Lifted Probabilistic Inference with Counting Formulas

Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, Leslie Pack Kaelbling
MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA
{milch,lIsz kersting,mhaimes,lpk } @csail.mit.edu

Abstract

Lifted inference algorithms exploit repeated structure in prob-
abilistic models to answer queries efficiently. Previous work
such as de Salvo Braz et al.’s first-order variable elimination
(FOVE) has focused on the sharing of potentials across inter-
changeable random variables. In this paper, we also exploit
interchangeability within individual potentials by introducing
counting formulas, which indicate how many of the random
variables in a set have each possible value. We present a
new lifted inference algorithm, C-FOVE, that not only han-
dles counting formulas in its input, but also creates count-
ing formulas for use in intermediate potentials. C-FOVE
can be described succinctly in terms of six operators, along
with heuristics for when to apply them. Because count-
ing formulas capture dependencies among large numbers of
variables compactly, C-FOVE achieves asymptotic speed im-
provements compared to FOVE.

Introduction

Models expressed in relational probabilistic languages
(Getoor & Taskar 2007) compactly define joint distributions
for large numbers of random variables. For example, sup-
pose we have invited 50 people to a workshop, and want
to reason about how many will attend. We might believe
that the attendance variables all depend on a variable indi-
cating whether our workshop topic is “hot” this year. A re-
lational language allows us to specify parameters that apply
to attends(X) and topicHot for all invitees X, rather than spec-
ifying the same parameters 50 times. The model represents
the fact that the attends(X) variables are interchangeable.

Algorithms that exploit such interchangeability to answer
queries more efficiently are called liffed inference algo-
rithms (Pfeffer er al. 1999). The state of the art in exact lifted
inference is the first-order variable elimination (FOVE) al-
gorithm of de Salvo Braz et al. (2007), which extends ear-
lier work by Poole (2003). FOVE performs variable elimi-
nation on a set of parameterized factors, or parfactors. Each
parfactor specifies a set of factors with the same numeric
values. For instance VX.¢(attends(X), topicHot) represents
a factor for each invitee X. FOVE performs lifted elimina-
tion to sum out entire families of random variables such as
attends(X) with a single computation.

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we extend the parfactor representation to
capture not just repeated factors, but also interchangeabil-
ity of random variables within factors. This symmetry is
captured by counting formulas: for instance, the parfactor
@ (#x [attends(X)] , topicHot) includes a formula that counts
the number of invitees X who attend, and encodes a depen-
dency between this count and the popularity of the work-
shop. Here it is the attends variables that are interchange-
able: the weight specified by the factor depends only on how
many people attend, not which particular ones attend. To
represent the same dependency without a counting formula
would require a factor on all of the attends variables, which
would be exponentially large in the number of invitees.

We present an extension of the FOVE algorithm, called
C-FOVE, that performs variable elimination on parfactors
with counting formulas. C-FOVE is built upon six basic op-
erators that have simple correctness conditions. The most
interesting operator is one that creates new counting for-
mulas to compactly represent new dependencies introduced
during variable elimination. C-FOVE chooses automatically
when to apply these operators, using a heuristic method that
seeks to minimize the size of intermediate parfactors. As we
will see in the evaluation, these advances enable C-FOVE to
sometimes perform inference in time linear in the number of
random variables where FOVE requires exponential time.

We proceed as follows. We begin by introducing parfac-
tors and counting formulas. Then, after providing a brief
overview of C-FOVE, we describe each of its six operations
in detail and present our experimental evaluation. Before
concluding, we discuss related work.

Representation

We consider models where each random variable cor-
responds to a ground atom of the form p(cy,...,cn),
where p is a predicate and cy,...,c, are constant sym-
bols. Each predicate p returns a value in some finite range
range (p). More generally, an afomic formula has the form
p(t1,...,t,) where each ¢; is a term, that is, a constant sym-
bol or a logical variable. Each logical variable X takes val-
ues of a particular type; we will write domn (X) for the set of
constant symbols of this type, and | X| for |dom (X)|. We
use v to denote an assignment of values to random variables,
and «(v) to denote the value of a ground atom « in v.

We define a probability distribution on the set of random

variables using a set of factors. A factor is a pair f = (A, ¢)
where A is a list of ground formulas (o, ..., q,,) and ¢
is a potential on A: that is, a function from range (A) =
X, (range («;)) to non-negative real numbers. A factor
f defines a weighting function on instantiations: wj(v) =
d(a1(v),...,am(v)). A set of factors F' defines a proba-
bility distribution proportional to wr(v) = [[;cpws(v).

