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Abstract This paper presents a decision-theoretic approach
to problems that require accurate placement of a robot rel-
ative to an object of known shape, such as grasping for as-
sembly or tool use. The decision process is applied to a robot
hand with tactile sensors, to localize the object on a table and
ultimately achieve a target placement by selecting among a
parameterized set of grasping and information-gathering tra-
jectories. The process is demonstrated in simulation and on a
real robot. This work has been previously presented in Hsiao
et al. (Workshop on Algorithmic Foundations of Robotics
(WAFR), 2008; Robotics Science and Systems (RSS), 2010)
and Hsiao (Relatively robust grasping, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 2009).

Keywords Grasping - Planning under uncertainty -
POMDPs - Manipulation - Robustness

1 Introduction

Our goal is to develop a general-purpose strategy for task-
driven manipulation of objects when there is uncertainty
about the relative pose of the robot and the objects. This
strategy applies to relative placement problems, which re-
quire the robot to achieve accurate placement with respect
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to a target object whose position is not accurately known.
Placement problems include grasping (placing the robot rel-
ative to an object to be grasped), insertions (placing an ob-
ject the robot is holding relative to another object), and other
fine-motion tasks. In this paper, we focus on grasping at a
specified pose on a known object.

Vision and range sensors can estimate the pose of an ob-
ject, but there is still residual uncertainty, especially when
important features of the object are partially occluded. Tac-
tile sensing, combined with proprioception, can give highly
reliable information about object position. However, it is ex-
pensive to map out an entire object with tactile sensing, so
we want to use the information requirements of the task to
drive the sensing.

Decision theory frames problems of action selection
when the true world state is unknown, providing a princi-
pled way to trade off the cost of performing information-
gathering actions against the costs of performing inappro-
priate actions in the world. A decision-theoretic controller is
constructed from two components: state estimation and ac-
tion selection. The state estimator maintains a belief state,
which is a probability distribution over the underlying, but
not directly observable, states of the world. Each time an
observation (such as a contact sensor reading) is made, the
belief state is updated to incorporate the new information;
each time an action is taken, the belief state is updated to
reflect possible changes in the world state due to the action.
The action selection component considers the current belief
state and decides whether the state has been estimated suf-
ficiently accurately to execute a final goal-achieving action
and terminate, or whether additional observations should be
made. If additional observations are to be made it chooses
an action based on its potential for increasing the likelihood
of success.
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In the general case, optimal action selection is computa-
tionally intractable. In some cases, sensing actions can be
chosen effectively by “greedily” choosing the action that
will most reduce uncertainty in one step. Our problems do
not necessarily exhibit that trait, but we want to structure the
problem so that only a small amount of lookahead is neces-
sary to choose appropriate actions.

It is typical, in lower-dimensional control problems such
as mobile-robot navigation, to use a uniform discretization
of the primitive action space. Such a fine-grained discretiza-
tion of the space presents two problems: first, there is a large
branching factor in the choice of actions; second, the hori-
zon (number of “steps” that must be made before the goal
is reached) is quite long, requiring significant lookahead in
planning to select an appropriate action.

Our strategy will be to generate, off-line, a relatively
small set of world-relative trajectories (WRTs). A WRT is a
parameterized trajectory: it consists of a sequence of Carte-
sian poses for the robot’s end-effector, expressed relative
to an estimated pose of the object to be grasped. Also off-
line, we characterize each WRT’s effectiveness in terms of
achieving the goal and gaining information. Then, during
the on-line execution phase, we will use this information,
together with the continually updated belief state, to select
and execute appropriate trajectories. One way to think of
these trajectories is as temporally extended “macro actions.”
This approach has a relatively small branching factor, and
results in effective goal-directed action even with only one
step lookahead.

We consider several approximate decision procedures,
based on WRTs. In the simplest case, we have a single WRT,
which would succeed as a terminal action if it were parame-
terized with the correct object pose. On every step, we exe-
cute that WRT, parameterized by the object pose that is most
likely in the current belief state. The procedure is terminated
when the estimated likelihood of success is high enough,
and the WRT is executed one last time (if the goal condi-
tion is not already satisfied). A single WRT is not always
enough to guarantee that the uncertainty will be reduced suf-
ficiently, so we augment the set of WRTs with trajectories
designed expressly with the goal of gathering information
and/or re-orienting the object so it will be easier to interact
with. Finally, we consider an extension to lookahead search,
allowing the selection of an initial WRT because of its abil-
ity to gain information that will enable a subsequent WRT
to be more effective, even though the initial WRT does not
substantially reduce uncertainty in the dimensions that are
relevant to actual achievement of the goal. We show that
these procedures are expected to terminate with a correct
answer, under assumptions about the informativeness of ob-
servations and the degree to which actions affect the state of
the world.

The use of WRT’s in these decision procedures allows
us to limit the set of actions that need to be considered to a
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small set. However, during lookahead search, we also need
to consider all possible observations that result from each
action. To keep the computational burden manageable, we
developed a method for clustering observations into a very
small, but useful, set.

We demonstrate the effectiveness of the resulting deci-
sion procedures both in simulation and in a real robotic
grasping application.

2 Related work

Our work fits within the general paradigm of motion plan-
ning under both sensing and control uncertainty. This prob-
lem has been addressed in non-probabilistic formulations
(for example, Lozano-Perez et al. 1984; Taylor et al. 1988;
Latombe 1991) and in probabilistic formulations (for exam-
ple, LaValle 2006). Several previous approaches have used
probabilistic state estimation to represent uncertainty and in-
tegrate observational information in manipulation problems
(Petrovskaya and Ng 2007; Gadeyne et al. 2005). Hsiao
et al. (2007) frame the decision-making problem as a par-
tially observable Markov decision process and solve it near-
optimally, but can only address small problems. Cameron
and Durrant-Whyte (1990) take a hypothesis-testing ap-
proach, applied to simple probes of a two-dimensional ob-
ject.

Using tactile sensing to recognize and/or locate objects
has a long history (Okada and Tsuchiya 1977; Allen and
Michelman 1990; Erdmann 1998; Akella and Mason 1999),
yet tactile sensing is used less often in robot manipulation
than vision or range sensing. One possible reason is effi-
ciency. Most work on tactile sensing has focused on recog-
nizing/localizing objects in a task-independent manner and
can be unnecessarily slow. Our goal is to integrate tactile
sensing with the manipulation task, both in that the sens-
ing arises from task-oriented motions and that the goal is to
sense just enough to enable success on the task.

There are two paradigms for tactile recognition/localiza-
tion. One obtains dense data, for example by surface scan-
ning (Allen and Bajcsy 1985; Okamura and Cutkosky 2001);
the other uses sparse data directly via “contact probes” (Gas-
ton and Lozano-Perez 1984; Skiena 1989). Within the probe
paradigm, there has been substantial work on “active” prob-
ing, choosing motions that best disambiguate among pos-
sible objects or poses (Ellis 1992; Skiena 1989). However,
these probing motions have not typically been integrated
into the goals of an overall manipulation task. In this paper,
we use task-directed motions as primary probes, resorting
to explicit information-gathering motions only when neces-
sary.

