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Abstract

Researchin mobile ad-hoc networks has focusedon situationsin which nodeshave no control over their
movements.We investigatean important but overlooked domain in which nodesdo have control over their
movementsReinforcementearningmethodsanbe usedto controlboth paclet routing decisionsandnodemobility,
dramaticallyimproving the connectvity of the network. We first motivate the problem by presentingtheoretical
boundsfor the connectvity improvementof partially mobile networks and then presentsuperiorempirical results
undera variety of differentscenariosn which the mobile nodesin our ad-hocnetwork areembeddedvith adaptve
routing policies and learnedmovementpolicies.
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. INTRODUCTION

Mobile ad-hocnetworkingis emeging asanimportant
researchfield with a number of increasingly relevant
real-world applications,ranging from sensornetworks
to peerto-peerwirelesscomputing. Researchersn Al
and machinelearning have not yet mademajor contri-
butions to this growing field. It promisesto be a rich
and interestingdomain for studying the application of
learningtechniqueslt also hasdirect applicationsback
to Al, for example in the design of communication
channeldor groupsof robots.In this paperwe introduce
mobilized ad-hoc networks as a multi-agent learning
domainanddiscusssomemotivationsfor this study We
apply reinforcementearningtechniquego two distinct
problemswithin this domain: paclet routing and node
movement.Using relatively straightforvard adaptations
of these methods,we are able to demonstrategood
empiricalresults.

Mobile ad-hocnetworks have not traditionally been
considerech multi-agentlearningdomainpartly because
mostresearchin this areahasassumedhat we have no
control over the node movements limiting researchto
the designof routing algorithms.Eachnodeis assumed
to be attachedto some user or object that is moving
with its own purpose,and routing algorithmsare thus
designedto work well under a variety of different
assumptionsaboutnode mobility patterns.

However, there are mary applicationsin which we
canimaginethat someof the nodeswould have control
over their own movements.For example,mobile robots
might be deployed in search-and-rescuar military re-
connaissanceperationsrequiring ad-hoc communica-
tion. In suchcasest may be necessaryor somenodes
to adjusttheir physical positionsin order to maintain
network connectvity. In thesesituations,what we will
term mobilizedad-hocnetworks becomesan extremely
relevant multi-agentlearning domain. It is interesting
bothin the variety of learningissuesinvolved andin its
practicalrelevanceto real-world systemsandtechnology

Thereareseveraladvantagegainedby allowing nodes
to control their own movement.Stationaryor randomly
moving nodes may not form an optimally connected
network or may not be connectedat all. By allowing
nodesto control their own movements,we will shav
that we can achieve better performancefor the ad-hoc
network. One might view these controllable nodesas
“support nodes” whoserole is to maintain certain net-
work connectvity properties As the numberof support
nodesincreasesthe network performancealsoincreases.

Given bettermovementand routing algorithms,we can
achieve significantadditional performancegains.

It is important to note that there are two levels at
which learningcanbe applied:(1) packet routingand(2)
nodemovement.We will discusghesetopicsin separate
sectionsin this paper Packet routing concernsthe for-
wardingdecisionseachnodemustmake whenit receves
paclets destinedfor someother node. Node mavement
concerngsthe actualmovementdecisionseachnode can
make in orderto optimizethe connectvity of thead-hoc
network. Eventhoughwe will usereinforcementearning
techniquesto tackle both these problems, they must
be approachedvith different mindsets.For the routing
problem, we focus on the issue of online adaptvity.
Learning is adwantageousecauseit allows the nodes
to quickly reactto changesn network configurationand
conditions. Adaptive distributed routing algorithmsare
particularlyimportantin ad-hocnetworks, sincethereis
no centrallyadministerecaddressin@ndrouting system.
Moreover, network configurationand conditionsare by
definition expectedto changefrequently

Ontheotherhand,thenodemavementproblemis best
handledoff-line. Learninga good movementpolicy re-
guiresa long training phasewhich would be undesirable
if done on-line. At executiontime, we should simply
be running our pre-learnedoptimal policy. Moreover,
this movement policy should encode optimal action
selectiongivendifferentobsenationsaboutthe network
state;the overall policy doesnot changedueto changing
network configurationor conditionsand thus does not
needto adaptonline. We treat the problemas a large
partially-obserable Markov decisionproces§POMDP)
wherethe agentnodesonly have accesdgo local obsera-
tions aboutthe network state.This partial obsenability
is inherentto boththe routing and movementportionsof
the ad-hocnetworking problem,sincethereis no central
network administratorNodescanonly obsene the local
statearoundthem;they do not have accesso the global
network topology or communicatiorpatterns Evenwith
this limited knowledge, learning is useful becauseit
would otherwisebe difficult for a human designerto
createan optimized movementpolicy for eachnetwork
scenario.

