
dra
ft

Approximate Planning in POMDPs with
Macro-Actions

Georgios Theocharous
MIT AI Lab

200 Technology Square
Cambridge, MA 02139

theochar@ai.mit.edu

Leslie Pack Kaelbling
MIT AI Lab

200 Technology Square
Cambridge, MA 02139
lpk@ai.mit.edu

Abstract

Recent research has demonstrated that useful POMDP solutions do not
require consideration of the entire belief space. We extend this idea with
the notion of temporal abstraction. We present and explore a new rein-
forcement learning algorithm over grid-points in belief space, which uses
macro-actions and Monte Carlo updates of the Q-values. We apply the
algorithm to a large scale robot navigation task and demonstrate that with
temporal abstraction we can consider an even smaller part of the belief
space, we can learn POMDP policies faster, and we can do information
gathering more efficiently.

1 Introduction

A popular approach to artificial intelligence is to model an agent and its interaction with
its environment through actions, perceptions, and rewards [10]. Intelligent agents should
choose actions after every perception, such that their long-term reward is maximized. A
well defined framework for this interaction is the partially observable Markov decision
process model (POMDP). Unfortunately solving POMDPs is an intractable problem mainly
due to the fact that exact solutions rely on computing a policy over the entire belief-space
[6, 3], which is a simplex of dimension equal to the number of states in the underlying
Markov Decision Process (MDP). Recently researchers have proposed algorithms that take
advantage of the fact that for most POMDP solutions, a large proportion of the belief space
is not experienced [7, 9].

In this paper we explore the same idea, but in combination with the notion of temporally
extended actions (macro-actions). We propose and investigate a new model-based rein-
forcement learning algorithm over grid-points in belief space, which uses macro-actions
and Monte Carlo updates of the Q-values. We apply our algorithm to large scale robot nav-
igation and demonstrate the various advantages of macro-actions in POMDPs. Our exper-
imental results show that with macro-actions an agent experiences a significantly smaller
part of the belief space than with simple primitive actions. In addition, learning is faster be-
cause an agent can look further in to the future and propagate values of belief points faster.
And finally, well designed macros, such as macros that can easily take an agent from a high
entropy belief state to a low entropy belief state (e.g., go-down-the corridor), enable agents
to perform information gathering.

dra
ft

2 POMDP Planning with Macros

We now describe our algorithm for finding an approximately optimal plan for a known
POMDP with macro actions. It works by using a dynamically-created finite-grid approx-
imation to the belief space, then using stochastic dynamic programming (reinforcement-
learning) to compute a value function at the grid points. Our algorithm takes as input a
POMDP model, a resolution r, and a set of macro-actions described as finite state automata.
The output is a set of grid-points (in belief space) and their associated action-values, which
via interpolation specify an action-value function over the entire belief space, and therefore
a complete policy for the POMDP.

Dynamic Grid Approximation A standard method of finding approximate solutions to
POMDPs is to discretize the belief space by covering it with a uniformly-spaced grid (oth-
erwise called regular grid as shown in Figure 1), then solve an MDP that takes those grid
points as states [1]. Unfortunately, the number of grid points required rises exponentially
in the number of dimensions in the belief space, which corresponds to the number of states
in the original space.

Recent studies have shown that in many cases, an agent actually travels through a very small
subpart of its entire belief space. Roy and Gordon [9] find a low-dimensional subspace of
the original belief space, then discretize that uniformly to get an MDP approximation to
the original POMDP. This is an effective strategy, but it might be that the final uniform
discretization is unnecessarily fine.

S2

S1 S3(1,0,0)

(0,1,0)

(0,0,1)
S1 S3

S2

S1 S3

S2

RESOLUTION 1

(0.5,0.5,0)
(0.66,0.34,0.0)

RESOLUTION 2 RESOLUTION 3

Figure 1: The figure depicts various regular dicretizations of a 3 dimensional belief sim-
plex. The belief-space is the surface of the triangle, while grid points are the intersection
of the lines drawn within the triangles.