A substitution 6 for a set of logical variables L maps each
variable X € L to a term. The result of applying a substi-
tution 6 to a formula « is denoted af. We will use gr (L)
to denote the set of ground substitutions that map all the
variables in L to constants. We will also consider restricted
sets of groundings gr (L : C'), where C is a constraint con-
sisting of inequalities that include logical variables in L and
constant symbols.

Parfactors

A parfactor (Poole 2003) compactly describes a set of fac-
tors. Each parfactor has the form (L, C, A, ¢) where L is a
set of logical variables, C' is a constraint on L, A is a list
of formulas, and ¢ is a potential on A. We will often write
parfactors in the syntax VX1,..., X, : C.é(aq,...,qm),
such as VX.¢1 (attends(X), topicHot).

Applying a substitution 6 to a parfactor g = (L, C, A, ¢)
yields a new parfactor g8 = (L', C0, Af, $), where L’ is
obtained by renaming the variables in L according to € and
dropping those that are mapped to constants. If 6 is a ground
substitution, then g is a factor. The set of groundings of a
parfactor ¢ = (L,C, A, ¢) is the set of factors gr (g) =
{90 : 0 € gr(L: C)}. The weighting function for a set
of parfactors G is a product over the groundings of all the
parfactors in G:

wa(v) = ngG HfEQT'(g) wf(v).

Finally, for an atom « and a constraint C, we define
the set of random variables RV (av: C) = {af : 0 €
gr (L :C)}. For a parfactor ¢ = (L,C, A,), RV (g) =
Uiaca) RV (@ : C). When we are referring to an occur-
rence of an atom « in a parfactor (L, C, A, ¢), we will write
RV («) as an abbreviation for RV (« : C).

Counting Formulas

We extend previous work by allowing parfactors to con-
tain counting formulas, which are useful for cases where
the value of the parfactor depends only on the num-
ber of random variables having each possible value.
For instance, in our meeting example, suppose we are
interested in a random variable overflow that is true
when the number of people attending our workshop is
greater than 35. We would like to avoid represent-
ing this dependency with an exponentially large fac-
tor on overflow, attends(p;), . . ., attends(p,,). Because the
attends(X) variables are not independent given overflow, we
cannot use the parfactor VX.¢(overflow, attends(X)).

The counting formula #y [attends(X)], however, can be
used to represent this dependency. The possible values of
this counting formula are histograms, counting how many
ground substitutions for X yield each possible value for

attends(X). If range (attends) = {true, false}, then each pos-
sible histogram has two buckets, one for true and one for
false. The sum of the values in these two buckets is the
domain size |X|. So if |X| = 50, then there are 51 possi-
ble histograms: (0, 50), (1,49),...,(50,0). We can repre-
sent our example using a factor ¢’ (overflow, #x [attends(X)]),
where ¢’ is a potential of size 2 x 51 whose value depends
on whether there are more than 35 entries in the true bucket.

The general form of a counting formula is #x.c [¢],
where X is a logical variable that is bound by the # sign, C'
is a constraint on X, and « is an atom containing X. The
constraint and atom can also contain free logical variables,
such as the variable Y in #x.x£y [knows(X,Y)].

Definition 1 Let v be an instantiation of the random vari-
ables, and let v be a counting formula # x.c [a] with no
free variables. Then value of v on v is the histogram
h : range (o) — N such that for each value u € range (),

h(u)={0 € gr (X : C): ab(v) =u}|
The range of a counting formula v = #x.c¢)[a], de-
noted range (7), is the set of histograms having a bucket

for each element of range () with entries adding up to
size (X : C).! The set of random variables that v depends

onis RV (7) = Upegr(x: ¢y RV (a0).

Normal-Form Constraints

The range of a counting formula # x.c [«] consists of his-
tograms whose entries add up to size (X : C'). How-
ever, when C' contains free variables, the number of al-
lowed groundings of X may depend on the values these
free variables take on. For instance, in the parfactor
VY. ¢ (famous(Y), #x: (xzax=y) [knows(X, Y)]), the number of
allowed values for X is |X| — 2 for most values of Y, but it is
[X|] — 1 whenY = a.