Our work is related to the idea of “active localization”
of Erickson et al. (2008). Their goal is a plan to localize a
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robot in a known map from the expected contacts that result
from “move-until-contact” commands. They maintain a be-
lief state and use entropy as a heuristic for picking among
actions. One key difference is that we employ world-relative
trajectories and on-line belief updates to adjust to on-line
outcomes, rather than planning off-line for a fixed action se-
quence.

A related class of problems is one where there is un-
certainty in the outcomes of actions, but the uncertainty is
immediately resolved through observations. Alterovitz et al.
(2007) construct and solve such an MDP model for guid-
ing non-holonomic needles. There has been a great deal of
recent work on generalizations of the motion planning prob-
lem that take positional uncertainty and the potential for re-
ducing it via observations into account and plan trajectories
through the space that will maximize the probability of suc-
cess or related other objectives (e.g. Prentice and Roy 2007;
Gonzalez and Stentz 2005; Censi et al. 2008; Melchior and
Simmons 2007). Burns and Brock (2007) have a different
model, in which the system selectively makes observations
to reduce uncertainty during planning, but the resulting plan
is executed open-loop.

3 Action selection

We will start by framing the problem of placement un-
der uncertainty decision-theoretically, describe strategies for
selecting sensing actions and for terminating the sensing
phase, and then characterize some theoretical properties of
these strategies.

For concreteness, the rest of the paper discusses the prob-
lem of grasping an object using a pre-specified grasp (as
shown in Fig. 1), when there is uncertainty about the posi-
tion of the object with respect to the robot, but it is important

Fig. 1 Goal grasps for all experimental objects except the power drill

to keep in mind that the basic formulation is more broadly
applicable.

3.1 Problem formulation

A grasp specification, G, consists of a set of relative poses
for the hand and object, any of which is a successful grasp.
The object is modeled as a 3D polygonal mesh; it is assumed
to be positioned on a horizontal table with known z coordi-
nate, resting on a known stable face. There are three degrees
of pose uncertainty: x, y, 6. We call this space of object
poses W.

A non-contact system (such as vision) generates an initial
probability distribution over W; the sensing and estimation
process will refine this distribution over time. The distribu-
tion will, in general, be multi-modal; it could be represented
with various non-parametric or mixture distributions, but for
simplicity, we use a multinomial distribution over a uniform
discretization of W. This is our belief state, b; b(s) is the
probability of state s in distribution b.

The robot is a Barrett Arm and Hand, and the space of
possible actions is enormous, if viewed as a space of tra-
jectories or velocity commands. Thus, we use actions (a)
drawn from a small set of WRTs, as introduced above and
described below. The pre-determined set of WRTs will, in
general, include a trajectory that is intended to carry out
the target grasp, as well as additional trajectories that are
designed to be useful for gaining information and for re-
positioning the object.

When the robot has executed a WRT from the starting
pose through termination, an observation (o) is composed
of: the path the robot took through joint-angle space, esti-
mated position and normal of the contact for each finger, ob-
tained from 6-axis force-torque sensors on each of the three
finger tips, and readings from binary contact sensors on the
palm and hand.

3.2 State estimation

After taking a new action a in belief state b, with underlying
states s, and making observation o, the new belief state b’ =
SE(b, a, 0) with underlying states s’ is defined by

Pr(ols’,a) )", Pr(s’|s, a)b(s)

SE(b,a,0)(s") = Pr(o|b, a)

ey

The first factor in the numerator of (1) is an element of the
observation model, P(o|s’, a), that specifies the probability
of making an observation o after arriving in state s” by us-
ing action a, and the second factor is an element of the state
transition model, P(s’|s, a), that specifies a probability dis-
tribution over the resulting state s’, given an initial state s
and action a. The denominator is determined by the con-
straint that the elements of 4 must sum to 1.
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3.3 World-relative trajectories

A world-relative trajectory (WRT) is a function that maps
a world configuration w € W into a sequence of Cartesian
poses for the robot’s end effector. In the simple case in which
w is the pose of an object, a world-relative trajectory can just
be a sequence of end-effector poses in the object’s frame.
Given a WRT t and a world configuration w, the sequence
of hand poses t(w) can be converted via inverse kinematics
(including redundancy resolution) into a sequence of via-
points for the arm in joint-angle space. So, if we knew w
exactly and had a valid (collision-free and reachable) WRT
for it, we could move the robot through the hand poses in
7(w) and reach the desired end-point configuration of the
arm with respect to the object for that WRT. The first point
on every trajectory will be the same “home” pose, in a fixed
robot-relative frame, and the robot will begin each trajectory
execution by moving back to the home pose ¢j,.

In general, we won’t know w exactly, but we will have
to choose a single w to use in calculating t(w). Let w(b)
be the world state w for which b(w) is maximized; it is
the most likely state. We can execute 7 (w (b)), and have the
highest probability of reaching the desired terminal config-
uration according to our current belief state. We command
the robot to follow the trajectory by executing guarded move
commands to each waypoint in the sequence, terminating
early if a contact is sensed. An early contact (or reaching the
end of the trajectory with no contact) results in an observa-
tion that can be used to update the belief state. In addition
to the collision point, we obtain further contact observations
by carefully closing each finger until contact when any col-
lision is sensed.

3.4 Decision procedures

An optimal behavior in this problem is a decision procedure
that specifies which action to take in reaction to every pos-
sible belief state. We can assign a cost to taking actions, and
then seek a decision procedure that minimizes the expected
cost of the robot’s behavior, taking into account both the cost
of executing actions for the purpose of gaining information
and the cost of grasping the object incorrectly (including
failing to grasp it at all). This problem is a POMDP (Kael-
bling et al. 1998), and can be computationally very difficult
to solve in the general case. It requires time and space ex-
ponential in the number of actions and observations which,
even if discretized, are enormous.

We present two approximate, but efficient approaches to
this problem. The resulting behaviors are sub-optimal, in
general. However, we seek to understand conditions that
guarantee finite convergence to a desired grasp with high
probability.

@ Springer

3.4.1 Single WRT

The simplest decision procedure assumes that we have a
single WRT, t*, which, when executed with respect to the
true object pose w*, results in a grasp in G, the set of
goal grasps. Letting b, be the belief state at time ¢, that is,
Pr(W =wjoy, ..., 0, a1, ...,a;), the distribution over pos-
sible object poses given the history of observations and ac-
tions, the decision procedure is to:

Step 1. Find the maximum a posteriori probability
(MAP) pose w(b) = arg max,, b(w) and execute t*(w(b)).
That is, to execute the grasping trajectory as if the object
were at its most likely location.