Il. RELATED WORK

We draw inspirationfor this work from two different
fields: networking and reinforcementlearning. In the
networking literature, somework on the effect of node
mobility in ad-hocnetworks hasbeendonefor applica-
tions in which movementand topology changesare on



the time-scaleof paclet delivery. Nodesare then able
to act as mobile relays physically transportingpaclets
from one locationto another Grossglauseand Tse [1]
analyzea stratgy in which sourcenodessendpaclets
to as mary different nodesas possible,which storethe
paclets and hand them off wheneser they get closeto
the intendeddestinationnodes.Li and Rus[2] consider
a scenarioin which mobile hostsmake deviations from
predeterminedrajectoriesto transmitmessagesn dis-
connectednetworks. Chatzigiannakiset al [3] consider
the casewherea subseif mobile nodesare constrained
to move to supportthe needsof the protocol,andactas
a mobile pool for messagealelivery.

Our work is in a differentsetting,in which topology
changesare on a much longer time scalethan paclet
delivery delay constraintsNodesmove in orderto form
and maintainconnectedoutes,ratherthanto physically
deliver paclets in a disconnectedhetwork. Routing is
thusanimportantaspecbf our algorithmsthatinfluences
andis informedby movementdecisionsRelatedwork on
routingin mobile ad-hocnetworkswhereno controlover
nodemovementss assumedanbe foundin [4] and[5],
while the issueof preservinga connectedopologywith
only someproportionof nodesawake at ary onetime is
addressedh [6].

Fromthereinforcementearningcommunity therehas
beensomeinterestin applying learning techniquesto
improve network performanceSuchadaptve algorithms
may be betterableto performwell underwidely varying
conditions. Boyan and Littman [7] applied reinforce-
ment learning techniquesto the problem of routing in
static networks. They showved that a simple adaptve
algorithm basedon the Q-learning algorithm [8] can
out-performa shortest-pathalgorithm under changing
loadandconnectvity conditions.Peshkin9] usedpolicy
searchrather than Q-learning on the same problem,
which allowedthe systemto searcha richerpolicy space.
By usingstochastigouting policies,the systemis ableto
managehigh loadsby finding multiple possiblesource-
destinationpaths.We extend theseideasto the caseof
mobile networks, wherenode connectvity is constantly
changing.

Moreover, since we assumecontrol over the nodes’
movements,we can also influence these connectvity
changesby learning a good control mechanismfor
the node movements.Several papersmentionedabove
proposevariousmethoddgor controllingnodeandpaclet
movementunderspecificassumptiondn thegeneraket-
ting, we wish to selectoptimal actionsat eachtime step
to maximize the long-term system performance.This

type of problem lends itself to reinforcementlearning
techniqueq10], wherethe goal of the learneris to max-
imize long-termreward by learningan optimal behavior
policy through simulation. Stone and Sutton [11] and
Bowling andVeloso[12] studiedmethodsfor scalingup
reinforcementlearning techniquesto complex domains
suchasrobotic soccer

Our mobilized ad-hoc network consistsof one or
more source nodes,one or more recever nodes,and
a numberof other wirelessnodeswithin a constrained
area.All nodesare independentlyinitialized according
to a uniform distribution over this area. The sources
generatepaclets at a constantrate and move according
to a random way-point model. The aim of all nodes
other than the sourcesand receversis to transmitthe
maximum possiblenumberof paclketsfrom the sources
to the recevers. Someof thesenodescan move so asto
aid transmissionwhile the restare stationary

Performanceés measuredy the proportionof paclets
successfullytransmittedto the recevers. When inter
nodelink capacitiesarelimited andbuffer sizesarefinite,
paclet dropsmay occurdueto buffer overflow, thereby
decreasingnetwork performanceWhen internode link
capacitiesare sufficiently large comparedto the source
paclet generatiorrates,an equivalentperformancemet-
ric is the averageproportionof sourcesconnectedo the
receversover time.

