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Abstract

Researchin mobile ad-hoc networks has focusedon situations in which nodeshave no control over their
movements.We investigatean important but overlooked domain in which nodes do have control over their
movements.Reinforcementlearningmethodscanbeusedto controlbothpacket routingdecisionsandnodemobility,
dramaticallyimproving the connectivity of the network. We first motivate the problemby presentingtheoretical
boundsfor the connectivity improvementof partially mobile networks and then presentsuperiorempirical results
undera varietyof differentscenariosin which themobilenodesin our ad-hocnetwork areembeddedwith adaptive
routing policiesand learnedmovementpolicies.
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I . INTRODUCTION

Mobile ad-hocnetworking is emergingasanimportant
researchfield with a number of increasingly relevant
real-world applications,ranging from sensornetworks
to peer-to-peerwirelesscomputing.Researchersin AI
and machinelearning have not yet contributed to this
growing field. It promisesto bea rich andinterestingdo-
main for studyingtheapplicationof learningtechniques.
It also hasdirect applicationsback to AI, for example
in the designof communicationchannelsfor groupsof
robots. In this paper, we introduce mobilized ad-hoc
networks as a multi-agentlearningdomainand discuss
somemotivationsfor this study. We apply reinforcement
learningtechniquesto two distinct problemswithin this
domain:packet routing andnodemovement.Using rel-
atively straightforward adaptationsof thesemethods,we
areable to demonstrategoodempirical results.

Mobile ad-hocnetworks have not traditionally been
considereda multi-agentlearningdomainpartly because
most researchin this areahasassumedthat we have no
control over the node movements,limiting researchto
the designof routing algorithms.Eachnodeis assumed
to be attachedto some user or object that is moving
with its own purpose,and routing algorithmsare thus
designed to work well under a variety of different
assumptionsaboutnodemobility patterns.

However, there are many applicationsin which we
can imaginethat someof the nodeswould have control
over their own movements.For example,mobile robots
might be deployed in search-and-rescueor military re-
connaissanceoperationsrequiring ad-hoc communica-
tion. In suchcasesit may be necessaryfor somenodes
to adjust their physical positions in order to maintain
network connectivity. In thesesituations,what we will
term mobilizedad-hocnetworks becomesan extremely
relevant multi-agent learning domain. It is interesting
both in the variety of learningissuesinvolved andin its
practicalrelevanceto real-world systemsandtechnology.

Thereareseveraladvantagesgainedby allowing nodes
to control their own movement.Stationaryor randomly
moving nodes may not form an optimally connected
network or may not be connectedat all. By allowing
nodesto control their own movements,we will show
that we can achieve better performancefor the ad-hoc
network. One might view thesecontrollable nodesas
“support nodes” whoserole is to maintain certain net-
work connectivity properties.As the numberof support
nodesincreases,thenetwork performancealsoincreases.
Given bettermovementand routing algorithms,we can

achieve significantadditionalperformancegains.
It is important to note that there are two levels at

which learningcanbeapplied:(1) packet routingand(2)
nodemovement.We will discussthesetopicsin separate
sectionsin this paper. Packet routing concernsthe for-
wardingdecisionseachnodemustmakewhenit receives
packets destinedfor someother node.Node movement
concernsthe actualmovementdecisionseachnodecan
make in orderto optimizetheconnectivity of thead-hoc
network. Eventhoughwewill usereinforcementlearning
techniquesto tackle both these problems, they must
be approachedwith different mindsets.For the routing
problem, we focus on the issue of online adaptivity.
Learning is advantageousbecauseit allows the nodes
to quickly reactto changesin network configurationand
conditions.Adaptive distributed routing algorithmsare
particularly importantin ad-hocnetworks,sincethereis
no centrallyadministeredaddressingandroutingsystem.
Moreover, network configurationand conditionsare by
definition expectedto changefrequently.