Step 2. Obtain observation o;4+1 and update the belief
state.

Step 3. Terminate when a criterion on b is met, grasp the
object using 7*(w (b)) (if the hand is not already grasping at
the new w (b)), and pick it up.

The termination criterion depends on the expected loss
of attempting to grasp based on the current belief state. Our
loss function for executing a final grasp 7*(w) and attempt-
ing to pick up the object is 0 if 7*(w) results in a goal
grasp and 1 otherwise. The expected loss, or risk, of exe-
cuting t*(w), written p(t*(w), b), is an expectation of the
loss taken with respect to belief distribution b.

We should select the w that minimizes p(t*(w), b) to
parametrize the final grasp; that is the action that is optimal
in the expected-loss sense. In practice, it can be expensive
to evaluate p over the whole space W, so we commit to ex-
ecuting action t*(w(b)). Our termination condition is that
the risk of this action be less than some risk threshold §. In
Sect. 3.5, we describe conditions under which this process
requires a finite number of samples, in expectation, to ter-
minate. It must be the case that each new grasping attempt
yields information that ultimately decreases the risk.

3.4.2 Multiple WRTs

It may be that repeatedly executing t* will not give suffi-
cient information to achieve the goal criterion. If the goal is
to pick up a long object in the middle, repeated grasping will
not give information about the object’s displacement along
its long axis. Thus, it is necessary to touch additional sur-
faces with the explicit purpose of gaining information. It
may also be that the goal WRT is not executable: the ob-
ject’s handle, for example, may be out of reach of the robot,
in which case the robot must first grasp the object using a
different grasp and re-orient it. Therefore, we will generally
have available a set of WRTs.

Given a set of possible WRTs, 1;, each of which has exe-
cution cost ¢;, the decision procedure uses finite-lookahead
search in an attempt to minimize the total cost of informa-
tion gathering actions required to achieve the goal criterion.
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Fig. 2 Parts of a depth-2 search tree and associated value computation

Step 1. Construct a search tree whose layers alternate be-
tween action choices of the robot and stochastic outcome
“choices” of the environment. The root node is the cur-
rent belief state, b. It branches on the choice of action a,
and then on the possible observations o. The node reached
from b via action a and observation o is a new belief state
b’ = SE(b,a, o). This process can be carried out to any
depth; Fig. 2 shows parts of a depth-2 tree.

For computational simplicity, the only actions considered
in belief state b are 7;(W(d)), for each t; € 7. We consider
each possible WRT only with respect to the world state that
is the most likely in b. The observation space is actually
continuous; Sect. 4.4.1 discusses the discretization process.

We are interested in V (b), which is the expected cost of
executing actions, starting in belief state b, until reaching
a belief state for which pg(b), the probability of having a
wrong grasp (one not within the desired goal region) in be-
lief state b, is less than §. We use the tree to compute a finite-
horizon approximation of V (b) at a given b, based on back-
ward induction. The value at the leaves is approximated as
the risk of terminating and using the goal grasp in that belief
state: Vo(b) = po(b). Then, we compute

V,(b) = min |:Z Pr(o|b, T;(b))U,(SE(b, 7, 0), rj):| ,
J o

where

o(b) if T =1*and po(b) <6,

Un(b,7)= )
Vi—1(b) + ¢ otherwise.

The function U captures the fact that if the belief state meets
the termination criteria, then the procedure terminates and

there is no remaining action cost. If it does not, then the
expected cost is as defined by V for the belief resulting from
the action taken, plus the cost of the additional action.

Step 2. Select the WRT t; that minimizes the expected
value of V at the next step and execute it with respect to
w(b).

Step 3. Obtain observation 0,41, and update the belief
state.

Step 4. Terminate when po(b) < § after having grasped
the object using 7*, and pick it up. Otherwise, go to step 1.

In most situations, when re-positioning the object is not
necessary, it is sufficient to set search depth k = 1, that is, to
select the WRT that will, in expectation, lead to a belief state
that has the least risk with respect to executing the nominal
grasp trajectory. However, as we illustrate experimentally in
Sect. 5, looking deeper can improve the rate at which the ter-
mination criterion is reached. It is sometimes the case that an
initial action, although it does not itself reduce the risk sig-
nificantly (because it reduces uncertainty in a dimension that
is not important for the ultimate grasp), makes it possible to
execute a subsequent action in a way that significantly im-
proves its information-gathering effectiveness. As k goes to
infinity, this process will choose optimal actions (DeGroot
1970). However, we find experimentally that in our applica-
tion, increasing k beyond 2 yields no advantage.

In many information-gathering domains, the objective
function is submodular in the set of observations. This
means that subsequent observations do not offer as much in-
cremental value as early observations. Krause and Guestrin
(2007) have shown that when this property holds, a greedy
observation strategy, which only looks ahead one step in
picking observations, is within a constant factor of optimal.
However, our domain does not have that property: it can
happen that, even though the risk is nearly independent of
uncertainty in the x dimension, that first localizing an ob-
ject in x makes it much more efficient to localize in y; thus,
the initial observation may have less risk-reduction than a
subsequent observation.

3.5 Termination and correctness

We would like to understand how these decision procedures
are likely to perform, depending on properties of the domain
to which we apply them. There are two important questions:
Will the procedure terminate in finite time? When it termi-
nates, what is the likelihood that it will have selected a final
action that meets the goal criterion? The answer depends on
the informativeness of the observations and on the degree to
which the actions change the pose of the target object.

3.5.1 Single WRT with object fixed

We begin by assuming that the object’s pose does not change
during the sensing process, that the loss is zero if and only if
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the goal WRT is executed with respect to the true underlying
state, and that we have only a single WRT.

In the standard statistics problem of hypothesis testing
with two hypotheses and a single observation action, the se-
quential decision process depends on the ratio of the prob-
abilities of the two hypotheses in the posterior distribution.
When the probability ratio goes outside of a fixed interval,
then the sampling procedure is terminated and a hypothesis
is selected. This procedure was shown by Wald (1945) to ter-
minate with a guaranteed risk after a finite number of trials,
as long as the observation distribution is almost surely (with
probability one) different, conditioned on the hypothesis.

This result is extended to the case of multiple dis-
crete hypotheses in the M-ary sequential probability ratio
test (MSPRT), which is also guaranteed to terminate after
finitely many trials whenever the observation distributions
are almost surely different for each hypothesis (Baum and
Veeravalli 1994). These results hold whether the observa-
tion space is discrete or continuous. However, our decision
problem deviates from the MSPRT setting, in that differ-
ent “experiments” are being chosen on each step, because
each time the belief state is updated, the MAP world state is
likely to change, and so the WRT is executed with respect to
a different hypothesis about the object’s pose.