To avoid such difficulties, we require the constraints in
each parfactor to be in a certain normal form. Given a con-
straint C, let E)(g be the excluded set for X, that is, the set
of terms ¢ such that (X #¢) € C.

Definition 2 Let g be a parfactor with constraint C, and let
C™ be the set of inequalities formed by taking the union of C
with the constraints in all the counting formulas in g. Then
g is in normal form if, for each logical variable inequality
X £ Y in C*, there is a common excluded set E such that
E¢ =EU{Y}and E" = EU{X}.

It can be shown that if a parfactor is in normal form,
then size (X : C) has a fixed value, namely | X| — |EY|,
regardless of the binding to the free variables in C'. We can
convert any parfactor to normal form by splitting it: for in-
stance, the parfactor above can be broken into the parfactor
VY 1Y # a. ¢(famous(Y), #x: (xzax-y) [knows(X, Y)]) and
the factor ¢(famous(a), #x:xs£a [knows(X, a)]). This normal
form eliminates the need to use a separate constraint solver,
as in de Salvo Braz et al. (2007).

'If |range (a) | = r and size (X : C') = n, then the number
of such histograms is given by a function called “r multichoose n”,
which is equal to (njiil) When 7 is fixed and the domain size
n grows, this number is exponentially smaller than the number of
assignments to the random variables, which is r".

Inference Overview

Given a set of parfactors GG, we want to compute the
marginal of the weighting function wg on a set of query
random variables.

Definition 3 Ler G be a set of parfactors, and V C RV (G)
be a set of RVs. The marginal of wg on 'V, denoted wgy), is
defined for each assignment v € range (V) as:

wG‘V(V) - ZuEnmge(RV(G)\V) ’UJG(V; U.).

If the model G is simply a set of factors on ground atoms,
we can compute the desired marginal using the variable
elimination (VE) algorithm (Zhang & Poole 1994). VE per-
forms a sequence of sum-out operations, each of which elim-
inates a single random variable. Our C-FOVE algorithm
deals with parfactors and counting formulas using six oper-
ators: a lifted elimination operator that can sum out a whole
family of random variables, and five other operators that
modify the parfactor set G—without changing the weighting
function—so that the elimination operator can be applied.
The algorithm continues applying operators to G until only
the query variables remain in RV (G).

Inference Operators

This section describes the operators used by the C-FOVE
algorithm and gives conditions under which they are correct.
The next section gives a method for choosing the sequence
of operations to perform for a given inference problem.

Lifted Elimination

We begin by defining an operation SUM-OUT (g;, «; ;) that
takes a single parfactor g; = (L;, C;, A;, ¢;) and sums out
all the random variables covered by its j-th formula o ;.
Before defining the conditions where this operation is cor-
rect, we consider exactly what it does. If o ; is a ground
atom, we create a new potential ¢, where the j-th dimen-
sion has been summed out and remove «; ; from A}. This is
the same operation as summing out random variables in VE.
If o; ; is an atom that contains logical variables, we apply
exactly the same operations as in the ground case. We will
discuss why this is correct shortly, but for now it is enough to
observe that we are avoiding the repeated sums that would
be required if we first grounded and then eliminated. For
counting formulas, we would like to do basically the same
operation (sum dimension j out of ¢;). However, remember
that each histogram h € range («; ;) is used as an index into
¢; for a whole set of instantiations of the underlying random
variables. As we sum the table entries, we must also multi-
ply each entry by the number of instantiations that map to it.
We can compute this number as follows:

Proposition 1 Let (L, C, A, ¢) be a normal-form parfactor
and « be a formula in A. Then for any ground substitu-
tion 0 and value u € range (&), the number of assignments
v to RV (o)) such that (a0)(v) = w is a fixed function
NUM-ASSIGN (o, u), independent of 6. If « is an atom,
then NUM-ASSIGN (o, u) = 1. If « is a counting formula

d(ay, by) g(ay, by) aay, by) a(@y, by) aa,, by) a(@, by)
Figure 1: Markov net defined by VX,Y.¢(p(X),q(X,Y)) with
dom (X) = {a1,...,an} and dom (Y) = {b1,...,bm}.

#x.p [B), then for any histogram h € range (c),

ize (X @ D)!
NUM-ASSIGN (a, h) = size ()
I eranges) IHw)!

where h(u') is the count for the value v’ in histogram h.

Now we can formally define the SUM-OUT operator and
the conditions under which it yields the correct marginal:

Proposition 2 Let G be a set of parfactors {g1,...,gn},
where g; = (L;,Ci, Aq, ¢i) and Ay = (i1, .., Qim,)
Suppose that for o ;:
(S1) All logical variables in L; occur as arguments in
o 45 and
(S2) For all other formulas oy with (k,1) # (i,7),
RV (041'7]') N RV (Osz) = (.
Let SUM-OUT (G, «; ;) be the same as G except that g; is
replaced with g, = (L,C,A’,¢'), where A" is A with «;
removed, and for each v € range (A"),

dv) =
uerange(o;, ;)
d)(l]l, e ,Uj,l,u, 'Uj, ey 'Umifl).
Then wsym-out(G,a;. ;) = WG|(RV(G)\RV (ai.;))-

Condition (S2) guarantees that the random variables
RV («; ;) that we are summing out are completely elimi-
nated from the set of parfactors. If (S2) does not hold, we
may be able to apply a multiplication operator (defined be-
low) to create a larger parfactor where it does.

Condition (S1) guarantees the operation is correct when
we sum out formulas with free variables. As an exam-
ple, consider the parfactor VX, Y. ¢(p(X),q(X,Y)). Fig. 1
shows the Markov network defined by this parfactor. To
sum out the random variables RV (q(X,Y)), we could cre-
ate this ground network and sum out each variable q(a;, b;)
from each factor ¢(p(a;),q(a;,b;)) in turn. Because these
factors all come from the same parfactor, we would get the
same resulting factor ¢'(p(a;)) each time. We can obtain the
same result in a single step by summing q(X,Y) out of the
original parfactor to create a new parfactor VX, Y. ¢'(p(X)).

However, if we tried to sum out p(X)—which does not
contain all the logical variables in the parfactor—the com-
putation would be incorrect. Summing out each p(a;) vari-
able creates a joint potential on its m neighbors, the vari-
ables q(a;, b;), that cannot be represented as a parfactor of
the form VX, Y. ¢'(a(X,Y)). As we will see shortly, the po-
tential that is created in this case depends only on the number
of Y such that q(X,Y), and can be represented with a counting
formula. Once we introduce operations that make counting
formulas, we will be able to sum out p(X).

NUM-ASSIGN (o j,u) X

Elimination-Enabling Operators

In general, there is no guarantee that the conditions for lifted
elimination will be satisfied for any of the formulas in the
parfactors. The operators described in this section change
the current set of parfactors G to a new set G’ that may have
more opportunities for lifted elimination, while preserving
the weighting function wg = wgr.

Counting The counting operator introduces counting for-
mulas into parfactors. Although these formulas increase the
size of the new parfactors, they are useful because they cre-
ate opportunities for lifted elimination. For example, re-
call our discussion of the parfactor VX,Y. ¢(p(X),q(X,Y))
in Fig. 1. We could not sum out p(X) because doing
so would introduce dependencies between the g random
variables. The counting operator allows us to first intro-
duce a counting formula on Y, to create a new parfactor
VX.¢' (p(X), #v [a(X,Y)]). We can now sum out p(X) be-
cause (S1) is satisfied: we have, in essence, induced exactly
the new dependencies that would have been formed by sum-
ming out p(X) from the original parfactor. In general, we
introduce counting formulas as follows:

Proposition 3 Let ¢ € G be a normal-form parfactor
(L,C, A, ¢) with A = (a1,...,am) and X € L such
that there is exactly one formula o; € A where X oc-
curs free, and «; is an atom. Let g' be a new parfactor
(L\{X}, Ci\{x}’ A, @) where A’ is the same as A except

that oy = # . Cy, [a;]. For v € range (A"), let:

¢ (v) = H o(v1, ..., 01, u, vi+1,...,vm)”i(“).

uerange (o)
Then wg = Wae\{g}u{g'}

Here C i, denotes the constraint C' restricted to inequali-
ties involving variables in L’. The equation for ¢’ (v) is ob-
tained by thinking of w, as a product over all groundings of
X, and partitioning those groundings according to the value
u that they yield for ;. The weight for groundings where
a; = w is raised to the power v;(u), which is the number of
such groundings according to the histogram v;.

Exponentiation The exponentiation operator removes a
logical variable X from a parfactor (L,C, A, ¢) when X
does not occur free in any formula in A. For instance, the
logical variable Y can be removed from VX, Y. ