinto a singleplanby
solving a meta-level decisionprocess. This approachcor-
rectly handlespropagationof information betweenregions
andboth Hauskrechtet al. andParr extend it with methods
for automaticallydevelopingmacrosby selectingsub-goals
asmacrotargets. The latter approachesrequirecertainlim-
iting assumptionsand yield, typically, exponentially many
separatemacrosfor a given region. Our goal is to leverage
the strengthsof thesetwo approaches:we usethe naviga-
tional insightsof HDG andtheairportwork, acceptingtheir
sub-optimalresults,but incorporatethe region and macro-
handlingapproachof Precupet al. which allows us to treat
moregeneralgoalfunctions.Theapproximationsthatleadto
sub-optimalperformanceallow us to generateonly polyno-
mially many macros,ratherthantheexponentialnumberthat
Hauskrechtet al. andParr requireto achievenear-optimality.

2 Separating Planning and Acting
We addresstheproblemof planningin domainsin which the
world dynamic— the stateandactionspacesandtransition
effectsof the actions— is fixed andreward function of the
MDP is unknown, but the statesin which rewardcanbe re-
ceived are limited to a small, fixed subsetof the full state
space.In otherwords,the world is stationary, but the goals
or tasksof theagentchangeover time. Navigationdomains,
in particular, oftendemonstratethisproperty— anagentmay
exist in a limited, unchangingmapwith a fixedsetof primi-
tive actions,but berequiredto navigateto differentlocations
at differenttimesor with changingpriority. For example,a
delivery robotmight know that therearea fixedsetof possi-
ble destinations,but which areto receivepackages(i.e.,gen-
eratereward) dependson the particularassortmentof pack-
ageson a givenday. We areattemptingto separatethenavi-
gationproblemfrom theparticularsof rewardassignmentsto



improve aggregateperformanceover multiple problemsolv-
ing instances.
�

We exploit two propertiesto achieve this sep-
aration: approximateindependenceof goals and a sparse,
Markov transitionfunction. The first allows us to develop
separatenavigation macrosthat describehow to seekeach
goal alone,while the secondallows us to isolatethe effects
of rewardsin onesubsetof the statespacefrom otherareas.
Notethat,thoughwe conceptualizethis approachin termsof
roboticnavigation,it is not restrictedsolelyto suchdomains.
Any fixeddomainwith multiple goalsof achievementmeets
theseconditions(thoughwe introduceotherrestrictionslater
thatmaybemoredifficult to fulfill).

We refer to the set of goal stateswithout reward assign-
mentsasaproblemdomainandthecombinationof goalstates
with specificrewardvaluesasaprobleminstance. Ourmodel
is a slight generalizationof that employed by, e.g., Precup
et al. [2000;1999], Hauskrechtet al. [1998], or Parr [1998],
who all developmacrosonly by consideringtheexit periph-
ery states(e.g.,“doors”) betweenmacro-regions,but who do
not accountfor goal statesthat may occur within a macro-
region. We alsoput differentconstraintson possiblereward
valuesthan do someof theseprior authors: Hauskrechtet
al. andParr bothconstrainthepossiblevaluesoccurringat a
peripheralstateto fall within someboundedrangewhile we
boundpossiblevaluesonly to benon-negative.

Intuitively, our approachdependson the observation that,
for aproblemdomainwith asinglegoalstate,thestructureof
the optimal policy for achieving that goal is independentof
rewardscale1: thesameseriesof actionsmaximizeaggregate
rewardwhethertheparticularrewardinstancefor thatgoal is
oneor onethousand.A macrofor achieving aparticulargoal
remainssuitableno matterhow the reward value is scaled.
We thereforedeveloponemacrofor achieving eachpotential
sub-goalwithin the full MDP independentlyfrom all other
sub-goals.In a partitionedMDP statespace,we alsodevelop
independentmacrosfor moving from every region to eachof
its neighbors.Givenaparticularinstantiationof arealreward
function(e.g.,a particularassortmentof packagesandplaces
to deliver them),were-scaletheindividualmacrosin propor-
tion to their instantiatedrewardsandcombinetheminto afull
policy in timeandspacethatis linearin thenumberof states.