The paclket transmissionsuccessprobability achies-
ablein an ad-hocnetwork dependsheavily on various
parametersncluding the transmissiorranger, the num-
ber of network nodesn, and the proportion of mobile
nodesm. Alternatively, we may considerwhat values
of theseparametersare sufiicient to achiese a desired
succesprobability Our following resultillustratesthese
relationshipsand gives some senseof the potential
benefitsof having controllable mobile nodesin an ad-
hoc network. It builds upon a theoremby Gupta and
Kumar [13] that sets a bound for the minimum (or
critical) rangenecessaryor n nodesin a given areato
be fully connectedThey statethat for the caseof a disk
of areaA andn approachingnfinity, the critical range

for the network is r, = M, where~, is a
function of n that grows arbitrarily slowly to infinity as
n — oo. We extend this resultto the caseof partiallly
mobile networks.

Theoem1: Letr, betheminimum,or critical, range
neededfor n nodesindependentlyand uniformly dis-
tributed on a given areato form a fully connected
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network. If a proportionm = % k aninteger, of the
nodesare mobile, thena transmissiorranger = = is
sufficient to malke it possiblefor the mobile nodfsto
move to form a fully connectechetvxork If the ranger
is fixed at r,,, with m = %21, k an integer; thena total
numberz of nodessufficesfor full connectity.

Proof: If a proportionm = % of the nodes
in a n node network being mobile, these mn nodes
can essentiallymove aroundto increasethe effective
transmissionrangesof the stationarynodes.For each
fixed node, we have £k — 1 mobile nodes.Thus, each
stationarynodeis ableto form onelink to neighboring
nodeover a distanceof kr,, usinga setof k£ — 1 mobile
nodes as relays. Since a fully connectednetwork of
n nodesrequiresonly n — 1 links, eachlink can be
allocateda set of % > k — 1 mobile relay nodes,
allowing eachstatlonarynodeto transmita full distance
of kr, ratherthanr,. Sincen’ = = %, from Guptaand
Kumars theoremwe know that if all the nodeswere
stationary then the critical range for n’ nodeswould

be r, = — /Alogﬂr;l—k'yn < /Alo;g:t—f—yn =r, \/—

However, since(k — 1)n nodesare now mobile, making
the transmissionrange k£ times the original range, we
only needa rangeof » = "= for eachnode; thus a
sufficient range for fully connectvity of the partially
mobile network is r = %

Using the same reasoning,it is easyto shav the
secondpart of the theorem.Let us fix the rangeof the

n nodesin the network to be r,, w We
needto shav that with »’ = % total nodes of which
mn’ are mobile, each with range rn, We can form a
fully connectednetwork. In this case,we only have
n/ = {& stationarynodes Similar to the above, we know
that the critical rangefor a network with n” nodesis

A(log k2 +7n/k2)

k2

Tn
k

< rpk. Sincemn’ nodesare mobile,

k— nk
T, we actually only needa rangeof =~

m = =T7,.
[ |
This result showns that as the proportion of mobile
nodesincreasesthe transmissionrange r neededfor
full connectvity decrease$or givenn (or the minimum
value of n requiredgiven r decreases)Theseareloose
upperboundssincethey allow for up to all links of the
fully connectednetwork being greaterthan % of the
maximumlink length.
For morerealisticsettingswith smallerfixedrn, we can
obtain correspondingempirical resultsfor the minimum
ranger necessaryor achieving nearlyfull connectvity

(> 95%). We ran some trials with n nodes, 25 <

n < 400, independentlyinitialized accordingto the
uniform distribution on a unit square.We find that

the approximationr], = r, gives a good
estimateof thecritical rangeto W|th|n asmalldecreasing
factor We alsocalculatedhe meanproportionh of links
that were greaterthan half the critical range.

Alogn ~

n | critical mean std. dev.
range | proportion,h

25 | 2.0r) 0.2735 0.1233

50 | 1.7r] 0.3265 0.0785

100 | 1.7 0.2353 0.0647

200 | 1.6/, 0.1992 0.0390

400 | 1.67], 0.1588 0.0258

Noting that a substantialproportion of the links are
lessthan half the critical rangeleadsto the conclusion
that the bounds given above are quite loose, i.e. the
necessaryaluesfor eachparameter, n andm, given
fixed valuesfor the othertwo parameterarelower than
the sufficient valuesgiven by Theorem1. As such,we
would expect potentially betterresultsunderconditions
of global knowledge and rapid optimal deployment of
mobile nodes.