Define the observation probability distribution for action
a = t*(w;) (the goal grasp applied to hypothesized world
state w;) when the true world state is wy to be

fL©0) =Pr(0 = o|W = wy, A =t*(w)))

and the expected informativeness of an action t*(wy) to the
distinction between states j and k to be:

JHQ)
I]l.szsz % =/0,/f,’-(0)\/f;f(0) do.

A clearly sufficient condition for termination is that, for
all pairs of world states w;, wy, for all wy, I]l.k # 1; that
is, that no matter how we parametrize our WRT, the obser-
vation distribution that it generates will be different across
each pair of possible world states wj, wy. This satisfies the
conditions for termination of the MSPRT. Of course, this
won’t be true in general. If wy is a pose that is spatially not-
overlapping with both w; and w;, then no matter whether
w; or w; is true, the probability of observing no contact is 1
(or high) when the robot attempts to grasp the object as if it
were at wy.

If wy is the true state of the world, we can plausibly as-
sume that, for all world states j # k:

ij.'k <1 and 1% <1 2)

What this means is that grasping as if the object were at
pose j provides information that differentiates j from the
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true hypothesis k; and that grasping as if the object were at
the true pose k provides information that differentiates pose
k from all other possible poses. This is, of course, not true
for many objects; if it is not, then the single-WRT process
will not terminate and we need to use multiple WRTs.

It is important to see that taking uninformative actions
is never destructive to the estimation process: it is simply
a no-op. So, when the information ratios in (2) are less
than 1, we can apply the MSPRT theorem as follows: In
any sequence a = do, ...,ay where n;j(a) of the trials in
a are of action 7*(w;), the probability that the decision pro-
cedure will not have terminated is a constant factor times
max (Ij!k)”f(“)(lfk)”k(“). It will be sufficient to focus on the
number of trials, ni (a), of T*(wy) (which we will abbreviate
as action k).

By a similar argument to the termination of the MSPRT,
we can argue that any action other than action k will be ex-
ponentially unlikely to continue to be selected during an ex-
ecution. So, very quickly, action k will predominate. The
argument is as follows: any hypothesis j that is currently
more likely than hypothesis k will be selected, but because
1 /!k < 1, it will drive down the likelihood of j with respect
to k exponentially quickly, and therefore eventually not be
selected. This will happen for each hypothesis j # k, until
hypothesis k is selected. In case the likelihood of some j
rises up above k, then action j will be selected, and it will
drive the likelihood of j back down exponentially quickly.

The statistics literature provides arguments that probabil-
ity ratio tests can be configured (by choosing termination
criteria appropriately) to minimize total risk (when a cost is
assessed for each sensing action). In our case, it is guaran-
teed that the risk of the final action is less than the maximum
tolerable risk § whenever the procedure terminates.

3.5.2 Goal sets

The goal set G may be such that executing t*(w) has 0 risk
in a whole set of world states, not just the true state; for
example, we may be indifferent about the orientation of a
round can when it is grasped. In such a case, the require-
ments from formula (2) can be weakened. Let W be the
set of w € W such that the grasp resulting from executing
*(w) is in G. Then, it is sufficient for termination that for
all j € W\Wg and for all k € Wg, Ifk <1and I/’.‘k < 1; that
is, that the actions are discriminative between goal and non-
goal w, but need not be discriminative within those sets.

3.5.3 Observations can move the object

It is more generally the case that the observation actions can
change the state of the world, by moving the object as it is
being sensed. If the information gained by each observation
update compensates sufficiently for any additional entropy
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in the belief state introduced by the transition update, such
that Pr(w;)/Pr(wy) does not increase, in expectation, then
the decision procedure will have a finite expected duration
despite the object movement.

3.5.4 Multiple WRTs

We must increase the set of WRTs when the requirements
from (2) are not satisfied for 7*. Given a set of WRTs 7,
it must be that, for any pair of world states j € W\ W and
k € Wg, there exists some t € 7 such that I },’f <1 and
some (not necessarily the same or different) T € 7 such that
I]].‘;{T < 1, where we have extended the definition of / to de-
pend on t in the obvious way.

We need to perform lookahead search when the execu-
tion of any single WRT is insufficient to yield an immediate
decrease in risk. We can treat length-k sequences of the orig-
inal actions as a new set of “macro” actions. If these macro
actions, in combination, satisfy the requirements on infor-
mativeness, then the procedure will terminate and generate

correct answers with high probability.

4 Implementation

We implemented this method with a 7-DOF Barrett Arm and
Hand, both in simulation (using ODE to simulate the physics
of the world) and on an actual robot. The hand has ATI
Nanol7 6-axis force/torque sensors at the fingertips, and
simple binary contact pads covering the inside (and some
outside) surfaces of the fingers and the palm.

To apply the described framework, we needed to find an
appropriate set of WRTs, and to define observation and tran-
sition models. In addition, because of the size of the set of
possible raw observations and the fact that the lookahead
search branches on all possible observations, we developed
a method for clustering observations into a very small, but
useful, set.

4.1 WRTs

We used WRTs of three different types, for each target:

— the goal WRT, t*, that grasps the object correctly if exe-
cuted with respect to the correct world state,

— information WRTs, that attempt to contact non-goal sur-
faces of the object and that sweep through the space to
make an initial contact when uncertainty is high, and

— re-orientation WRTs that use a grasp from above to rotate
the object about its center of mass to make the goal WRT
kinematically feasible.

The goal WRTs were generated through demonstration (by
moving the robot and recording object-relative waypoints).

Some of the information WRTs were also generated this
way; others were constructed automatically.

Automatic generation of WRTs was done by finding hand
positions that place the fingers on nearly parallel pairs of
object surfaces, using the OpenRAVE motion planning sys-
tem (Diankov and Kuffner 2008) to find a collision-free tra-
jectory from a starting pose to that hand position, and then
expressing the trajectory in object-relative Cartesian coor-
dinates. The resulting trajectories become candidate WRTs,
which were then evaluated on the basis of their kinematic
robustness, their potential to gain information, and their ten-
dency to fail by hitting the object with a sensorless part of
the hand.

We also added an additional information-gathering WRT
that simply sweeps horizontally across the workspace,
which is useful for initially locating the object when there is
high uncertainty. The implicit goal in creating a set of WRTs
is to satisfy the termination requirements of the sequential
decision procedure by ensuring that, for any two possible
poses of the object, there is a WRT (or a short sequence of
them) whose observation distribution distinguishes between
them. In the case where the workspace is expected to be
cluttered, we might wish, in addition, to generate multiple
WRTs for gaining the same information, which would allow
the process to succeed even when some WRTSs are infeasible
due to possible collisions.

We can also execute trajectories that try to change the
actual state of the world, rather than merely trying to reduce
uncertainty in the belief state. If all of our goal-achieving tra-
jectories are kinematically infeasible in w(b), for instance,
we may wish to reorient the object so that at least one of
them becomes feasible. To do so, we add a WRT that at-
tempts to grasp the object (using a grasp that does not neces-
sarily satisfy the goal conditions) and then rotates the object
after successfully running to completion. In our implemen-
tation, all reorientation WRT's simply grasp the object from
the top, about the object center, and rotate by the desired
angle.

4.2 Belief state representation and update

We represent the belief state as a multinomial distribution
over a three-dimensional grid of cells, with the x, y, and
6 coordinates discretized into 31, 31, and 25 cells, respec-
tively. A cell w comprises a set of actual poses. To handle
this correctly in the transition and observation models, we
should integrate over poses within w, which is computation-
ally difficult. We instead treat cell w as if it were the pose in
the center, which we call the canonical pose and write as w.

The belief-state update operation is, in the worst case,
quadratic in the size of the state space; but in our case the
transition distribution is very sparse, so there are a bounded
number of states s’ such that Pr(s’|s, a) is non-zero, which
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makes the complexity ultimately linear in the size of the
state space instead. Furthermore, we are assuming that the
belief state is also quite sparse (due to initial sensor infor-
mation), so the complexity is further reduced considerably,
making this operation straightforward to compute online.

4.3 Observations

In general, a WRT is executed in two phases: the arm is
moved through the specified trajectory until a contact is felt
anywhere on the hand or until the trajectory completes; then
the three fingers are closed, each one terminating when it
feels a contact or when it is fully closed. Each of these
four motions (arm and three fingers) is treated as generat-
ing an observation tuple: (¢, c, ), where ¢ is the observed
pose of the robot at termination of the WRT based on the
robot’s proprioceptive sensors, c is a vector of readings from
the contact sensors, and i is a representation of the ’swept
path’, that is, the volume of space through which the robot
thinks it moved (based on proprioception) during the course
of executing the WRT.

4.3.1 Observation model

For the purpose of belief-state update, we must specify an
observation model, which is a probability distribution

Pr(O =(¢,c, ¥)|W=w, A=1(w))).

The size and complexity of the underlying state and ob-
servation spaces makes the modeling quite difficult. For
tractability we make several assumptions:

— There are no actual contacts that are not noticed or false
triggering of the contact sensors.

— The information gained from each part of the robot (arm,
fingers) is independent given the world state and action.

— The swept path information is independent from the posi-
tion and contact information.

— The contact information at different contact points is in-
dependent.

In order to connect the observations to an underlying world
state, it is necessary to reason about the (unobserved) true
trajectory, ¥* that the robot took. Letting 7. stand for the
commanded trajectory, we can write the observation proba-
bilities Pr(¢, ¢, ¥ |w, t.) as

/W Pr(y*[w, 7) Pr(d, el w, ) Pr(y [/, w, 7o, ).
3)

The robot is driven by a servo control loop that causes i,
the observed trajectory, to track t., the commanded trajec-
tory, quite closely, so we can assume that, in the last term,
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Y = 7. (or, a prefix thereof, terminated at ¢») and that it has
probability 1. This integral is too difficult to evaluate, and so
we approximate it by the maximum:

Pr(‘ps Ca Iﬂ|w, TC) ~ I'I’vl/%XPr(lp*|w, TC) Pr(‘pv Chﬁ*a wv rC)~

The scale of this value will be considerably different from
the actual probability, but it can be normalized in the belief
update.

No contact: When the robot observes no contact with the
object, we assume that there was, in fact, no contact; so we
consider only trajectories ¥* in which no contact would oc-
cur. The value of ™ that is most likely, then, is the non-
colliding trajectory that is as close to the observed ¥ as pos-
sible.

Letting d* (¥, w) be the depth of the deepest point of col-
lision between ¥ and the object at pose w, assuming that
the nearest collision-free trajectory is at distance d* (¥, w)
from ¥, and assuming that the likelihood of an observed tra-
jectory is described by a Gaussian on its distance from the
actual trajectory, we have

Pr(¢, None, ¥|w, t.) ~ G(d* (¢, w); 0, 0[%) =Pr(y, w),

where G is the Gaussian density function and a[% is a vari-
ance parameter. Although this approximation is efficient to
compute, it can be inaccurate: there are situations in which
the collision depth is small, but the distance between the
sensed trajectory and the nearest non-colliding trajectory is
quite large.

Contact: The observation probability, in the case of an
observed contact, is the probability that as the robot exe-
cutes commanded trajectory 7., that it will sense no contact
up until ¢, and then that it will sense the contacts c. We
approximate the maximum of a product as a product of the
maxima:

Pr(@, e, ¥rlw, 7o) ~ max Pr(y ™ |w, 7o) Pr(@, ¥, w, 7o)
~ Py ), wymaxPr(@, clg”, w)

where | ] is the swept path, minus a short segment at the
end, and ¢* is the final pose of ¥*.

The fingertips have 6-axis force/torque sensors that are
used to estimate the position and orientation of contacts, so
each contact can be written as the pair /; (¢, ¢), n; (¢, c), rep-
resenting the location and normal of contact i. To do a care-
ful job of estimating the probability of the contact, we would
have to consider each pose ¢*, or possibly each face of the
object, to find the most likely contact. Instead, as a fast ap-
proximation, we assume that the sensor reading was caused
by contact with the closest object face, f*, to [;(¢), assum-
ing the object is at pose w. This choice maximizes the prob-
ability of the location, but not necessarily the normal. The
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final model is

Pr(¢, c, ¥lw, 7o) = Pr(Ly¥ ], w)G(di(li(#), f*); 0,07)
xG(dn(ni($), f*);0,07)

where d;(p, f) is the Euclidean distance from point p to
face f and d,(n, f) is the angle between the vector n and
the normal to face f, and o, and o/ are variance parameters.

We model the fingertip position error with a standard de-
viation of 0.5 cm, and the fingertip normals with a stan-
dard deviation of 30 degrees. Each contact pad on the rest
of the hand is a thin rectangle, approximately 2-3 cm on
a side, consisting of two raised metal plates separated by
small patches of very light foam (placed in notches cut in
the raised metal plates), that sense when the metal plates
touch. While they are very sensitive to light contacts, they
do not provide an estimate of contact location on the pad.
Thus, we model the location of a pad contact as the center
of the contact pad, with a standard deviation of 1 cm, and
we model the normal as the pad’s surface normal, with a
standard deviation of 90 degrees.

4.4 Computing the observation model

Computing the observation model requires predicting the
sensory conditions (e.g., finger contacts) that can result from
executing a given WRT in a given state. In an off-line pro-
cess, for each WRT t, we construct a representation of the
observation function, £2;(w, e), which specified the nomi-
nal observation tuple (¢, c, ) described earlier. Observa-
tion functions are indexed by an actual world configuration
w and an estimated world configuration e, specifying what
would happen if t(e) were executed in world w; that is, if
the robot acted as if the world were in configuration e, when
in fact it was in configuration w. In the case of a single ob-
ject with a canonical support surface on a table, the space
of w and e is characterized by the (x, y, 8) coordinates of
the object (although the approach can also be applied more
generally).

Figure 3 shows the £2;(w, e) function for a WRT t and
a space of 3 world configurations, and how it is determined.
Each row corresponds to a different true pose (x, y, ) of the
object in the world (w), which is drawn in blue. Each col-
umn corresponds to a different estimated pose of the object
(e), which is drawn in red. On the diagonals, the true and
estimated poses are the same, so the figures lie on top of one
another. The estimated pose e determines the trajectory t(e)
that the robot will follow (in this case, our robot is a point
robot in x, y). The trajectories are shown in black. Each one
starts from the same home pose, shown in green, and then
moves to a sequence of waypoints that are defined relative
to the estimated pose of the object. Yellow circles indicate
situations in which the robot will make contact with the ob-
ject. It happens on each of the diagonal elements, because

Estimated Object Pose

Actual Object Pose

Fig. 3 (Color online) The §2; (w, ) matrix fora WRT ¢

the nominal trajectory makes contact with the object. In the
elements in the bottom-left part of the figure, there is a con-
tact between the robot and the actual object during the exe-
cution of the trajectory, before it would have been expected
if the estimated pose had been the true one. In the elements
in the upper right part of the figure, the trajectory terminates
with no contact. In all cases, the observation gives informa-
tion about the object’s true location, which is used to update
the estimated pose.

Computing an entry of these matrices requires simulating
a trajectory forward from a starting robot pose, and calculat-
ing if and when it contacts objects in the world, and, if it
does, what the nominal sensory readings will be in that sit-
uation. This is a geometric computation that can be done
entirely off-line, relieving the on-line system of performing
simulations. Having computed the nominal observations in
advance means that the observation probabilities required
for the on-line belief-state update can be calculated with lit-
tle additional work.

This computation may seem prohibitive, since for a
x,y,0 grid of just 31 x 31 x 25 = 24,025 points, having
to simulate all combinations of w and e in pairs would re-
quire 24, 0252 = 207, 792,225 simulations. However, the
crucial insight here is that if trajectory t(e) is kinemati-
cally feasible and there are no other objects nearby, then the
observation depends only on the relative transformation be-
tween w and e, as shown in Fig. 4. For two sets of w and e
with the same relative transformation, as with the examples
in the figure, w and 7(e) may differ, but £2;(w, e), which
is expressed relative to e, is the same. Thus, when calculat-
ing the full £2;(w,e) matrix for a WRT 7, we can pick a
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Fig. 4 (Color online) Predicted
observations depend only on the
relative transformation between
the actual and estimated object
pose

&

Actual object pose (|
Estimated object pose [_]

single e (for instance, the initial w* (b)), compute 7 (e), and
simulate just that sequence of robot poses while varying w.
The number of simulations required to compute £2;(w, e)
is therefore merely the number of points in the belief grid
that have nontrivial probability, and running them takes just
a few seconds. Once the simulations are completed, the re-
sults can be stored for fast re-use when selecting actions
on-line.

4.4.1 Reduced observation space

The observation distributions are all Gaussians centered at
nominal observations, made assuming that the object is at
one of the canonical poses w for w € W. We can take this
discrete set of nominal observations (which in our imple-
mentation has about 24000 elements) as our set of possi-
ble observations. However, if we are to do lookahead search
that branches on observations, then we must group and sub-
sample the observation space so that it is much smaller.

In this section, we describe a very aggressive process for
finding a small set of canonical observations to branch on
during search. We always use the full observation, with the
model described above, when doing belief-state estimation
during execution.

The purpose of the lookahead search is to select actions
that are most useful for gaining information. Reducing un-
certainty in the orientation of the object, for example, is just
as useful, no matter what the object’s position is. Therefore,
we can ignore the arm position at contact. For efficiency,
but with a potential significant loss of effectiveness, we also
ignore the information gained from 1, the swept-volume as-
pect of the observation. So, we focus on reducing the space
of possible contact observations c.

Clustering: We start by clustering directly contact obser-
vation vectors, that are close enough in terms of both Eu-
clidean distance between the contact locations and the angle
between the contact normals; these distances are assumed to
be infinite if one of the contact measurements is None. Each
of the resulting clusters of observations is represented by its
most likely observation.

Sub-sampling: Next, we prune observation clusters that
are unlikely to occur throughout the state estimation pro-
cess. In the early parts of the estimation process, we expect
our belief distributions to be quite diffuse. Later in the esti-
mation process, we expect the belief distributions to be con-
centrated around particular values of w, but, of course, we
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don’t know which w. We do, however, know that later in
the process, w will be near the true w, so many observa-
tions will be unlikely because they result from actions that
are ill-matched to the true hypothesis.

We consider three different levels of uncertainty: the ini-
tial diffuse Gaussian, an intermediate one in which the stan-
dard deviations are reduced by 1/5 in each dimension, and
a focused one in which the deviations are quite small. We
prune any observation clusters that have less than 0.01 prob-
ability of occurring under any of the three distributions. This
reduces the observation cluster space in our examples to on
the order of 50 elements.

Belief-dependent clustering: In the context of a partic-
ular search step, we have a current belief state b, and an
action 7(w(b)). We can cluster observations based on their
effect in this particular belief state. We do a further agglom-
erative clustering, grouping observations that lead to belief
states that have similar variances in each dimension (on the
canonical observations of the clusters from the previous two
steps), where the distance metric is

d(c', ¢?) = dp(SE(b, (0 (D)), (¢, c')),
SE(b, T(W (b)), (¢, c*))),

where SE is the belief-state update process, and dp, is a dis-
tance metric on belief states, defined as

dp(b1,b2) = |H (b1) — H(b2)| + Z [Vr(b1) — Vi (b2)],
refx,y,0}

where H is entropy, and V,, Vy, and Vjy are variances in
the specified dimensions. In the current implementation, this
process is only done for the initial belief state, where it gives
the greatest leverage and cuts the number of clusters in half.
Belief-dependent sub-sampling: Finally, for any branch
of the search tree, we sort all possible observation clusters
by their probability in this belief state, and consider only
the k£ most likely observations, whose summed probability
is greater than 0.5. This is very aggressive, but it results in
a manageable branching factor of between 1 and around 7,
in our experiments, increasing the number of considered ob-
servations did not noticeably change the performance.

4.5 Transition model

The transition model specifies Pr(W; 11 = w;|W; = w;, A, =
7.). We treat two cases separately: information and goal
WRTs, which are not intended to change the object’s pose
(but which might do so inadvertently), and re-orientation
WRTs, which explicitly attempt to move the object.