Of course,sub-goalsarenot truly independentandignor-
ing onewhile achieving anothermaybedeleterious.To fully
addressthis difficulty requireshandlingthecombinatoricsof
multipleinteractingsub-goals.Theapproachesof Hauskrecht
etal. andParr treattheseinteractionsexactlyandyield macro
cachesthat achieve an � -optimal value for any possiblere-
wardfunction(overaboundedrange),but they cannotescape
the combinatoricdifficulty and, in the worst case,their ap-
proachesproducemacrocachesthat areexponentiallylarge
in thenumberof exit peripherystates.We explicitly sacrifice
optimality in favor of a guaranteeof a polynomial number
of macros. Parr doesdemonstratehow to begin with a few
macrosfor a region andto addnew macroswhenthecurrent
cacheis found to be inadequatefor a particularproblemin-

1Thoughit doesdependon the signof the reward: negative re-
wards,or penalties,yield structurallydifferentpoliciesthando pos-
itive rewards.Currently, we addressonly non-negative rewards.

stance.Unfortunately, his approachrequiressolvinga linear
programto detectinadequacy andoneor moreMDP planning
problemsto updatethecache— bothrelatively expensiveop-
erations— andputsno boundon thenumberof macrosthat
thecachewill accumulateover time. Our approachretainsa
small fixedsetof “basis” macrosfrom which we composea
final planfor a region in a single,lineartime pass.

3 Formal Model
Here,we overview theterminologywe usein this paper. We
briefly summarizethe backgroundof Markov decisionpro-
cesstheory;for amorein-depthdiscussionof MDPs,werefer
theinterestedreaderto Puterman’s text [1994].

3.1 Markov Decision Processes
A Markov decisionprocess,�����
	���
���������� , is a descrip-
tion of a synchronouscontroldomainspecifiedby four com-
ponents:a statespace, 	����������������! " ! #����$&% , of cardinality' 	 ' �)( ; a setof primitive actions, 
*����+,����+-�.�" ! " #��+-/-% ,
of cardinality

' 
 ' �10 ; a transition function, �324	65
758	:9 ; <=�">"? ; and a reward function, �@2A	B9 C .
The transition function, written �EDF�!G ' �H��+-I , determinesthe
probability of arriving in state ��G upontaking action + from
state � and must representa valid probability distribution:J �H��+LKNMPORQ.ST�EDU��G ' �H��+VIW�X> . An agentacting in a given
MDP is, at any time step, locatedat a single state �ZYL	 .
The agentchoosesan action +[Y\
 and is relocatedto a
new state,��G , determinedby the transitionprobabilitydistri-
bution �EDU��G ' �H��+VI , whereuponit receivesreward �]DU��G^I . The
goal of the agentis to maximizeits aggregatedreward over
time. Therearea numberof modelsof time-aggregatedre-
ward, but we will addressonly infinite horizon discounted
rewardsin which the agent’s expectedfuture reward is dis-
countedby a constantmultiplicative factor, <8_\`bac> , at
eachtime step.Thetotal rewardreceivedoveraninfinite op-
erationallifetime is dfehg�ei� K�jkRl#m ` k �nDF� k I , where � k is the
statethe agentreachesat time o . The goal of planningin
an MDP context is to locatea policy, pq2r	s9X
 , that de-
terminesan action for the agentfor any possiblestate. In
general,p canspecifya distribution over actionsbut an im-
portanttheoremof MDP planningsaysthat,for afixedMDP,� , thereis a policy, putv , thatmaximizeswx; d eUg�e ? andthatthat
policy is deterministic[Puterman,1994]. Associatedwith a
given MDP and policy is a value function, yEz{2|	}9 C ,
which recordsthe total expectedaggregatereward achieved
by anagentthatstartsin state� andactsaccordingto p for-
ever. Thevaluefunctionfor a particularMDP andpolicy can
befoundexactlyby solvingtheBellmanequations, requiring~ Dh(���I timeand

~ Dh( � I space.
In this work, we are concernedwith MDPs having only

partiallyspecifiedrewardfunctions.In particular, we assume
thatwe aregivena setof goal states, �8�)�!�����P���.�" " ! ��P�H�-% ,
but thatmany possiblerewardfunctionsareallowed,subject
only to the constraintsthat

J ��Y[	����nDF��I��7< and
J ��YD
	��&��I����]DU��I���< . We will refer to an MDP with only a

specificationof a setof goal states,�����R	���
x��������� asa
problemdomainandan MDP with a fully specifiedreward
function(undertheaboveconstraints),�s�)�
	T��
���������� , as
a probleminstance.



For the purposesof this discussion,we will refer to the
original
�

MDP asthebase-level or primitive MDP andits as-
sociatedstatesandactionsasatomicstatesandactions.Re-
gions and macros,which we definefully below, constitute
meta-statesandmeta-actions,respectively, in a higher-level
semi-Markov decisionprocess.

3.2 Sub-Goals, Macros, and Macro Caches

In our approach,a macro is a plan for achieving one goal
statein isolation. To modelthis, we definesub-goalasa re-
strictionof the reward functionof anMDP to a singlestate,� : ���VDF��In�c> when ���[� and ���-DU��I]��< otherwise. (As
notedabove, for a lone goal state,the scaleof �]D
�,I is im-
materialto the optimal plan for achieving it.) A macro, p � ,
for achieving a sub-goal, � , over an MDP, � , is a policy
over � where � is restrictedto �T� , and can be found via
astandardtechniquesuchaspolicy iteration.A macro cache,� �c�!p ��� ��p ��� �! " " |p ��� % is simply a setof suchmacrosfor
achieving distinctgoals�����P���.�" " ! P�H� .
3.3 Regions, Peripheries, and Partitions

By region we will denotea subsetof thestatespace,�s�8	 ,
alongwith thecorrespondingtransitionandrewardfunctions
when restrictedto � , � v 2���5�
�5�� 9 ; <=�">"? and� v 2���9 C . (When necessaryfor clarity, we will use
subscriptsto denotetheunderlyingstatespaceof a function,
e.g., � S vs. � v .) We adda special,zero-reward absorbing
state,� , to eachregion anddirectall outgoingtransitionsto
it:
J ��Y��x��� v DU� ' �H��+VI�� K M O Q.S=� v � S DU��G ' �H��+VI . Thereward

function is thecorrespondingrestrictionof thebase-level re-
ward function:

J �iYZ�x��� v DF��IE�s� S DU��I . Thus,the region� itself constitutesaproperMarkov decisionprocessandwe
candefinepoliciesandmacrosover it. We denotethesetof
goalstatesoccurringwithin a regionby � v ���� �� .

Theexit peripheryof a region, ¡ v , is thesetof stateshav-
ing non-zerotransitionprobability out of a region: ¡ v ����¢Y��s2�� S DU��G ' �H��+-I�£�<V% for some��G�Y�	¤�¥� . Informally,
theexit peripherystatesare“doorways”: statesthatmustbe
reachedbeforeanagentcantransitionfrom oneregion to an-
other. Correspondingto exit peripheriesareentranceperiph-
eries: ¦ v �b���EYi�[2H� S DU� ' ��GF��+VI�£8<,% for some��GuY�	��¥� .
The peripherystatesarea separatingset: the valuefunction
within a region is independentof the valuefunction outside
theregion,giventhevaluesat its peripherystates.2

A partition of anMDP is a division of theMDP into sep-
arateregions that collectively cover the statespace: 	��§¢¨ � ¨ . Weconstraintheregionsto bedisjointexceptfor their
peripherystates:

Jª©|«�­¬H�#� ¨  ��¯®��­¡ vª°H± ¡ v=² , andwenote
thatevery exit peripherystateof someregion correspondsto
anentranceperipherystateof anotherregion.

2In thesensethat,giventhevaluefunctionat theexit periphery
statesfor a region, onecanexactly calculatethe valuefunction at
all other stateswithin that region with no further information. In
particular, giventheexit statevalues,knowledgeof valuefunctions
outsidetheregion is irrelevant to computationof thevaluefunction
within theregion.