On theotherhand,thenodemovementproblemis best
handledoff-line. Learninga good movementpolicy re-
quiresa long trainingphase,which would beundesirable
if done on-line. At execution time, we should simply
be running our pre-learnedoptimal policy. Moreover,
this movement policy should encode optimal action
selectionsgivendifferentobservationsaboutthenetwork
state;theoverall policy doesnot changedueto changing
network configurationor conditionsand thus doesnot
needto adaptonline. We treat the problem as a large
partially-observableMarkov decisionprocess(POMDP)
wheretheagentnodesonly haveaccessto local observa-
tions aboutthe network state.This partial observability
is inherentto boththeroutingandmovementportionsof
thead-hocnetworking problem,sincethereis no central
network administrator. Nodescanonly observe the local
statearoundthem;they do not have accessto the global
network topologyor communicationpatterns.Evenwith
this limited knowledge, learning is useful becauseit
would otherwisebe difficult for a human designerto
createan optimizedmovementpolicy for eachnetwork
scenario.

I I . RELATED WORK

We draw inspirationfor this work from two different
fields: networking and reinforcementlearning. In the
networking literature,somework on the effect of node
mobility in ad-hocnetworks hasbeendonefor applica-
tions in which movementand topology changesare on
the time-scaleof packet delivery. Nodesare then able



to act as mobile relays physically transportingpackets
from one location to another. Grossglauserand Tse [1]
analyzea strategy in which sourcenodessendpackets
to as many different nodesas possible,which storethe
packets and hand them off whenever they get close to
the intendeddestinationnodes.Li andRus [2] consider
a scenarioin which mobile hostsmake deviations from
predeterminedtrajectoriesto transmit messagesin dis-
connectednetworks. Chatzigiannakiset al [3] consider
the casewherea subsetof mobile nodesareconstrained
to move to supportthe needsof the protocol,andact as
a mobile pool for messagedelivery.

Our work is in a different setting,in which topology
changesare on a much longer time scale than packet
delivery delayconstraints.Nodesmove in orderto form
andmaintainconnectedroutes,ratherthanto physically
deliver packets in a disconnectednetwork. Routing is
thusanimportantaspectof ouralgorithmsthatinfluences
andis informedby movementdecisions.Relatedwork on
routingin mobilead-hocnetworkswhereno controlover
nodemovementsis assumedcanbefoundin [4] and[5],
while the issueof preservinga connectedtopologywith
only someproportionof nodesawake at any onetime is
addressedin [6].

Fromthereinforcementlearningcommunity, therehas
been some interest in applying learning techniquesto
improve network performance.Suchadaptive algorithms
maybebetterableto performwell underwidely varying
conditions. Boyan and Littman [7] applied reinforce-
ment learning techniquesto the problem of routing in
static networks. They showed that a simple adaptive
algorithm basedon the Q-learning algorithm [8] can
out-performa shortest-pathsalgorithm under changing
loadandconnectivity conditions.Peshkin[9] usedpolicy
search rather than Q-learning on the same problem,
whichallowedthesystemto searcha richerpolicy space.
By usingstochasticroutingpolicies,thesystemis ableto
managehigh loadsby finding multiple possiblesource-
destinationpaths.We extend theseideasto the caseof
mobile networks, wherenodeconnectivity is constantly
changing.

Moreover, since we assumecontrol over the nodes’
movements,we can also influence these connectivity
changesby learning a good control mechanismfor
the node movements.Several papersmentionedabove
proposevariousmethodsfor controllingnodeandpacket
movementunderspecificassumptions.In thegeneralset-
ting, we wish to selectoptimal actionsat eachtime step
to maximize the long-term systemperformance.This
type of problem lends itself to reinforcementlearning

techniques[10], wherethegoalof the learneris to max-
imize long-termreward by learningan optimal behavior
policy through simulation. Stone and Sutton [11] and
Bowling andVeloso[12] studiedmethodsfor scalingup
reinforcementlearning techniquesto complex domains
suchasrobotic soccer.

I I I . PROBLEM OVERVIEW

Our mobilized ad-hoc network consistsof one or
more sourcenodes,one or more receiver nodes,and
a numberof other wirelessnodeswithin a constrained
area.All nodesare independentlyinitialized according
to a uniform distribution over this area. The sources
generatepacketsat a constantrateand move according
to a random way-point model. The aim of all nodes
other than the sourcesand receivers is to transmit the
maximumpossiblenumberof packets from the sources
to the receivers.Someof thesenodescanmove so asto
aid transmission,while the restarestationary.