In our work, we allocate grid points from a uniformly-spaced grid dynamically by simulat-
ing trajectories of the agent through the belief space. At each belief state experienced, we
find the grid point that is closest to that belief state and add it to the set of grid points that
we explicitly consider. In this way, we develop a set of grid points that is typically a very
small subset of the entire possible grid, which is adapted to the parts of the belief space
typically inhabited by the agent.

In particular, given a grid resolution r and a belief state b we can compute the coordi-
nates (grid points gi) of the belief simplex that contains b using an efficient method called
Freudenthal triangulation [2]. In addition to the vertices of a sub-simplex, Freundenthal
triangulation also produces barycentric coordinates λi, with respect to gi, which enable
effective interpolation for the value of the belief state b from the values of the grid points
gi [1]. Using the barycentric coordinates we can also decide which is the closet grid-point
to be added in the state space.

dra
ft

Macro Actions The semi-Markov decision process (SMDP) model has become the pre-
ferred method for modeling temporally extended actions. An SMDP is defined as a five
tuple (S,A,P ,R,F), where S is a finite set of states, A is the set of actions, P is the state
and action transition probability function, R is the reward function, and F is a function giv-
ing probability of transition times for each state-action pair. The transitions are at decision
epochs only. The SMDP represents snapshots of the system at decision points, whereas
the so-called natural process [8] describes the evolution of the system over all times.
Discrete-time SMDPs represent transition distributions as F (s′, N |s, a), which specifies
the expected number of steps N that action a will take before terminating in state s′ start-
ing in state s. Q-learning generalizes nicely to discrete SMDPs. The Q-learning rule for
discrete-time discounted SMDPs is

Qt+1(s, a)← (1− β)Qt(s, a) + β

(

R + γk max
a′∈A(s′)

Qt(s
′, a′)

)

,

where β ∈ (0, 1), and action a was initiated in state s, lasted for k steps, and terminated
in state s′, while generating a total discounted sum of rewards of R. Several frameworks
for hierarchical reinforcement learning have been proposed, all of which are variants of
SMDPs, such as the “options” framework [11].

Macro actions have been shown to be useful in a variety of MDP situations, but they have
a special utility in POMDPs. Macro actions can consist of small state machines, such as a
simple policy for driving down a corridor without hitting the walls until the end is reached.
Such actions may have the useful property of reducing the entropy of the belief space, by
helping a robot to localize its position. In addition, they relieve us of the burden of having
to choose another primitive action based on the new belief state. Using macro actions tends
to reduce the number of belief states that are visited by the agent. If a robot navigates
largely by using macro-actions to move to important landmarks, it will never be necessary
to model the belief states that are concerned with where the robot is within a corridor, for
example.

Algorithm Our algorithm works by building a grid-based approximation of the belief
space while executing a policy made up of macro actions. The policy is determined by
“solving” the finite MDP over the grid points. If we were not using macro actions, it would
be possible to solve that MDP directly using value or policy iteration. Instead, we are given
a set of macro actions for which we do not have state-transition models. So, instead, we
use a reinforcement-learning algorithm to compute a value function over the MDP states.
It works by generating trajectories through the belief space according to the current policy,
with some added exploration.

While Figure 2 gives a graphical explanation of the algorithm, below we sketch the entire
algorithm in detail:

1. Assume a current true state s. This is the physical true location of the agent, and
it should have support in the current belief state b (that is b(s) 6= 0).

2. Discretize the current belief state b → gi, where gi is the closest grid-point in a
regular discretization of the belief space. Add gi to a hash table.

3. Choose a random action ε% of the time. The rest of the time choose the best
macro-action µ by interpolating over the Q values of the vertices of the sub-
simplex that contains b: µ = argmaxµ∈M

∑|S|+1
i=1 λiQ(gi, µ).