4 Applying Macros and Regions

Wecannow describeourplanningandexecutionalgorithmin
full detail. Local macroplanninghandlestradingoff the im-
portanceof achieving differentgoalswithin a singleregion,
while theregion-integrationalgorithmintegratesthelocal re-
sultsinto a globalplan.

4.1 Building and Executing from a Macro Cache

Ourmodelof macroplanningdiffersslightly from thatof Pre-
cup et al., Hauskrechtet al., andParr. They treatmacrosas
discreteactionsthat “solve” a givenMDP or region in a par-
ticularwayandselectasinglemacroperregionfor eachprob-
lem instance.Our approachtreatsmacrosasbuilding-blocks
which, givena probleminstance,we mergeto form a single
policy for the region. In an intuitive sense,you canthink of
ourmacrosasbeing“basispolicies” from whichweconstruct
full policiesfor a region.

Given an MDP problemdomain � with goal states�L��"�����P���.�! " ! ��P�H�H% , we constructa macrocachecorresponding
to the goal statesof � :

�=³ �´�!pµ� � ��p=� � �! " " #��p=� � % . Intu-
itively, eachof thesemacrosrepresentsthe “shortestpath”
informationfromeachatomicstateto oneparticularsub-goal.
Associatedwith eachmacrois its correspondingvaluefunc-
tion, y � .

Now, givena probleminstance,we re-scaleeachmacro’s
valuefunctionaccordingto theinstantiatedrewardof its goal
state: ¶y � DU��Ii�·�]D
�,I�y � DF��I for all �­Yq	 . In general,we
will usea tilde to indicatea functionafter incorporatingthe
effectsof a probleminstance,while theplain nameindicates
the instance-independentversion. ¶y � is now a measureof
how “close” every stateis to � relative to the importanceof
attaining � under � . We wish to constructa singlepolicy, ¶p ,
that combinesthe information from eachmacro. The sim-
plest rule, which we employ here, is to choosethe action
correspondingto the macrowith the greatestvalue at each
state: ¸TDU��IE�\¹.º�»�¼�¹�½� Q ³ � ¶y � DU��I�% and ¶p¯DF��I¢�[pª¾À¿ MÂÁ DF��I . In a

deterministic,continuouscontrolprocess,thiscorrespondsto
splitting the world into a Voronoi partition aroundthe goal
pointsandgreedilychoosingactionsto seekthenearestgoal.
Unfortunately, MDPs areneitherdeterministicnor continu-
oussothis rule is only anapproximationandit canyield sub-
stantiallysuboptimalpolicies. Nevertheless,we find that it
performsreasonablywell in empirical investigations,aswe
demonstratein Section5. This rule doeshave the benefitof
beingquiteefficient to implement;for eachprobleminstance
it requirestime and spacelinear in the numberof atomic
states,while exact solutionrequiresgreaterthancubic time
andquadraticspace.In fact,we neednot evenfully generate¶p — we cansimply computethe appropriateaction for the
agentto take at its currentpositiongivenour macrosandour
knowledgeof the reward instantiation.This is still not good
enoughto overcometheexponentialsizeof many interesting
statespaces,however, sowe turn our attentionto partitions,
which offer thepossibilityof hierarchicallydecomposingan
MDP andrealizingexponentialimprovements.



Procedure RegionPlan( � )
if � is primitive

foreach Ã&Y�¦ v¶� v DUÃ�IÄ�{¼�¹.½� Q ³�Å � ¶y � DUÃ�I�%
else

foreach sub-region, � ¨ of �
RegionPlan( � ¨ )

SolveShortestPaths( � v §¢¨ ¡ vµ° , ¶y )

Figure1: Pseudocodefor theregionplanningalgorithm.