Performanceis measuredby theproportionof packets
successfullytransmittedto the receivers. When inter-
nodelink capacitiesarelimited andbuffer sizesarefinite,
packet dropsmay occurdue to buffer overflow, thereby
decreasingnetwork performance.When inter-node link
capacitiesare sufficiently large comparedto the source
packet generationrates,an equivalentperformancemet-
ric is theaverageproportionof sourcesconnectedto the
receiversover time.

The packet transmissionsuccessprobability achiev-
able in an ad-hocnetwork dependsheavily on various
parametersincluding the transmissionrange� , the num-
ber of network nodes� , and the proportion of mobile
nodes � . Alternatively, we may considerwhat values
of theseparametersare sufficient to achieve a desired
successprobability. Our following resultillustratesthese
relationshipsand gives some senseof the potential
benefitsof having controllablemobile nodesin an ad-
hoc network. It builds upon a theoremby Gupta and
Kumar [13] that sets a bound for the minimum (or
critical) rangenecessaryfor � nodesin a given areato
be fully connected.They statethat for the caseof a disk
of area

�
and � approachinginfinity, the critical range

for the network is ����� �
	���
�� ���������� � , where � � is a
function of � that grows arbitrarily slowly to infinity as
����� . We extend this result to the caseof partiallly
mobile networks.

Theorem1: Let � � betheminimum,or critical, range
neededfor � nodesindependentlyand uniformly dis-
tributed on a given area to form a fully connected
network. If a proportion � ���! #"� , $ an integer, of the



nodesare mobile, then a transmissionrange �%�'& �( � is
sufficient to make it possiblefor the mobile nodesto
move to form a fully connectednetwork. If the range�
is fixed at � � , with � � �! #"� , $ an integer, then a total
number

�
� of nodessufficesfor full connectivity.

Proof: If a proportion � � �) #"� of the nodes
in a � node network being mobile, these �%� nodes
can essentiallymove around to increasethe effective
transmissionrangesof the stationarynodes.For each
fixed node, we have $+*-, mobile nodes.Thus, each
stationarynodeis able to form one link to neighboring
nodeover a distanceof $ � � usinga setof $.*/, mobile
nodes as relays. Since a fully connectednetwork of
� nodesrequiresonly �0*1, links, each link can be
allocateda set of 	 �! #" �2�� 	 � 3  #" �54 $6*�, mobile relay nodes,
allowing eachstationarynodeto transmita full distance
of $ ��� rather than ��� . Since �87 � �

� , from Gupta and
Kumar’s theoremwe know that if all the nodeswere
stationary, then the critical range for � 7 nodeswould

be �9�!:;�-� � 3 � �<��
�� � : ��� � :� � : = �<��
�� �������� � 3 �>���@? $ .
However, since A�$B*C,!DE� nodesarenow mobile,making
the transmissionrange $ times the original range,we
only need a range of �F� & �� for each node; thus a
sufficient range for fully connectivity of the partially
mobile network is �G�H& �( � .

Using the same reasoning,it is easy to show the
secondpart of the theorem.Let us fix the rangeof the

� nodesin the network to be �9�I� �
	���
�� ���������� � . We
needto show that with �87 � �

� total nodes,of which
�%� 7 are mobile, each with range � � , we can form a
fully connectednetwork. In this case, we only have
�87 7 � �

�KJ stationarynodes.Similar to theabove,we know
that the critical rangefor a network with �87 7 nodesis
�
	���
�� �3 J ��� �ML 3 J �� �3 J = ��� $ . Since �%�87 nodesare mobile,

� �1�! #"� , we actuallyonly needa rangeof & � �� �N��� .

This result shows that as the proportion of mobile
nodes increases,the transmissionrange � neededfor
full connectivity decreasesfor given � (or the minimum
valueof � requiredgiven � decreases).Theseare loose
upperboundssincethey allow for up to all links of the
fully connectednetwork being greaterthan �! #"� of the
maximumlink length.

