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Abstract

This paper describes the initial results of a project to create a self-supervised algorithm for
learning object segmentation from video data. Developmental psychology and computa-
tional experience have demonstrated that the motion segmentation of objects is a simpler,
more primitive process than the detection of object boundaries by static image cues. There-
fore, motion information provides a plausible supervision signal for learning the static
boundary detection task. A video camera and a background subtraction algorithm can
automatically produce a large database of motion-segmented images. The purpose of this
work is to use the information in such a database to learn how to detect the object bound-
aries in novel images using static information, such as color, texture, and shape.

1 Introduction

This work addresses the problem of object segmentation, the task of discovering the object
boundaries present in a single, static image. Object segmentation is clearly related to the
image segmentation task of discovering salient regions in images, a human visual ability
first identified by Gestalt psychologists [10] and more recently the focus of computer vision
research.

In order to apply the techniques of machine learning to the object segmentation problem,
a reliable source of training data is required. Similar projects [9] have used a database of
manually created segmentations, but collecting such a database is expensive and requires
a subjective determination of which boundaries are important. On the other hand, motion
is a reliable indicator of object boundaries in the real world, and it is possible to use back-
ground subtraction algorithms to locate the boundaries of moving objects in videos. Human
infants’ ability to segment objects by motion properties precedes their ability to segment
them using cues such as shape, color, or texture [14]. Therefore, the algorithm described
in this work learns to detect object boundaries in static images by training on the object
segmentations indicated by motion in videos.



2 Related work

Recent results in learning segmentation and edge detection include Feng et al.’s work,
which combined belief and neural network techniques [3]. This work is closer to region
or texture modeling than pure segmentation: their goal is to apply a set of predetermined
labels (e.g. sky, vegetation) to images. Konishi et al. [8] and Martin et al. [9] surpass
standard edge detectors by training on a human-labeled database.

Borenstein and Ullman have developed a model of class-specific segmentation that learns to
perform figure-ground segmentations for a particular class of objects by building a database
of fragments that can be assembled like puzzle pieces [1]. They hypothesize that motion
could be a source of training data for their algorithm, which combines segmentation and
classification. Hayman and Eklundh learn additional figure-ground segmentation cues from
motion detection and prediction [7], but they are concerned with improving motion seg-
mentation performance on video sequences by adding color and contrast cues, not with
learning to perform the static segmentation task.

Fitzpatrick [4] developed an object-recognition system for Cog, a humanoid robot, that
acquired examples by moving objects and observing them using background subtraction.
Weber et al. [17] performed unsupervised learning of object class models by assuming that
the class examples are the most prevalent element in their image set.

The use of belief propagation in this system is very similar to the work of Shashua and
Ullman [13], which described a hand-built saliency network that combined incomplete
contours to minimize an error function. Geman and Geman [6] first applied Markov random
fields to image segmentation problems.

3 Object Boundary Model
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Figure 1: Left: A piece of the Markov random field model, with variables indicating bound-
ary (E), region (R), and local edge detection (G) at each image patch. Center: A sampleE
variable assignment, parameterized by entry, inflection, and exit points in a 5x5 pixel patch.
Right: The grayscale pixel values that are averaged to provide anRi = {R0
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assignment.

The object boundary model is inspired by Freeman et al.’s work on learning super-
resolution [5]. The MRF model (Figure 1) partitions the image into a grid of 5x5 pixel,
non-overlapping patches. Every patch,i, is associated with two random variables, a local
gradient variableGi, and a segmentation variable(Ei, Ri). The division of an image into
regions is based on the shape properties of boundaries and the interior properties of regions.
For instance, experience might bias a system into picking out square regions (boundary
property) that contain only white pixels (region property). TheE, or edge, variables rep-
resent the object boundary (or lack of boundary) through a particular patch, while theR



variables represent local pixel information and theG variables the response of several edge
detectors at the center of each patch. In training, all variables are observed. In inference,
theE values are hidden and must be estimated.

The MRF model represents the probability distribution of object boundary edges and image
data. Every segmentation node,(Ei, Ri), is connected to a gradient node,Gi, and to its
left (l), right (r), above (a), and below (b) segmentation node neighbors. The valueei is an
assignment toEi, and a vector̄e is an assignment to every edge node;gi andḡ andri and
r̄ are analogously defined.

After training, segmenting new images requires knowledge of the distributionPr(ē|r̄, ḡ) =
Pr(r̄, ḡ|ē) Pr(ē)/Pr(r̄, ḡ). Given an image,̄r and ḡ are fixed, so the desired boundary is
the ē that maximizesPr(r̄, ḡ|ē) Pr(ē) = Pr(ē, r̄, ḡ). The MRF representsPr(ē, r̄, ḡ) with
two sets of compatibility functions. Theφi(gi, ei, ri) functions represent the compatibility
between pairs of gradient values and segmentation values, andψij(ei, ri, ej , rj) functions
represent the compatibility between assignments to neighboring segmentation nodes.