4. Estimate E [R(gi, µ) + γtV (b′)] by sampling:

(a) Sample a state s from the current grid-belief state gi (which like all belief
states represents a probability distribution over world states).
i. Set t = 0

dra
ft

g2

b

g
g3

g1
b’

b’’

Figure 2: The agent finds itself at a belief state b, which it maps to the nearest grid point
g. Now, it needs to do a value backup for that grid point. It chooses a macro action and
executes it starting from the chosen grid-point, using the primitive actions and observations
that it does along the way to update its belief state. It needs to get a value estimate for the
resulting belief state b”. It does so by using the barycentric coordinates from the grid to
interpolate a value from nearby grid points g1, g2, and g3. It executes the macro-action
from the same grid point g multiple times so that it can approximate the probability distri-
bution over the resulting belief-states b′′. Finally, it can update the estimated value of the
grid point g and execute the macro-action chosen from the true belief state b. The process
repeats from the next true belief state b′.

ii. Choose the appropriate primitive action a according to macro-action µ.
iii. Sample the next state s′ from the transition model T (s, a, ·).
iv. Sample an observation z from observation model O(a, s′, ·).
v. Store the reward R(gi, µ) := R(gi, µ) + γt ∗R(s, a). For faster learning

we use reward-shaping: R(gi, µ) := R(gi, µ) + γt+1V (s′) − γtV (s),
where V (s) are the values of the underlying MDP [5].

vi. Update the belief state: b′(j) := 1
α
O(a, j, z)

∑

i∈S T (i, a, j), for all
states j, where α is a normalizing factor.

vii. Set t = t+1, b = b′, s = s′ and repeat from step 4(a)ii until µ terminates.

(b) Compute the value of the resulting belief state b′ by interpolating over the
vertices in the resulting belief sub-simplex: V (b′) =

∑|S|+1
i λiV (gi).

(c) Repeat steps 4a and 4b multiple times, and average the estimate
[R(gi, µ) + γtV (b′)].

5. Update the state action value: Q(gi, µ) = (1− β)Q(gi, µ) + β [R + γtV (b′)].

6. Update the state value: V (gi) = argmaxµ∈MQ(gi, µ).

7. Execute the macro-action µ starting from belief state b until termination. During
execution, generate observations by sampling the POMDP model, starting from
the true state s. Set b = b′ and s = s′ and go to step 2.

8. Repeat this learning epoch multiple times starting from the same b.

3 Experimental Results

We tested this algorithm by applying it to the problem of robot navigation, which is a
classic sequential decision-making problem under uncertainty. To test the scalability of our
method we performed experiments in two corridor environments, a small and a large one,
as shown in Figure 3. Such topological maps can be compiled into POMDPs, in which
the discrete states stand for regions in the robot’s pose space (for example 2 square meters
in position and 90 degrees in orientation). In such a representation, the robot can move
through the different environment states by taking actions such as “go-forward”, “turn-
left”, and “turn-right”. The macro-actions are implemented as “simple programs”. In our
experiments we have a macro-action for going-down-the-corridor until the end and three
primitive actions. In this navigation domain, our robot can only perceive sixteen possible
observations, which indicate the presence of a wall and opening on the four sides of the

dra
ft

robot. The observations are extracted from trained neural nets where the inputs are local
occupancy grids constructed from sonar sensors and outputs are probabilities of walls and
openings [4]. The POMDP model of both corridor environments has a reward function
with value -1 in every state, except for -100 for going forward into a wall and +100 for
taking any action from the four-way junction.

16

10

10

10

1010

10 10

1010

12

44

16

20

4

66 24 14

26

202020

40 40

4 4036
8

40

96

26

18

32

32

2

Figure 3: The figure on the left shows the small floor plan, which compiles into a POMDP
with 464 world states. The figure on the right shows the large floor plan, which compiles
into a POMDP with 1068 world states. The numbers next to the edges are the distances
between the nodes in meters.