For morerealisticsettingswith smallerfixed � , wecan
obtaincorrespondingempirical resultsfor the minimum
range� necessaryfor achieving nearly full connectivity
( 4 O!P!Q ). We ran some trials with � nodes, R PTS
� S U@V!V , independentlyinitialized according to the

uniform distribution on a unit square.We find that

the approximation� 7� � �W��
�� �� � X � � gives a good
estimateof thecritical rangeto within a smalldecreasing
factor. We alsocalculatedthemeanproportion Y of links
that weregreaterthanhalf the critical range.

� critical mean std. dev.
range proportion, Y

25 R!Z V � 7� 0.2735 0.1233
50 ,!Z\[ � 7� 0.3265 0.0785
100 ,!Z\[ � 7� 0.2353 0.0647
200 ,!Z\] � 7� 0.1992 0.0390
400 ,!Z\] � 7� 0.1588 0.0258

Noting that a substantialproportion of the links are
less than half the critical rangeleadsto the conclusion
that the boundsgiven above are quite loose, i.e. the
necessaryvaluesfor eachparameter� , � and � , given
fixedvaluesfor the othertwo parametersarelower than
the sufficient valuesgiven by Theorem1. As such,we
would expect potentially betterresultsunderconditions
of global knowledge and rapid optimal deployment of
mobile nodes.

In most realistic settings,nodesonly possesslocal
knowledge and movement speed is limited. Thus it
becomesharderto reachthe potentialoptimal network
performance.Nevertheless,we can develop learningal-
gorithms that perform well given theseconstraints.In
the remainderof the paper, we develop such learning
algorithmsfor movementandrouting,andcomparetheir
performanceagainstboth non-learningand centralized
algorithms,whereperformanceis measuredby the pro-
portionof packetssuccessfullytransmittedundervarious
network scenarios.

IV. Q-ROUTING

To optimize the performanceof the ad-hocnetwork,
we need to design good control algorithms for the
supportnodes.Thenodeswill needto adaptto changing
conditionsandcommunicationpatternsusing intelligent
routing and movement algorithms. We focus on the
routing problem hereand give a brief overview of the
movementproblem,for which resultswill be presented
in greaterdetail in a forthcomingpaper.

Q-routing [7] is an adaptive packet routing protocol
for static networks basedon the Q-learningalgorithm,
which we adaptfor usein mobile ad-hocnetworks.The
algorithm allows a network to continuously adapt to
congestionor link failureby choosingroutesthatrequire
the leastdelivery time.Whena routebecomescongested
or fails, Q-routing learns to avoid that route and uses



an alternatepath. Due to its adaptive nature,we might
expectthatQ-routingwouldalsowork well in themobile
ad-hocsetting.

Q-routing is a direct application of Watkins’ Q-
learning [8] to the packet routing problem. Q-routing
is a distributed routing schemewhereeachnodein the
network runs its own copy of the Q-routing algorithm.
A node ^ facesthe task of choosingthe next hop for
a packet destinedfor somereceiver node _ . Using Q-
routing, it learns the expecteddelivery times to _ for
eachpossiblenext hop ` , whereeachpossiblenext hop
` is a neighbornodeconnectedto ^ by a network link.
Formally, Q-routingkeepsQ-tablesaBb for eachnode ^
andupdatesthesetablesat eachtime period c asfollows:

a bd A�_feg`#D � A�,8*ihjD�a bd  #" A�_feg`#DlkihjA�m bd konqp rs aBtd  #" A�_feKufD�D�e
where Vv= h = , is parameterthat controlsthe learning
rate, and m d is the time the currentpacket spenton the
buffer or queueat node ^ beforebeingsentoff at time
period c .

Q-learningestimatesthe wyx{z}|
~ or �M�)��c , � , associated
with eachstate _ , with � � nqp r s a b A�_feKufD . In our case,
the value of a state is the estimatedtime for delivery
of a packet from the current node ^ to destination _
via node u . Once the nodeshave learned the values
associatedwith eachstate-actionpair, they simply ex-
ecutea greedypolicy to behave optimally. Whena node
receives a packet for destination _ , it sendsthe packet
to the neighbor ` with the lowest estimateddelivery
time a b A�_feg`#D . In experimentaltrials,BoyanandLittman
found that fast learningrates(around0.5) worked well
sinceit is beneficialfor the network to adaptquickly.