In most realistic settings,nodesonly possesdocal
knowledge and movement speedis limited. Thus it
becomesharderto reachthe potential optimal network
performanceNeverthelesswe can develop learningal-
gorithms that perform well given theseconstraints.In
the remainderof the paper we develop such learning
algorithmsfor movementandrouting, andcomparetheir
performanceagainstboth non-learningand centralized
algorithms,where performances measuredy the pro-
portionof packetssuccessfullytransmittedundervarious
network scenarios.

V. Q-ROUTING

To optimize the performanceof the ad-hocnetwork,
we need to design good control algorithms for the
supportnodes.The nodeswill needto adaptto changing
conditionsand communicatiorpatternsusingintelligent
routing and movement algorithms. We focus on the
routing problem here and give a brief overview of the
maovementproblem,for which resultswill be presented
in greaterdetail in a forthcomingpaper

Q-routing [7] is an adaptve packet routing protocol
for static networks basedon the Q-learningalgorithm,
which we adaptfor usein mobile ad-hocnetworks. The
algorithm allows a network to continuously adaptto
congestioror link failure by choosingroutesthatrequire
theleastdelivery time. Whena routebecomesongested



or fails, Q-routing learnsto avoid that route and uses
an alternatepath. Due to its adaptie nature,we might
expectthatQ-routingwould alsowork well in themobile
ad-hocsetting.

Q-routing is a direct application of Watkins’ Q-
learning [8] to the packet routing problem. Q-routing
is a distributed routing schemewhere eachnodein the
network runsits own copy of the Q-routing algorithm.
A nodez facesthe task of choosingthe next hop for
a paclet destinedfor somerecever node d. Using Q-
routing, it learnsthe expecteddelivery timesto d for
eachpossiblenext hop y, whereeachpossiblenext hop
y is a neighbornodeconnectedo z by a network link.
Formally, Q-routing keepsQ-tables@” for eachnodex
andupdateghesetablesat eachtime periodt asfollows:

Qi (d,y) = (1= a)Qi 1 (d, y) + (b} + min @}, (d, 2)),

where0 < a < 1 is parametethat controlsthe learning
rate,and b; is the time the currentpaclet spenton the
buffer or queueat nodez beforebeingsentoff at time
periodt.

Q-learningestimateghe value or cost, V', associated

with eachstated, with V' = min, Q*(d, z). In our case,
the value of a stateis the estimatedtime for delivery
of a paclet from the currentnode = to destinationd
via node z. Once the nodeshave learnedthe values
associatedvith each state-actionpair, they simply ex-
ecutea greedypolicy to behare optimally. Whena node
receves a paclet for destinationd, it sendsthe paclet
to the neighbory with the lowest estimateddelivery
time Q*(d, y). In experimentakrials, BoyanandLittman
found that fast learningrates(around0.5) worked well
sinceit is beneficialfor the network to adaptquickly.

Adapting Q-routing to the mobile ad-hoc network
routingdomainis fairly straightforvard. Neighbornodes
are definedasthe nodeswithin transmissiorrange.The
main differenceis thatthe neighbornodesy may appear
and disappearquite frequently due to node mobility.
Whena nodey movesout of range,we setthe estimated
delivery time to d via y to oo, i.e. Q(d, y) = co. When
a node y moves into range, we optimistically set the
estimatedtime to 0, i.e. Q*(d,y) = 0. This optimistic
biasencouragesxploration.Thatis, nodez will always
try sendingpacletsvia a nodey that hasjust comeinto
range.If this actionresultsin a high estimateddelivery
time, then node = will quickly revert to its original
behavior since Q(d,y) will quickly be updatedto its
true value. On the other hand,if this actionresultsin a
good delivery time, then node = will continueto send
pacletsvia nodey.

Directional Routing vs Q-Routing
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Fig. 1. A comparisonof directional routing vs Q-routing in
a network with 10 sources,15 mobile agents,and one recever.
Simulationswere run over 20 initialization positionsand 5 source
movementscenariodor eachdifferentinitialization. For eachbuffer
size, averagesover all of thesetrials are depicted,with error bars
denotingone standarddeviation.