4.2 Planning and Acting with Regions
Wefirst notethatindividualregions,aswehavedefinedthem,
constitutecompleteMDPs,sowecanconstructmacrocaches
over them,asdescribedabove. Thequestionbecomesoneof
communicationbetweenregions:how doestherewardfunc-
tion instantiationin one region affect the choiceof macros
in otherregions?For this purpose,we follow Hauskrechtet
al. andusethe exit peripherystates.In their model,macros
aretreatedasdiscretemeta-actionsandregionsasmeta-states
which togetherconstitutea semi-Markov decisionprocess.
As Precupet al. have demonstrated,solution of the semi-
MDP selectsa specificmacroto executein eachregion and
yieldsa planthat is optimalwithin thespaceof policiesrep-
resentablewith only theavailablemacros.

In our algorithm,macrosarenot thoughtof asdiscreteac-
tionsbut aspartsto becombinedinto a singlepolicy specific
to a region andparticularreward instantiation. Planningin
the partitionedspaceis not a questionof choosingbetween
macros,but of propagatingthe influenceof thereward func-
tion betweenregions.Fortunately, this influenceis quantified
for usby thevaluefunction, y � , associatedwith goal � . We
canusethe peripherystates,¦ v and ¡ v , to propagatethis
valueinto adjacentregions. Recallthatexit peripherystates
exist in multiple regionssimultaneously, andthatanexit pe-
ripherystatefor someregion �¥® is alsoanentranceperiphery
statefor someotherregion � ¨ . Thevaluefunctioninducedby
a goalstate,��YÆ� ¨ , at anentranceperipherystate,�xY�¦ vª° ,
canthusbetreatedasarewardat its correspondingexit state,�Ç��ÈÉY�¡ v=² . We treatexit peripherystatesas“synthetic
goals”: placeholdersthathave no realrewardfunctionthem-
selves,but to whichwe assignestimatedrewardbasedon the
real rewardsof a probleminstance.We denotethesynthetic
reward imputedat exit state È by ¶� v ² DRÈªI . It is important
to notethat this syntheticrewardexistsonly in theregion for
which È isanexit peripherystate,notin any regionsfor whichÈ is anentranceperipherystate.Thus,anagenthasincentive
to leave a region via an exit state,but no incentive to return
onceit leaves.

The combinationof goals and syntheticgoals, coupled
with the value functions,forms a weightedgraph. The in-
sight of HDG and the airport datastructureis that we can
treatsuchgraphsasdeterministicdistancegraphs( y is in-
verselyrelatedto distancevia ` ) andsolve themefficiently
with shortest-pathalgorithms. This is approximatebecause
of non-determinism,but for large distancesand fairly uni-
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Figure2: An examplesyntheticmaze.Thestarsymbolsde-
note goal states,lines and thick lines are walls, and small
squaresare“doors” which allow transitionsbetweenrooms
in spiteof walls.

form transitionfunctions,the law of large numbersensures
achievedvalueswill becloseto our estimates.This leadsus
to a natural, recursive algorithm for planningwith regions,
given in Figure1. Regionsareeitherprimitive (possessing
no sub-partitions)or complex. For a primitive region, � , we
apply the value-estimationrule of Section4.1 to determine
theinfluenceof goalswithin � on its entranceperiphery. For
a complex region, we recursively plan over its sub-regions
andthenapply a modifiedshortest-pathsolver to determine
which goal is mostimportantto achievefrom eachperiphery
state, È . Theseestimatesnow form ¶�nDhÈªI , which allows us
to tradeoff headingfor local goalsagainstheadingfor exits
whenacting.

We notethat the planningalgorithmdoesnot form a full
policy over the MDP, but only finds valueestimatesat exit
peripherystates.Theagentactslocally by choosingbetween
macrosassociatedwith thegoalandperipherystateslocal to
its currentprimitive region,asin Section4.1. Thus,actionis
nearlyconstanttimeandplanningrelativeto agivenproblem
instanceis polynomial in the numberof goal andperiphery
statesper region. We discussthe asymptoticsof this algo-
rithm in Section6.