Adapting Q-routing to the mobile ad-hoc network
routingdomainis fairly straightforward.Neighbornodes
aredefinedas the nodeswithin transmissionrange.The
maindifferenceis that theneighbornodes̀ mayappear
and disappearquite frequently due to node mobility.
Whena nodè movesout of range,we settheestimated
delivery time to _ via ` to � , i.e. a b A�_�eg`�D � � . When
a node ` moves into range,we optimistically set the
estimatedtime to 0, i.e. a b A�_feg`#D � V . This optimistic
biasencouragesexploration.That is, nodê will always
try sendingpacketsvia a node ` that hasjust comeinto
range.If this action resultsin a high estimateddelivery
time, then node ^ will quickly revert to its original
behavior since a b A�_feg`#D will quickly be updatedto its
true value.On the other hand,if this action resultsin a
good delivery time, then node ^ will continueto send
packetsvia node ` .
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Fig. 1. A comparisonof directional routing vs Q-routing in
a network with 10 sources,15 mobile agents,and one receiver.
Simulationswere run over 20 initialization positionsand 5 source
movementscenariosfor eachdifferent initialization. For eachbuffer
size, averagesover all of thesetrials are depicted,with error bars
denotingonestandarddeviation.

V. EMPIRICAL RESULTS

Our empirical resultsgive an indicationof the power
of utilizing adaptive learning techniquesin designing
movementand routing algorithmsfor mobilized ad-hoc
networks. The setupis describedin SectionIII. There
aresource,receiver, andsupportnodesin a squaregrid,
usually 30x30 in size. Each node has a transmission
range of 6. The support nodes may either be fixed
stationarynodesor mobilizedagentnodes.Therearetwo
time scales:onefor transmissionandonefor movement.
During eachmovementtime step,the nodecan choose
one of its movement actions and perform 10 packet
transmissions.Eachpacket transmissionis theresultof a
Q-routingdecisionandupdate.Sourcesgeneratepackets
every two transmissiontime steps,and the numberof
packets received by a node in any time period is only
limited by the node’s buffer size.

A. Q-routing vs directional routing

To evaluatethe performanceof Q-routing,we imple-
ment a global knowledge routing policy that is given
informationaboutthe receiver location.This is donefor
comparisonpurposesonly; in reality nodesgenerallydo
not have accessto suchinformation.With this informa-
tion, nodescan route eachpacket towards the correct
destinationby forwarding the packet to a neighboring
node that is closest to being in the direction of the
receiver. We call this our directional routing policy.
Specifically, our implementationforwardsa packet to the



Fig. 2. Using the directionalrouting policy, packets often become
congestedon thetrunk of thenetwork tree(Top).UsingQ-routingon
thesameexperimentalsetup(notethat the sourceandreceiver nodes
arein thesamepositionasthe both figures),themobile nodesin the
ad-hocnetwork spreadout to distributepacket load(Bottom).Sources
areshown assquares,mobilenodesarecircles,andthereceiver is an
encircledsquare.Bothfiguresshow thesimulatorafter10000periods,
using the sameinitialization andmovementfiles.

neighborthat is closestto being in the direction of the
receiver, up to a maximumdeviation of 90 degrees.If
no suchneighborexists, then the packet is dropped.

We comparedQ-routingwith directionalroutingunder
a variety of different scenarios.In almost all cases,
Q-routing performsbetter than directional routing. Es-
pecially when the nodes are limited by small buffer
sizes, Q-routing performs significantly better. Results
for a typical set of network scenariosare shown in
Figure 1. This is due to the fact that Q-routing will
createalternatepathsto the receiver as soonas a path
becomescongested.Thus, packets will be less likely
to be droppeddue to buffer overflow causedby path
congestionor limited buffer sizessince alternatepaths
will be constructed.In directionalrouting, on the other

hand,often certain pathswill becomeoverloadedwith
traffic, causingsignificantpacket drop.