V. EMPIRICAL RESULTS

Our empirical resultsgive an indication of the power
of utilizing adaptve learning techniquesin designing
movementand routing algorithmsfor mobilized ad-hoc
networks. The setupis describedin Sectionlll. There
are source recever, and supportnodesin a squaregrid,
usually 30x30 in size. Each node has a transmission
range of 6. The support nodes may either be fixed
stationarynodesor mobilizedagentnodesTherearetwo
time scalesonefor transmissiorandonefor movement.
During eachmovementtime step,the node can choose
one of its movement actions and perform 10 paclet
transmissionsEachpaclet transmissions the resultof a
Q-routingdecisionandupdate. Sourcegyenerateaclets
every two transmissiontime steps,and the number of
paclets received by a nodein ary time period is only
limited by the nodes buffer size.

A. Q-routing vs directional routing

To evaluatethe performanceof Q-routing, we imple-
ment a global knowledge routing policy that is given
informationaboutthe recever location. This is donefor
comparisorpurpose®nly; in reality nodesgenerallydo
not have accesgo suchinformation. With this informa-
tion, nodescan route each paclet towards the correct
destinationby forwarding the paclet to a neighboring
node that is closestto being in the direction of the
recever. We call this our directional routing policy.
Specifically ourimplementatiorforwardsa pacletto the
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Fig. 2. Using the directionalrouting policy, paclets often become
congestedn the trunk of the network tree (Top). Using Q-routingon
the sameexperimentalsetup(notethatthe sourceandrecever nodes
arein the samepositionasthe both figures),the mobile nodesin the
ad-hocnetwork spreacbutto distribute pacletload (Bottom). Sources
areshavn assquaresmobile nodesarecircles,andthe recever is an
encircledsquareBoth figuresshav the simulatorafter 10000periods,
usingthe sameinitialization and movementfiles.

neighborthatis closestto beingin the direction of the
recever, up to a maximumdeviation of 90 degrees.If
no suchneighborexists, thenthe paclet is dropped.

We compared)-routingwith directionalroutingunder
a variety of different scenarios.In almost all cases,
Q-routing performsbetter than directional routing. Es-
pecially when the nodes are limited by small buffer
sizes, Q-routing performs significantly better Results
for a typical set of network scenariosare shovn in
Figure 1. This is due to the fact that Q-routing will
createalternatepathsto the recever as soonas a path
becomescongested.Thus, paclkets will be less likely
to be droppeddue to buffer overflow causedby path
congestionor limited buffer sizessince alternatepaths
will be constructedln directionalrouting, on the other

hand, often certain pathswill becomeoverloadedwith
traffic, causingsignificantpacket drop.

Q-routing outperforms directional routing even in
caseswhere buffer size is not a direct constraint,such
asthe caseshown in Figure 1 wherethe buffer sizeis
10. This illustratesthe underlying problem of network
capacity Since the total sourcepaclet generationrate
exceedghetransmissiomrate of any oneinter-nodelink,
directionalrouting may still run into trouble with bottle-
necklinks regardlesf buffer size.The network capacity
achieved using Q-routing is larger since more alternate
pathsare createdaroundsuchbottlenecks Furthermore,
directionalroutingis unableto find circuitouspathsfrom
sourcesto the recever. Sinceit only routespaclets to
neighborsthat are in the direction of the recever, ary
path that requiresa paclet to be forwardedaway from
the recever for one or more hopswill never be found.

Thesecomparisonsare doneusing a fixed movement
policy we will call our centoidal mosement policy.
Under this policy, a nodethat is holding a connection
will attemptto move to the centroid of its connected
neighborswhich increaseghe likelihood of preserving
theseconnectionsover time. If it is not holding a con-
nection,thenit simply movesaboutrandomlysearching
for a new connection.Thus, the next hops determined
by the routing policy strongly influence the direction
of movement,sincethe next hopsdeterminethe nodes
connectiongo its neighbors.

When a randommovementpolicy is usedinsteadof
the centroidalpolicy, Q-routing exhibits inferior perfor
mancerelative to directional routing. One example is
givenin Figure 3, which shows the evolution of average
systemperformanceover time in a typical scenarioThe
table below givesaveragesover 100 differentscenarios:

Movementpolicy | Routing policy Average
performance
Centroidal Q-routing .924
Centroidal Directional .896
Random Q-routing .498
Random Directional 519

This phenomenons due to the fact that Q-routing
influencesthe centroidal movement policy in a posi-
tive manner whereasit is unableto influence a ran-
dom movementpolicy. In some sense,Q-routing with
centroidalmovementis able to find circuitous source-
destinationpathsand rope themin using the centroidal
movement.