In learning, it is easiest to summarize the training data by the neighboring-node marginal
probabilities, but there is no closed-form method for translating these values into equivalent
compatibility functions. An analysis by Wainwright et al. [16] provides

φi(gi, ei, ri) = Pr(gi, ei, ri)

and

ψij(ei, ri, ej , rj) =
Pr(ei, ri, ej , rj)

Pr(ei, ri) Pr(ej , rj)
as approximate maximum-likelihood estimates of the compatibility functions.

It is easy to generate training data via background subtraction, so it is a simple matter
to estimate any discrete probability function by frequency counting. The set of potential
edges in a 5x5 patch is discrete, but too large to use since a 5x5 binary image can take on
225 possible values. Therefore, the model uses a parameterization (Figure 1) that represents
any object boundary passing through a patch by its entry point, inflection point, and exit
point. The “empty” edge value is included as a special case. This makes everyEi a
discrete random variable with 2717 possible values. The filter responses in theG variables
are discretized using 1000-bin histograms.

It is difficult to employ similar tactics with theR variables, so they are represented as con-
tinuous variables. EachRi value (Figure 1) is a vector of four grayscale averages from four
patch regions. The probability density functions forR variables are represented with mix-
tures of Gaussians, fit to the training data using expectation maximization. The compatibil-
ity estimate above and the belief propagation algorithm below are only valid for networks
of discrete variables. However, since theR values are always observed, and the hiddenE
values are discrete, using a continuous representation forR is possible, and appears to do
no harm.

4 Training Algorithm

Just as simple neurons can detect motion due to their tendency to habituate to static input,
computer algorithms can detect motion by background subtraction. The Stauffer and Grim-
son background subtraction algorithm is simple to compute, and is robust to non-motion
variability [15]. For every frame in a video, it returns a binary image (Figure 2) indicating
which pixels belong to moving objects.

Motion only provides data about the moving object. Therefore, the training procedure dis-
cards all data except the areas containing the moving object and its immediate surroundings.
After post-processing to remove small noise regions, the cropped foreground-background



Figure 2: Left: The background subtraction algorithm detects the moving object, which is
cropped from the frame. The binary background-foreground image is processed to produce
an edge image for the object. Right: MAP estimates after 0, 5, and 10 iterations on a
sample disc image and after 0, 10, and 20 iterations on a sample robot image.

image is processed into an edge image by a simple scanning algorithm. Each edge image
and its associated cropped video frame provide a complete assignment to all the nodes in
an instance of our object boundary model.

The training algorithm constructs representations of theφ andψ functions by learning a few
sets of probability distribution functions, which can be used to compute the compatibility
functions described in Section 3 using Bayes’ rule. The edge pixels at any location are
represented by their best-fit edge in the parameterized edge model. The model is transla-
tionally invariant, so all theφ functions are equal, and theψ functions fall into four classes:
ψl(ei, ri, el, rl), ψr(ei, ri, er, rr), ψa(ei, ri, ea, ra), andψb(ei, ri, eb, rb).

To learn theφ function, the algorithm assumes thatPr(gi|ei, ri) = Pr(gi|ei) and therefore
φ(gi, ei, ri) = Pr(gi|ei) ∗Pr(ei, ri). Theψ functions can be divided into four groups, one
for each neighboring relationship (left, right, below, and above) and the probabilities can
be factored into

ψij((ei, ri), (ej , rj)) =
Pr(ei, ej) Pr(ri, rj |ei, ej)

Pr(ei) Pr(ej) Pr(ri|ei) Pr(rj |ej)
.

This factorization corresponds with the expected interaction between region properties and
boundaries. If an edge assignmentei divides an image patch, it will place some of the
ri elements in one region and some in another. Depending on the observed values of
these pixels, the division might be more or less likely. Similarly, two neighboring edge
assignments are more or less compatible depending on both the joint shape properties of
their paired edges, and on the joint compatibilities of the pixels that they jointly group or
separate.

In order to save memory and maximize the use of training data, the training assumes that
object boundaries are invariant to rotation and reflection. Note that since each patch con-
tains a piece of an object boundary and not just a point on it, this is not equivalent to making
the four classes ofψ functions equivalent.

Data from multiple edge filters must be combined into a single singlePr(gi|ei) value. The
underlying signal for each scene is an n-tuple of the values of a set of filters at a partic-
ular location. The model requires the joint probability distributionPr(g1
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for each possible edge. Incorporating more features requires exponentially more data to
estimate, and memory to store, the resulting model. Therefore, we make the naive Bayes
assumption that the features are conditionally independent given the underlying edge and
approximate the joint likelihood as

∏
j Pr(gj

i |ei). This assumption is incorrect, but it is
useful, especially in discriminative applications [12]. In the future, we hope to employ
new representations that will better approximate the full joint probability of the features.



Konishi et al. [8] have discovered an adaptive histogramming algorithm that efficiently
combines edge detection features.

5 Inference Algorithm

There is no efficient algorithm for exact inference on a Markov random field containing
cycles, so we employ the belief propagation algorithm [11, 18]. Once the model is trained,
belief propagation can compute an approximate maximuma posteriori(MAP) estimate of
the object edges present in a static scene. Belief propagation produces exact MAP esti-
mates in loopless MRFs. Our network has loops, but belief propagation still works well in
practice, as it does in similar vision problems [5].