3.1 Results in the small environment

For the small environment we run the algorithm with different grid resolutions and with
or without the macro-action go-down-the-corridor. Each training episode started from the
uniform initial belief state and was terminated when the four-way junction was reached
or when more than 100 decisions were taken. The graphs in Figure 4 depict the average
number of decisions per episode during training of each experiment, and also the number
of grid-points added in the plan. We compared our results with the QMDP heuristic which
first solves the underlying MDP and then given any belief state, chooses the action that
maximizes the dot product of the belief and Q values of state action pairs: QMDPa =

argmaxa

∑|S|
s=1 b(s)Q(s, a).

The learning results in Figure 4 demonstrate that, first of all, the new planning algorithm
generates reasonable policies. Additionally in Figure 4 it is evident that learning with
macro-actions requires many fewer grid points than learning with primitive actions only.
In general, the number of grid points used is significantly smaller than the total number
of points allowed for regular dicretization. For example, for a regular discretization the
number of grid points can be computed by the formula given in [2], (r+|S|−1)!

r!(|S|−1)! , which is
16757360 for r = 2 and |S| = 464. Our algorithm with primitive actions uses only about
about 1400 and with macro-actions only about 800 grid points.

We tested the policies that resulted from each algorithm by starting from a uniform initial
belief state and a uniformly randomly chosen world state and simulating the greedy policy
derived by interpolating the grid value function. We tested our plans over 100 different
sampling sequences and report the results in Figure 5. A run was considered a success if
the robot was able to reach the goal in fewer than 100 steps starting from uniform initial

dra
ft

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450A
ve

ra
ge

 #
 o

f t
ra

in
in

g
de

ci
si

on
s

Number of training episodes

Training decisions

p2
p3
p7
p1
m7
m1
m2
m3

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 50 100 150 200 250 300 350 400 450

N
um

be
r

of
 s

ta
te

s

Number of training episodes

Number of states

p7
p3
m7
m3
p2
m2
p1
m1

Figure 4: The graph on the left shows the average number of decisions after every training
episode for the different experiments, where the macro-action plots converge faster. The
graph on the right shows the number of grids added during learning. The label “m1”,
means with macro-the action and resolution 1, and “p1” means only primitive actions with
resolution 1. The experimental condition are listed in the legend in the order of performance
at the termination of the experiment.

belief.

From Figure 5 we can conclude that all approaches take about the same number of steps.
However, the QMDP approach can never be 100% successful, while the primitive-actions
algorithm can perform quite well with resolution 1. As we increase the resolution, the
macro-action algorithm reaches 100% success while the primitive-action algorithm per-
forms considerably worse, mainly due to the fact that it requires more grid-points and more
training. It is also obvious that the macro-action algorithm will require more training as we
increase the resolution (as shown with resolution 7), but nonetheless, it is more robust than
the primitive-action algorithm.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

S
uc

ce
s

%

Resolution

Success

qmdp
p1
m1
p2
m2
p3
m3
p7
m7

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

Resolution

Number of steps to goal (after training)

qmdp
p1
m1
p2
m2
p3
m3
p7
m7

Figure 5: The figure on the left shows the success percentage for the different methods.
The figure on the right show the mean number of steps and standard deviation.

Apart from simulated experiments we also wanted to compare the performance of QMDP
with the macro-action algorithm on a platform more closely related to a real robot. We used
the Nomad 200 simulator and describe a test in Figure 6 to demonstrate how our algorithm
is able to perform information gathering, as compared to QMDP.

dra
ft

START

GOAL

START

J1

J2
J3

J4

J5

J2

GOAL

J1

Figure 6: In the figure on the left we use the QMDP method. The robot starts from J1
with uniform initial belief. After reaching J2 the belief becomes bi-modal concentrating
on J1 and J2. At this point the agent becomes confused as to where is at (J1 or J2), and
keeps turning left and right. On the other hand, in the figure on the right we use our
planning algorithm with macro-actions and resolution 2. The robot again starts from J1
and a uniform initial belief. Upon reaching J2 the belief becomes bimodal over J1 and J2.
The agent resolves its uncertainty by deciding that the best action to take is the go-down-
the-corridor macro, at which point it encounters J3 and localizes. The robot then is able to
reach its goal by traveling from J3, to J2 , J1, J4, and J5.