Due to this type of influence, Q-routing and direc-
tional routing resultin very different configurationsfor
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Fig. 3. This graph shawvs a running averageof successfultrans-
mission ratesfor a samplenetwork scenariounder four cases:Q-
routing with centroidalmovement,directionalrouting with centroidal
movement directionalroutingwith randommovement,andQ-routing
with randommaovement.

the network when coupledwith centroidalmovement.
Directional routing tendsto form a network backbone,
which usually comprisesthe most direct route to the
recever for a large portion of the sourcenodes.Other
sourcessendpacletstowardsthis backboneresultingin
a tree-like network configuration,as shawvn in Figure 2.
Q-routing, on the other hand, always seeksthe shortest
path towards the recever, even when buffer sizesare
not a constraint.This resultsin a fan-shapedetwork
configurationalsoshaovn in Figure2, whereeachsource
has its own shortestpath to the recever as long as
thereare a sufficient numberof mobile nodesto create
thesepaths.From this obsenation, we canbegin to see
that thereis an interplay betweenthe choice of routing
protocolandthe movementpolicy of the mobile nodes.

This leads to a subtle but telling explanation for
the improved performanceof Q-routing over directional
routing. In Q-routing, the mobile agentnodestend to
become more dispersed,since no network backbone
is created.Thus, as sourcenodesmove about, the Q-
routing ad-hoc network is more likely to be able to
remainconnectedwithout drasticreconfigurationsThis
interplay betweenrouting and movementforces us to
carefully considerthe movementpolicy we chooseto
pair with our selectedrouting policy.

V1. LEARNING TO MOVE

The problem of learning a good movement policy
is much more difficult. We wish to again apply rein-
forcementlearningtechniqueso this problem.First of
all, the problem of partial obsenability is much more

pronouncedthan in the packet routing problem. For
example,when the network is in a disconnectedstate,
information about the global network topology is im-
possiblecollect but would be importantfor determining
movementsthat would optimize network connectvity.
Moreover, thelocal obsenationspacecouldstill be quite
large, dependingon the obsened variableswe chooseto
encode.Secondly the choiceof actionspaceis unclear
At the most basiclevel, the agentscould move in ary
directionat ary specifiedspeed.Or, we could constrain
themto moving at a constantspeedNorth, South,East,
or West, or simply staying put. These action choices
are unsatisfctory: the latter is too constrainedand the
former allows too mary degreesof freedom.We will

limit the action choices by designing more complex
actionsthat incorporatedomainknowledge.This allows
the agentsto learn complex behaiors while preventing
our action spacefrom growing too large. This section
briefly outlines our applicationof Q-learningto learn
a reasonablanovementpolicy despitethe fact that Q-
learninggenerallyfails in POMDPs.

We proceedby using the obsenation spaceas our
assumedstatespace.That is, we will imaginethat our
obsenations give us a completepicture of our current
stateof the world. This canpotentiallyleadto problems
of aliasing, since the world is actually only partially
obsenable and different underlying statesmay appear
the samein our obsenations.We chooseour obsenation
variablescarefullyin orderto attemptto avoid this pitfall.
Since the nodescommunicateusing a sharedwireless
medium, a node can “sniff” packets sentby neighbors
to destination®therthanitself. Thus,a nodecandetect
the presenceof neighbornodesand their connections,
even if it is not involved in any of theseconnections
itself. Moreover, since the recever nodes send back
acknavledgementpaclets along theseconnectionspur
agentnodecanalsocollect statisticsaboutthesesource-
destination paths by sniffing these acknavledgement
paclets. Each agentnodes obsenation spacethus in-
cludes the identities of its neighbors,the number of
connectionst is currentlyholding,the numberof nearby
connections,and the maximum and minimum average
hop lengthsof thesesource-destinatiopaths.

We alsoincorporatesomedomainknowledgeinto our
designof an appropriateaction space.This allows the
agentsto learnrich and interestingpolicies without the
need for exponentially large state and action spaces.
For example, thereis little needto train the nodesto
learn a policy for avoiding obstaclesalong its desired
path of movement.We can pre-progranthe nodeswith



the necessaryalgorithm to do this. A subsetof our
actionspaceis givenin the table belon. Many of these
actions could take multiple time periodsto complete.
We currently get aroundthis problem by allowing the
agents(nodes)to chooseto either continue or change
an action during eachtime period. A more disciplined
approachusing the framewvork of macroactionsis also
being developed.

Action Description

stay Stay put; don't changeposition.

direction | Headin a particulardirection.

plug Searchedor the sparsespathand
attemptsto fill in the largestgap
alongthat path.

leave Leavesa pathandbecomesavailable
for otheractions.

circle Circlesarounda nodein searchof more
connectionsAttemptsto retain
connectionto the sourcearound
which it is circling.

lead Leadsother mobile agentsin search
of more connectionsAttemptsto
staywithin rangeof its followers.

follow Identifiesandfollows a leadernode,
while maintainingconnectionto
previous hop.

center Movesto the centroidof the neighbors
to which it is connected.

explore | Randomexploration.

Usingthis stateandactionspacejearningcanthusbe
focusedon higherlevel actionselectiorthatis difficult to
pre-progranmoptimally for differentervironmentswhich
the agentsmight encounterOne of the main advantages
of using a learningmethodto generatemovementpoli-
ciesis thatwe canquickly createnew agentsoptimized
for new ervironmentssimply by training them undera
differentsimulation.By experiencinga simulationof the
ervironmentin which they will be expectedto operate,

the agentscan learnto piecetogetherpre-programmed

lowerlevel behaiors to createa good high-level move-
ment policy tailored for those particular ervironmental
factors.

Finally, therewardgivento the nodesduringeachtime
periodin the simulationcorrespondso the percentagef
successfutransmissiongluring that time period, which
is readily available sincewe are conductingthis training
off-line. This reward signal correspondgo the network
performancemeasurene have beenusingin this paper

A. Movementpolicy comparisons

We evaluate the performanceof our learning algo-
rithm againstthe centroidalmovementpolicy given in
Section V, a hand-codedpolicy that usesthe same
obsenationspaceasthelearningalgorithm,anda global
knowledgecentralcontroller Under simulation,we give
the centralcontrolleraccesgo all the node,source,and
recever positions,which would usually be unavailable
to the agentnodes.Since our learning algorithm only
has accessto local knowledge, the central controllers
performanceshould approximatean upper bound for
the learning algorithm’s performance.Moreover, this
performancebound may fluctuateover time as network
conditionschangedependingon sourcemovementsce-
narios.The centralcontrolleralsogivesus a mechanism
to compareour theoretical performancebounds from
Sectionlll with actualempirical results.

The centralcontrolleris designedto approximatean
optimal movementpolicy given global knowledgeabout
network conditions.It begins by identifying connected
componentsamong the stationary nodes. If a paclet
is receved by arny node of a connectedcomponent,
then all nodesof that componentcan also receve the
paclet. However, if a paclet's destinatioris in adifferent
componentthenthe controllerfinds the shortestpathto
the destinationcomponentand recruitsmobile nodesto
help constructthe necessaryinks neededo deliver the
paclet.

Figure 4 gives the averageperformanceof a sample
network scenarioover time using eachof thesemaove-
ment policies. As we can see, the learning algorithm
doeseventually learn a policy that behares fairly well,
but it never achieves the performanceof the global
knowledgecontroller This is expectedsincethe learner
doesnot have accessto the global network topology
On average the learnedpolicies perform slightly better
than the hand-codedpolicy over large setsof network
scenariosHowever, in certainscenariosjt never learns
to performaswell, possiblydueto aliasingproblems.

VIl. CONCLUSION AND FUTURE WORK

This paperpresentsa rich new domainfor multiagent
reinforcementlearning and establishesseveral first re-
sultsin this area.Thereis much more work to be done
to createa more robust movementlearning algorithm
that dealsdirectly with the partial obsenability of the
domain.Policy searchandMonte Carlo methodsaretwo
techniquesthat are currently being examined. A well
designedalgorithm might also be able to exploit the
interplay betweenrouting and movement.
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Fig. 4. Graphshawing the averageperformanceof variousmove-
mentpoliciesover time in a typical scenario.The learningpolicy is
shavn during its training phase.
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