5 Empirical Performance Evaluation
Althoughwe areultimately interestedin handlingextremely
large MDPs, we begin by empirically examining the per-
formanceof our planningmechanismsin small domainsfor
which exact solution is still feasible. We examineonly the
quality of solution here; we defer issuesrelatedto compu-
tational complexity and asymptotictime and spaceperfor-
manceto Section6. Theseresultsare preliminary — they
examineonly small,geographicMDPsandonly binaryparti-
tionsof thestatespace— but they provideaproof-of-concept
demonstrationthatourplanningheuristicsoperatereasonably
in someplausiblespaces.In Sections6 and7 we discussthe
scalabilityof theseresultsandthetypesof MDPswe expect
to beamenableto ourapproach.

We have examinedthe performanceof our approachon a



numberof syntheticmazedomainsof the type illustratedin
FigureÊ 2. This is a grid-world mazewith four actionsavail-
ablefrom eachstate:North,South,East,andWest. If these-
lectedactionsucceeds(with probability Ë ), theagentis taken
to the statein the indicateddirection; if it fails, the agentis
depositedin oneof thethreeotherorthogonalstateswith uni-
form probability. Walls are impermeableandan attemptto
move in thedirectionof a wall (deliberatelyor accidentally)
leavestheagent’sstateunchanged.Doorsaresimplyholesin
thewall — they allow unimpededprogressin bothdirections.

We generatedmazeswith between25 and 900 states,Ë
rangingbetween0.5and0.9,andavariablenumberof rooms
andcorridors.3 In this framework, we performedtwo experi-
ments:oneexaminingtheperformanceof ourmacroplanning
systemon an unpartitionedstatespaceandonewhich splits
thestatespaceinto two regionsandbuilds macrosseparately
for eachregion.

In thefirst experiment,werandomlyselected2,3,or 5 goal
statesin themazeandassignedthemrandomrewardsin the
range Dh<=�">�<�<�? . We solved for the optimal policy, put , with
standardpolicy iterationandbuilt amacrocacheasdescribed
in Section4.1.We constructeda full policy for theMDP, p#Ì ,
by combiningthemacrosusingtheassignedrewardsfor their
sub-goals,andevaluatedthat policy by solving the Bellman
equationsfor the value function at eachstate, y�Ì#DF��I . We
summarizetheperformanceof aparticularpolicy with regret:ÍÍÍÍÍÍ

¼�¹�½M�Q.S ��y t DF��I�Î�y Ì DF��I�%�D�>|Î�`�I
¼�¹�½� Q ³ ���]D
�,I�%

ÍÍÍÍÍÍ  
This quantity expressesthe differencebetweenthe optimal
andconstructedpolicies in termsof the Bellmanerror (the
maximumdifferencein valuefunctions)scaledin proportion
to themaximumrewardachievablein theMDP. Thefactorof>&Î­` scalesvaluefunctionsinto the samerangeasreward
functions.

Over the 864 mazeswe generatedin this experiment,the
meanregret wasonly 1.4%, indicating that our policy con-
struction techniqueis performing reasonablywell over a
rangeof conditionsin thesesmallmazes.The largestvaria-
tion in regretappearsto berelatedto thedistancebetweenthe
goalstates;we founda roughly inverserelationbetweenre-
gretandtheminimumgoaldistance(measuredin Manhattan
distance).This is a consequenceof thegreedygoalselection
weuse:for distant,well separatedgoals,theoptimalstrategy
is to headfor oneandstaytherewhenyoureachit. Optimally
handlingclosegoals,however, requiressubtlerplansthanour
heuristicscangenerate.

In the secondexperiment,we focussedon the largestof
the mazesthat we could solve optimally, generatingmazes
with 400, 600, or 900 states,and introducedonly two goal
states.We partitionedthemazeinto two regionsby locating
thesmallestsetof doorsthatseparatedthetwo goalstatesus-
ing amax-flow/min-cutalgorithm[Cormenetal., 1992]. The
stateson eithersideof thesedoorsformedtheperipheriesof
thetwo regions.Now, with goalandperipherystatesfor each

3900statesis thelimit of our, admittedlynon-optimized,code’s
ability to exactly solve theMDP for anoptimalpolicy.

region in hand,we developeda macrocachefor eachregion
asdiscussedin Section4.2 andevaluatedit in termsof re-
gret with respectto an optimal policy for the full maze. In
the360MDPswegeneratedfor thisexperiment,themeanre-
gretof themacros-over-partitionspolicieswas0.4%— larger
than the regret of macrosover an unpartitionedstatespace
(which achieved0.03%regreton thesesamemazes),but not
catastrophic.4 Weagainobservedaninverserelationbetween
regret andManhattandistance,thoughnow doors(i.e., exit
peripherystates)mustalsobeconsideredgoals.