3.2 Scaling up

To check the scalability of our algorithm we performed similar experiments in the larger
environment shown in Figure 3. In Figure 7 we present the learning results while in Figure
8 we present the testing results. For this set of experiments the robot was considered to have
failed if it did not reach the goal within 200 primitive steps. It is clear from our experiments
that the macro-action algorithm is able to scale up to large environments.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 50 100 150 200 250 300 350 400 450A
ve

ra
ge

 #
 o

f t
ra

in
in

g
de

ci
si

on
s

Number of training episodes

Training decisions

p3
p1
m1
m3

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300 350 400 450

N
um

be
r

of
 s

ta
te

s

Number of training episodes

Number of states

p3
m3
p1
m1

Figure 7: The graphs show plots of average number decisions per training epoch, and the
number grid points for added , for the larger environment

4 Conclusions

In this paper we have presented an approximate planning algorithm for POMDPs that uses
macro-actions. Our algorithm is able to solve a difficult planning problem, namely the task

dra
ft

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

S
uc

ce
s

%

Resolution

Success

qmdp
p1
m1
p3
m3

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

Resolution

Number of steps to goal (after training)

qmdp
p1
m1
p3
m3

Figure 8: For the larger environment, it is obvious that as we increase the resolution the
macro-action-algorithm gives almost 100% success while the primitive-actions algorithm
fails completely.

of navigating to a goal in in huge space POMDP starting from a uniform initial belief,
which is more difficult than many of the tasks that similar algorithms are tested on.

The key idea is that macro-actions in POMDPs allow us to experience a smaller part of the
state space, backup values faster, and do information gathering. As a result we can afford
to allow for higher grid resolution which results in better performance. We cannot do this
with only primitive actions and it is completely out of the question for exact solution over
the entire regular grid. In the future we are a planning to apply this algorithm to other
domains such network routing and the preference elicitation problem.

References
[1] Milos Hauskrecht. Value-function approximations for partially observable Markov decision

processes. Journal of Artificial Intelligence Research, 13:33–94, 2000.

[2] William S. Lovejoy. Computationally feasible bounds for partially observed Markov decision
processes. Operations Research, 39(1):162–175, January-February 1991.

[3] O. Madani, S. Hanks, and A. Gordon. On the undecidability of probabilistic planning and
infinite-horizon partially observable Markov decision processes. In Proceedings of the Sixteenth
National Conference in Artificial Intelligence, pages 409–416, 1999.

[4] Sridhar Mahadevan, Georgios Theocharous, and Nikfar Khaleeli. Fast concept learning for
mobile robots. Machine Learning and Autonomous Robots Journal (joint issue), 31/5:239–251,
1998.

[5] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Theory and application to reward shaping.
In Proceedings of the Sixteenth International Conference on Machine Learning, 1999.

[6] C. Papadimitriou and J. Tsitsiklis. The complexity of Markov decision processes. Mathematics
of Operation Research, 12(3), 1987.

[7] Joelle Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDPs. In International Joint Conference on Artificial Intelligence, 2003.

[8] M. Puterman. Markov Decision Processes: Discrete Dynamic Stochastic Programming. John
Wiley, 1994.

[9] N. Roy and G. Gordon. Exponential family PCA for belief compression in POMDPs. In
Advances in Neural Information Processing Systems, 2003.

[10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
2nd edition, 2003.

[11] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial Intelligence, pages 112:181–211, 1999.