Before we incorporate information from the observation,
the transition distribution is fairly diffuse: there is a chance
the robot will miss the object entirely (and therefore leave it
in the same pose), that the robot will graze it with one finger
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(and cause it to rotate), or that the robot will give it a solid
shove. We compute a transition distribution that is already
conditioned on some aspects of the observation, because by
looking at all of the contact information jointly, we can es-
timate the force and torques that were applied to the object,
and use that information to modulate the transition proba-
bilities. This approach risks over-weighting the observation
information, but seems to work well.

When no contacts are observed, we assume that the ob-
ject was not contacted by the robot, and therefore was not
moved. When contacts are observed, the transition distribu-
tion is a mixture of two Gaussians, one centered at the ob-
ject’s initial pose and one centered at a pose to which the
object may have been “bumped” by the contacts:

Pr(w|w;, 7o) o (1 = pp)G(d, (i, )); 0, 07)
+ oG (dp (bump(iii, §, ), 1); 0, 3;),

where py, is the probability that the object will be bumped,
d) is a distance metric on poses that weights 1 cm of dis-
tance in position the same as 0.1 radians in rotation, and
bump is a function that computes the most likely bump out-
come from the old pose and the observation.

The bump pose is determined as follows. For each ob-
served contact ¢;(¢), we compute a unit force vector v; ap-
plied at /;(¢), in the direction —n;(¢). We determine the
center of mass of the object (assuming uniform density),
compute the summed force and torque, and assume the ob-
ject will translate a fixed distance per unit force in the di-
rection of the net force, and rotate a fixed rotation per unit
torque.

Because re-orientation has a moderately high probabil-
ity of failure, we use a modified transition model, which
is a mixture of three possible outcomes: the re-orientation
fails entirely and the object stays in its initial pose, the re-
orientation succeeds exactly, and the re-orientation leaves
the object somewhere in between the start and goal poses.
Each of the modes has a larger standard deviation than the
corresponding standard deviation for other WRTs.

4.6 Single WRT example

Having outlined all the components, we will now show a
simple example: Fig. 5 shows the operation of the sys-
tem while grasping a rectangular box, using a single goal-
achieving WRT. The robot attempts to execute a grasping
trajectory, relative to the most likely element of that belief
state. The first image in the top row shows where the robot
thinks the most likely state of the box is relative to its hand.
The second image shows the location of the robot at the first
waypoint in that trajectory: we can see that the object is actu-
ally not in its most likely position (if it were, the robot’s hand
would be centered above it). The third image in the first row

Most likely robot- Where it actually is  Initial belief state  Summed over theta
relative position

Tried to move down;
finger hit comer

2 -

Back up

Observation probabilities Updated belief state

Try again with new belief Grasp

! Goal:

variance x < 1.5¢cm

y <20 cm

- theta < 10 deg
80% success threshold

Observation probabilities Updated belief Declare success!

Fig. 5 Execution of WRT and (x, y, 0) belief state update

shows the initial belief state, with probabilities depicted via
the radius of the balls shown at grid points on the (x, y, 8)
state space of the box. Subsequent belief state images show
the belief state summed over 0 for easier visualization, as
in the fourth image in the first row. In action 1 (row 2), the
hand executes a guarded move toward the next waypoint in
the trajectory, and is terminated by a fingertip contact on the
corner of the box, as shown in the first figure in the second
row. The middle figure in the second row shows the proba-
bility of observing that fingertip contact in each world con-
figuration. Combining this information with the initial be-
lief state, we obtain the updated belief state shown in the
third figure in the second row. It is clear that the information
obtained by the finger contact has considerably refined our
estimate of the object’s position.

The third and fourth rows of figures show a similar pro-
cess. The same WRT is executed a second time, now with
respect to the most likely state in the updated belief state.
This time, the hand is able to move all the way down, and
the fingers close on the box, with the resulting belief state
shown in the final figure. Now, given a goal condition such
as having the box centered between the fingers within 1.5 cm
and oriented within 10 degrees of being straight, but not be-
ing concerned where along the box the fingers are grasping
(shown by the oval in the updated belief state), we can eval-
uate the probability that it holds in the current belief state.
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Info-grasp 2

Powerdrill target grasp Info-grasp 1

Info-grasp 3

Fig. 6 Goal and information grasps for the power drill

In this case, it holds with probability >0.8, so if § were 0.2,
we would terminate.

If, on the other hand, the goal condition also specified
where the hand should be along the length of the box (for
instance, if the box is heavy and might tip within the hand,
or if the placement location requires the hand to grasp at a
particular location), then this result would not have satisfied
the goal condition, we would have no real way to improve
the situation through further execution of our goal-seeking
WRT, and the control loop would run forever. In this case,
we would need to add an information-gathering WRT that
can gather information about the location of the end of the
box.

5 Experiments

Our experiments used 10 different objects, shown with their
goal grasps in Figs. 1 and 6. The goal region for each object
was hand-chosen to guarantee that being within the goal re-
gion ensures a stable grasp of the object. These regions are
much larger for some objects than for others (for example,
the goal region for the can is large, since the hand only has to
envelop it), and the goal regions for the rotationally symmet-
ric objects ignore the object orientation. In all experiments,
the maximum number of actions allowed was 10; after the
9th action, if the goal criterion was not reached, the goal
WRT was executed.

5.1 Simulation

In our simulation experiments, we compare three different
strategies:

— Open-loop: execute the goal WRT once and terminate;

— RRG-Goal: execute the goal WRT repeatedly on the most
likely state, terminating when the risk threshold is met;
and

— RRG-Info: choose among goal, re-orientation, and infor-
mation WRTs, with a depth k lookahead-search decision
procedure, terminating when the risk threshold is met.

Each simulation experiments was carried out with at least
100 trials.

Figure 7 shows the results for experiments carried out
in simulation with initial belief state a discretized Gaussian
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Fig. 7 (Color online) Simulation results for all objects at low uncer-
tainty
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Fig. 8 (Color online) Simulation results for all objects at high uncer-
tainty

with standard deviations of 1 cm in x, 1 ¢cm in y, and 3
degrees in 6, and lookahead-search depth k = 2. The chart
shows the percentage of grasps that were executed success-
fully (with 90% confidence bounds), for each object placed
at random positions drawn from the initial belief distribu-
tion, for the three algorithms. The risk threshold was chosen
to correspond to a target success rate of 90%. Even at this
low level of uncertainty, executing the goal WRT open-loop
fails frequently for many of the objects. Using RRG-Goal
allows us to succeed nearly all of the time, and using RRG-
Info brings the success rate above 97% for all objects except
the tea box, for which the decision procedure only selects
the goal WRT, because it recognizes that it will still reach
the target success rate.