As in the super-resolution algorithm described by Freeman et al. [5], the edge-inference
algorithm begins by selecting a set of locally likely candidate edges at each location. It first
visits each edge nodei and selects the empty edge and theN − 1 edges with the largest
Pr(ei|gi). Because the edge candidates at a node have only been selected based on local
information, it is possible that the node may have no assignments compatible with some
of the potential values of its neighbors. Therefore, the algorithm visits each node a second
time, and adds additional scenes so that the node can continue any edge that might border
it.

On every iteration of the belief propagation algorithm, every segmentation node is visited
and its messages are updated using the max-product belief propagation algorithm. After
a user-selected number of iterations, the MAP estimate ofEi at each node can be locally
computed, and the union of all of the local MAP estimates are used as the object segmen-
tation estimate.

6 Results

Three models were trained, each on a particular video sequence. The sequences were a
dark disc moving against a white background, a toy robot traveling across a highly textured
carpet, and cars driving along a highway. In each case, the training set contained 200
frames.

Different numbers of candidate scenes and iterations were required for each result, de-
pending on the complexity of the object and the quality of the underlying data. Because the
algorithm selects an initial set of N possible values at each edge node, and then augments
them with extra possibilities to allow for contour completion, each node in a particular
MRF may consider a different number of possible edges. Disc results used N=20 candi-
dates and 10 belief propagation iterations. The robot results used 100 candidates and 20
iterations, due to the robot’s irregular shape and the “noise” provided by the textured car-
pet. The cars required 40 candidates and 20 iterations. The number of initial candidates
and belief propagation steps were manually selected.

TheG variables were the responses of four oriented derivative of Gaussian filters, oriented
to 0, 45, 90, and 135 degrees. Canny [2] demonstrated the good edge-detection properties
of derivative of Gaussian filters. These filters were computed on grayscale image values.

In a typical run, the initial MAP estimate, made before belief propagation occurs, con-
tains approximate object edges, which are improved by enforcing local edge continuity
and learned shape information. Figure 2 demonstrates the progress of belief propagation
on samples from the disc and robot sequences.

Figure 3 displays a sample result from each trained model. Unsurprisingly, the simple disc
case was the most successful, due to its highly regular shape and the strong brightness



Figure 3: Sample results from three different data sets.

gradients along its boundaries. The robot was the most difficult, given its irregular shape
and the fact that the carpet produced spurious image gradients that the model had to learn
to ignore. The car was very successful, especially considering that the car shadows were
included as moving objects during training. The model segmented the car and its shadow
from the road, and also detected other object and non-object edges in the image.

In both the car and robot examples, non-object edges, such as the lines on the road and
internal color changes on the robot, were detected. A more sophisticated model of shape,
that captures longer-range dependencies, and the use of color and texture features might
eliminate these undesired edges.

It is important to note that the information provided by the edge detection operators is very
sparse because only the response at the center of each patch is used. As demonstrated in
Figure 2, satisfactory results require the integration of sources of information across the
image.

Figure 4: Top: From left to right, boundary detection with our algorithm, with the default
Canny edge detector, and with a hand-tuned Canny edge detector.

Figure 4 compares our performance on the robot image to the output of the Canny edge
detector [2] included in the Matlab Image Toolbox. Our detector significantly outperforms
the results using the default threshold and smoothing settings, and approaches the output
of the Canny detector with manually chosen parameters (threshold = 1, sigma = 0.2). Our
algorithm has learned many of the boundary rules that are hand-coded into the Canny algo-
rithm, and is able to adapt itself to the requirements of the visual environment without the
need for manual parameter tuning.

Figure 5 demonstrates that the model trained on the car data sequence can be successfully
applied to other similar situations. The images in this test set come from another road
which was observed in the same wide-angle video as the training data. The model does a
good job at detecting the car boundaries. The errors arise from low image gradients at the
borders of some of the cars, and the incompatibilities caused by the intersection of car and



Figure 5: These results were inferred by the car model on images drawn from another road’s
traffic. The results required 40 candidates per node and 20 iterations of belief propagation.

road contours.

The running time of of our inference algorithm can be divided into two phases, construct-
ing an MRF model for a given image and performing belief propagation. On a 150x150
pixel image, allowing 40 initial candidate edges at each node, building the model required
approximately 13 minutes, but the 20 iterations of belief propagation that followed required
less than 30 seconds. The current model-creation implementation performs many expen-
sive marginalization calculations that are difficult to reuse, but a better implementation
might significantly improve that aspect of the running time. Results were produced using a
Java implementation of the algorithm on a dual 1.8 GHz Apple Power Macintosh G5.

7 Future Work

Our future work is focused on expanding the features used for theR variables, adding color
and local texture information in order to achieve better results. We also intend to provide
numerical comparisons of our algorithm to other methods using the motion information to
provide ground truth for a test data set.
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