Q-routing outperforms directional routing even in
caseswherebuffer size is not a direct constraint,such
as the caseshown in Figure 1 wherethe buffer size is
10. This illustratesthe underlying problem of network
capacity. Since the total sourcepacket generationrate
exceedsthe transmissionrateof any oneinter-nodelink,
directionalroutingmaystill run into troublewith bottle-
necklinks regardlessof buffer size.Thenetwork capacity
achieved using Q-routing is larger sincemore alternate
pathsarecreatedaroundsuchbottlenecks.Furthermore,
directionalroutingis unableto find circuitouspathsfrom
sourcesto the receiver. Since it only routespackets to
neighborsthat are in the direction of the receiver, any
path that requiresa packet to be forwardedaway from
the receiver for oneor morehopswill never be found.

Thesecomparisonsare doneusinga fixed movement
policy we will call our centroidal movementpolicy.
Under this policy, a node that is holding a connection
will attempt to move to the centroid of its connected
neighbors,which increasesthe likelihood of preserving
theseconnectionsover time. If it is not holding a con-
nection,thenit simply movesaboutrandomlysearching
for a new connection.Thus, the next hops determined
by the routing policy strongly influence the direction
of movement,sincethe next hopsdeterminethe node’s
connectionsto its neighbors.

When a randommovementpolicy is usedinsteadof
the centroidalpolicy, Q-routing exhibits inferior perfor-
mancerelative to directional routing. One example is
given in Figure3, which shows the evolution of average
systemperformanceover time in a typical scenario.The
tablebelow givesaveragesover 100 differentscenarios:

Movementpolicy Routingpolicy Average
performance

Centroidal Q-routing .924
Centroidal Directional .896
Random Q-routing .498
Random Directional .519

This phenomenonis due to the fact that Q-routing
influencesthe centroidal movement policy in a posi-
tive manner, whereasit is unable to influence a ran-
dom movementpolicy. In somesense,Q-routing with
centroidalmovement is able to find circuitous source-
destinationpathsand rope them in using the centroidal
movement.

Due to this type of influence,Q-routing and direc-
tional routing result in very different configurationsfor
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the network when coupled with centroidalmovement.
Directional routing tendsto form a network backbone,
which usually comprisesthe most direct route to the
receiver for a large portion of the sourcenodes.Other
sourcessendpacketstowardsthis backbone,resultingin
a tree-like network configuration,asshown in Figure2.
Q-routing,on the other hand,always seeksthe shortest
path towards the receiver, even when buffer sizes are
not a constraint.This results in a fan-shapednetwork
configuration,alsoshown in Figure2, whereeachsource
has its own shortestpath to the receiver as long as
thereare a sufficient numberof mobile nodesto create
thesepaths.From this observation,we canbegin to see
that thereis an interplay betweenthe choiceof routing
protocolandthe movementpolicy of the mobile nodes.

This leads to a subtle but telling explanation for
the improved performanceof Q-routingover directional
routing. In Q-routing, the mobile agentnodestend to
become more dispersed,since no network backbone
is created.Thus, as sourcenodesmove about, the Q-
routing ad-hoc network is more likely to be able to
remainconnectedwithout drasticreconfigurations.This
interplay betweenrouting and movement forces us to
carefully considerthe movementpolicy we chooseto
pair with our selectedrouting policy.

VI. LEARNING TO MOVE

The problem of learning a good movement policy
is much more difficult. We wish to again apply rein-
forcementlearning techniquesto this problem.First of
all, the problem of partial observability is much more

pronouncedthan in the packet routing problem. For
example,when the network is in a disconnectedstate,
information about the global network topology is im-
possiblecollect but would be importantfor determining
movementsthat would optimize network connectivity.
Moreover, thelocal observationspacecouldstill bequite
large,dependingon theobservedvariableswe chooseto
encode.Secondly, the choiceof actionspaceis unclear.
At the most basic level, the agentscould move in any
direction at a given speed. We will limit the action
choicesby designingmorecomplex actionsthat incorpo-
ratedomainknowledge.This sectionbriefly outlinesour
applicationof Q-learningto learnareasonablemovement
policy despitethe fact that Q-learninggenerallyfails in
POMDPs.