6 Toward Very Large State Spaces

Theempiricalresultswehavepresenteddemonstratethatour
macroplanningsystemperformsreasonably, albeit subopti-
mally, in small statespaces.This representsbut a first step
toward our ultimate goal of treating extremely large state
spaces;in ourongoingwork weareextendingour implemen-
tation to handlevery large domains(e.g.,domainsspecified
by a largenumberof discretevariableswhosecross-product
yieldsanexponentiallylargestatespace).In this section,we
give asymptoticargumentsabouthow we expect our tech-
niquesto performin thesedomains.

The major leveragesthat we intend to exploit in scaling
thesealgorithmsarethoseprovidedby hierarchicalpartition-
ing andsolutionreuse.Single-shotexactsolutionof anMDP
with ( statesrequiresat least

~ DU(Ç��I timeand
~ DU( � I space

(to solvefor thepolicy andstoreit) while ourmacroplanning
methodrequires

~ DFÏV(Ç��I time and
~ DU( �TÐ ÏV(�I spacefor

anunpartitionedMDP with Ï goalstates.Theimportantim-
provementcomeswhenwe considerregions: assumethat a
region (e.g.,anentireMDP) with Ï goalstatesis partitioned
into Ñ regions,eachof size

~ Dh(xÒ�ÑVI , andthat therearea to-
tal of ¡ peripherystatesconnectingtheregions. If we solve
the shortestpath problemwith Ï applicationsof Dijkstra’s
algorithm[Cormenetal., 1992], thetimeto executetheplan-
ning algorithmfor a givenreward instanceis recursively ex-
pressedas �EDU(�I��)Ñ��EDh(xÒ�ÑVI Ð Ï-¡qÓ^Ô�»µDh¡ÕI . If the regions
aresparselyconnectedand ¡Ö� ~ DRÑVI , thenthis recurrence
hasthesolution �EDh(�I¥��×nDU(�I . Thus,we spendonly linear,
ratherthancubic,time perprobleminstance.Pre-processing
a problemdomainto locatethe macrosinitially is alsoeffi-
cient: if partitioningstopswhentheMDP hasbeensplit into~ Dh(xÒ.Ø"I regions of someconstantsize, Ø , then the time to
generateall macrosis

~ Dh(�Øf�!I andthey canbestoredin space~ Dh(�Ø � I . Furthermore,this stepis easilyparallelizable:the
solutionof onemacrois independentof all others. Finally,
we canprobablyachieve yet more improvementsby ignor-
ing partsof the hierarchyirrelevant to a particularproblem
instanceor by cachingthe value function only at periphery
statesandregeneratingmacroslocally asneeded.

Theseresultsrepresenta substantialimprovementin the
complexity of the solutionof MDPs. Whenhandlingmuta-
blerewardfunctionswith solutionreuse,weachieveone-shot
linearplanningtime andat leastlinearper-episodeexecution

4We attribute the improvementin regret from the previous ex-
perimentto largermazeswhich leadto a greaterproportionof large
inter-goaldistancesandsmallregrets.



time, asopposedto cubicper-episodeplanningtime. A crit-
ical questionÙ is how to hierarchicallyselectregions.For best
performance,we must have roughly balancedregions with
smallperipheries.This questionhasnot beenwell addressed
in theliteraturebecauseit is hardto definewhatconstitutesa
“good” partition. We believe thatour asymptoticresultscan
provideanoperationaldefinition— anoptimizationcriterion
basedon estimatedsolutiontimeandspacecomplexity.

Unfortunately, our bestasymptoticresultsarestill insuffi-
cient for extremely large statespaceswhere ( itself is ex-
ponentialin the numberof statevariablesandperhapseven
enumeratingthestatespaceis impossible.This caseis diffi-
cult for all of the region-basedmacromethodswe have dis-
cussedbecausethey all needto examineevery stateat least
oncewhen constructingmacros. We must look for further
extensionsfor progressin this regime. Possibilitiesinclude
solving for macrosonly over a very limited subsetof the
availableregions; discardingsomeperipherystates;reusing
macrosbetweenstructurallysimilar regions; approximating
the value function over someregionswith regressionfunc-
tions,asin neuro-dynamicprogramming[BertsekasandTsit-
siklis, 1996]; or searchingonly over relevant subsetsof the
statevariables,as do Dietterich [2000] and Boutilier and
Dearden[1994].

7 Conclusions and Future Directions
We have demonstrateda methodfor decomposinglargestate
spacesin two ways:spatially, in which thestatespaceis bro-
ken up into semi-autonomousregions,andteleologically, in
whichmacrosareindependentlydevelopedto solveeachsub-
goal of the MDP. The first offers the possibility of decom-
posingthestatespaceinto tractablefragmentswhich canbe
addressedindependentlyandcanbequickly reintegrateddur-
ing anactionphase.Thesecondofferstheability to quickly
adaptto changingrewardfunctions(e.g.,in repeatedproblem
solving instances),giventhat the locationsof thegoal states
arefixed. By employing both, we canpotentially realizea
polynomialreductionin thecomplexity of planning,which is
now a one-timeoperationperproblemdomain,canincorpo-
ratenew reward functionsin linear time, andcanchooseac-
tionsin nearlyconstanttime. Wehavegivenproof-of-concept
empiricalresultswhich demonstratethat theseheuristicsin-
cur only slightpenalties,at leastin smallmazedomains.

Clearly, the questionof real scalability of thesemethods
is yet to beanswered.We foreseeno difficulty, in principle,
in scalingthemup to largermazeworlds. In general,we ex-
pecttheseheuristicsto work well in MDPswith thefollowing
characteristics:

Non-negative rewards Themacro-actionrulewedescribe
in Section4.1 turnsout to be suitableonly for non-negative
rewards. Negative rewards(penalties)are troublesomebe-
causea purely greedyapproach— headdirectly away from
thepenalty— is nottypically effective,in thecontext of other
sub-goals.

Sparse reward function It is critical to thescalingof our
approachthattheMDPhaveonly averyfew goalstates,aswe
mustintroduceamacrofor each.Furthermore,aswedemon-
stratedempirically, the goal statesshouldbe well separated

(in termsof expectednumberof stepsto transitionbetween
different goals),so that thereis little chanceof deleterious
interactionsamongthem.

Many regions with sparse peripheries Thegreatestben-
efit will be achieved whenthe mazecanbe partitionedinto
many small regionswhich canbesolvedindependently. It is
important,though,thattheregionshavesparseperipheries—
i.e.,therebefew transitionsbetweendifferentregionsrelative
to thesizeof each.

Metric transition functions Ourplanningheuristicseffec-
tively usevaluefunctionasa distance.In general,anMDP’s
transitionfunctionneednot representametricspace— it can
have irreversibleactionsand“teleporters”that subvert tran-
sitivity. How well our approachwill apply in suchspacesis
still anopenquestion.

Therearemany usefuldomainsthatexhibit thesequalities;
any taskbasedon spatialnavigation,especiallyin buildings
or streetmaps,with limited goalsof achievement,would be
suitable,for example. We arecurrentlyworking on simula-
tors for suchdomainswith much larger statespaces,which
will providea betterevaluationof thesemethodsaswell asa
testbedfor examiningothertechniques.In addition,we be-
lieve that we canrelax someof the aforementionedrestric-
tions. In particular, we areexaminingapproacheswhich may
allow usto handlenegativerewardsandconstantrewardsover
large regionsof the statespace(e.g., a constantmovement
costdueto batterydrain).
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