Figure 8 shows the simulation results for higher levels of
initial uncertainty (standard deviations of 5 cm in x, 5 cm
in y, and 30 degrees in 0), again with depth k = 2. At this
level of uncertainty, ~14% of object positions are more than
10 cm away from the initial estimated position, and execut-
ing the goal WRT open-loop seldom succeeds. Using just
RRG-Goal is sufficient for all of the objects except the box
(which is the object used in the example discussed earlier,
except with a stringent goal in both x and y, thus requir-
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Fig. 9 (Color online) Varying termination criterion trades off between
grasp correctness and number of actions required; shown for power
drill

ing an information-gathering WRT), and the power drill, for
which the goal WRT grasps a nearly-cylindrical handle that
gives it little information about the orientation for pressing
the trigger. Using RRG-Info brings our success rate above
95% for all objects except the cup and tea box. The lower
performance with these two objects is due to the relatively
coarse state-space grid in our implementation, which is on
the same order of size (1 cm) as the goal set for these rel-
atively small objects. With a grid of such coarseness, it is
sometimes the case that the grid point with the highest ob-
servation probability is farther from the true object pose than
a nearby, lower-probability grid point. This is not an issue if
the goal region is relatively large, but does become an is-
sue when the goal region is small. We expect that using an
adaptive grid size would improve the performance.

Figure 9 shows the percentage of successful grasps (with
90% confidence bounds based on an assumption of binomial
distributions) for the power drill in simulation at the high
level of uncertainty (5 cm/30 degree), where the target esti-
mated level of success before termination was varied (from
10% to 90%) to generate data that shows the trade-off be-
tween the number of actions executed and the actual success
rate. Note that in the left part of the graph we are using a
low target level of success, which accounts for the low per-
centage of actual success. The five strategies used here are
RRG-Goal, RRG-Info with lookahead-search depths of 3, 2,
and 1, and RRG-Info-Entropy, which is like RRG-Info with
lookahead-search of 1, but using entropy of the belief state
at the leaves of the search tree (as in Hsiao et al. 2008) in-
stead of risk. Each point on the graph represents the average
number of actions taken before termination and the percent
success over more than 100 simulated runs. Just executing
the goal WRT repeatedly does not work well for this object,
whereas searching with a depth of 1 works reasonably well.
Note that using risk values at the leaves leads to a substantial
improvement over using belief entropy.

Recall that at lookahead-search depth 1, the decision pro-
cedure is considering plans with two actions, for example,
an information WRT followed by the goal WRT. Increasing
the depth to 2 causes the decision procedure to choose ac-
tions that may result in a lower probability of success after
just 2 actions, but that pay off in terms of a higher probabil-
ity of success later on. This is due to the fact that, although
information WRT 1 (shown in Fig. 6) provides information
about all three dimensions at once and information WRT 2
only provides information about two dimensions, informa-
tion WRT 2 for the power drill acts as a “funnel” for in-
formation WRT 1, enabling it to be effective more often.
Increasing the lookahead-search depth to 3 yields no addi-
tional benefit.

Although, for the drill, lookahead search with depth 1 has
a success probability essentially identical to using a depth of
2 or 3 after 10 actions, searching deeper reduces the number
of actions needed to succeed more than 90% of the time
from an average of 7 actions to an average of 4 actions,
which is a dramatic speedup. However, for most objects, us-
ing a depth of 1 works as well as using a depth of 2. This is
significant since increasing the lookahead-search depth in-
creases the action-selection time exponentially. In our (non-
optimized Python) implementation, selecting the first action
from among the 5 available power drill WRTs takes 3 sec-
onds for a depth of 1; using a depth of 2 takes 10 times
longer, and using a depth of 3 takes 60 times longer.

5.2 Real robot

On the real robot, we ran 10 experiments using RRG-Info
with lookahead-search depth of 2, for the Brita pitcher and
the power drill with high initial uncertainty. Both objects
were grasped stably and lifted successfully 10 out of 10
times, with the trigger being pressed successfully on the
power drill and the Brita pitcher being grasped properly by
the handle. An example sequence of grasping the power drill
is shown in Fig. 10.

For the other 8 objects, we ran four experiments each: one
at low uncertainty levels (1 cm/3 deg) and three at high un-
certainty levels (5 cm/30 deg). 27 out of the 32 experiments
succeeded. Two of the 5 failures (for the cooler and the can)
were due to the robot contacting the object in a part of the
hand with no sensors. One failure each (for the cup and tea
box) were due to the coarseness of the state grid (as in the
simulation results in Sect. 5.1). One failure with the giant tea
cup was due to due to inaccurate collision depth calculations
for objects with thin features (like the tea cup handle) in our
swept path computations, which are somewhat coarsely dis-
cretized for speed.

Videos of our real robot experiments can be seen here:
http://people.csail.mit.edu/kjhsiao/wrtpomdps.
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Fig. 10 (Color online) An example sequence of grasping the pow-
erdrill: the right panel in each pair shows the actual grasp that just
occurred, while the left panel in each pair shows the robot’s resulting
belief state. In the left panel, the dark blue box on the table and the red
points outlining the powerdrill show the current most likely state; the
light blue boxes show states that are 1 standard deviation in each di-
mension away from the mean (shown in purple). The pink spheres and
arrows show the observed hand contacts. In panels (a)—(c): info-grasp

6 Conclusion

We can draw several conclusions from this work. First, just
updating the belief state using observations and repeating
the goal action until we are confident that success is likely
is already sufficient to add a great deal of robustness to
many situations. Second, even when information-gathering
actions are necessary, a small search depth is effective in our
framework; a depth of 1 is usually sufficient, and a depth
greater than 2 is generally not useful. This means that ac-
tion selection does not have to be very expensive. Third, we
can choose effective actions despite our aggressive observa-
tion clustering, designed to bring the observation branching
factor to a manageable level. Fourth, the quality of the ob-
servation and transition models limit the effectiveness of our
system; this presents substantial opportunities for further re-
search. In particular, a more predictive transition model that
could more accurately estimate how objects move when we
bump into them could further improve our results. It could

@ Springer

2 is used three times in a row, to narrow down the general position
and orientation of the drill; panel (d) shows the result of reorienting
the drill, which is necessary because the end grasp is infeasible before
doing so; panels (e) and (f) show info-grasp 1 being used twice to nar-
row down the remaining major axis of uncertainty; panel (g) shows
info-grasp 3 being used to precisely nail down the rotation of the drill;
panel (h) shows the goal grasp being used on the drill; panel (i) shows
the power drill having been lifted and the trigger pressed successfully

also enable us to add actions that purposely push objects
in order to gain information, by, for instance, pushing them
against walls. Another important area for further research
is generalizing this work to more objects and more than
three degrees of freedom per object. Promising approaches
to explore include combinations of factoring, sampling, and
adaptive-resolution grids.

We believe this work forms a step toward more general
integration of tactile sensing and manipulation, ultimately
supporting complex tasks such as multi-step assemblies.
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