We proceedby using the observation spaceas our
state space.This can potentially lead to problemsof
aliasing,but we chooseour observedvariablescarefully
in order to avoid this pitfall. Since the nodescom-
municateusing a sharedwirelessmedium,a node can
“sniff ” packets sent by neighborsto destinationsother
than itself. Thus, a node can detect the presenceof
neighbornodesand their connections,even if it is not
involved in any of theseconnectionsitself. Moreover,
since the receiver nodessend back acknowledgement
packets along these connections,our agent node can
alsocollectstatisticsaboutthesesource-destinationpaths
by sniffing theseacknowledgementpackets.Eachagent
node’s observation spacethus includesthe identitiesof
its neighbors,the numberof connectionsit is currently
holding, the number of nearby connections,and the
maximum and minimum averagehop lengthsof these
source-destinationpaths.

In order to constrainthe learningprocess,we incor-
poratesomedomain knowledge into our designof an
appropriateactionspace.For example,thereis little need
to train the nodesto avoid obstaclesalong its desired
pathof movement.We can pre-programthe nodeswith
the necessaryalgorithm to do this. Learningis focused
on higher-level action selectionthat is difficult to pre-
programoptimally. A subsetof our actionspaceis given
in the table below. Many of theseactions could take
multiple time periodsto complete.We get aroundthis
problem by allowing the agents(nodes)to chooseto
either continue or changean action during each time
period.



Action Description
stay Stayput; don’t changeposition.
direction Headin a particulardirection.
plug Searchesfor the sparsestpathand

attemptsto fill in the largestgap
along that path.

leave Leavesa pathandbecomesavailable
for otheractions.

circle Circlesarounda nodein searchof more
connections.Attemptsto retain
connectionto the sourcearound
which it is circling.

lead Leadsothermobile agentsin search
of moreconnections.Attemptsto
staywithin rangeof its followers.

follow Identifiesand follows a leadernode,
while maintainingconnectionto
previous hop.

center Movesto the centroidof the neighbors
to which it is connected.

explore Randomexploration.

Finally, the reward given to the nodesduring each
time periodcorrespondsto the percentageof successful
transmissionsduring that time period,which is available
sincewe areconductingthis training off-line.

A. Movementpolicy comparisons

We evaluate the performanceof our learning algo-
rithm againstthe centroidalmovementpolicy given in
Section V, a hand-codedpolicy that uses the same
observationspaceasthelearningalgorithm,anda global
knowledgecentralcontroller. Undersimulation,we give
the centralcontrolleraccessto all the node,source,and
receiver positions,which would usually be unavailable
to the agentnodes.Since our learning algorithm only
has accessto local knowledge, the central controller’s
performanceshould approximatean upper bound for
the learning algorithm’s performance.Moreover, this
performanceboundmay fluctuateover time as network
conditionschangedependingon sourcemovementsce-
narios.The centralcontrolleralsogivesusa mechanism
to compareour theoretical performancebounds from
SectionIII with actualempirical results.

The centralcontroller is designedto approximatean
optimal movementpolicy givenglobal knowledgeabout
network conditions.It begins by identifying connected
componentsamong the stationary nodes. If a packet
is received by any node of a connectedcomponent,
then all nodesof that componentcan also receive the
packet.However, if apacket’sdestinationis in adifferent
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Fig. 4. Graphshowing the averageperformanceof variousmove-
mentpoliciesover time in a typical scenario.The learningpolicy is
shown during its training phase.

component,thenthe controllerfinds the shortestpathto
the destinationcomponentand recruitsmobile nodesto
help constructthe necessarylinks neededto deliver the
packet.

Figure 4 gives the averageperformanceof a sample
network scenarioover time using eachof thesemove-
ment policies. As we can see, the learning algorithm
doeseventually learn a policy that behaves fairly well,
but it never achieves the performanceof the global
knowledgecontroller. This is expectedsincethe learner
does not have accessto the global network topology.
On average,the learnedpolicies perform slightly better
than the hand-codedpolicy over large setsof network
scenarios.However, in certainscenarios,it never learns
to performaswell, possiblydue to aliasingproblems.

VII . CONCLUSION AND FUTURE WORK

This paperpresentsa rich new domainfor multiagent
reinforcementlearning and establishesseveral first re-
sults in this area.Thereis muchmorework to be done
to createa more robust movement learning algorithm
that dealsdirectly with the partial observability of the
domain.Policy searchandMonteCarlomethodsaretwo
techniquesthat are currently being examined.A well
designedalgorithm might also be able to exploit the
interplaybetweenrouting andmovement.
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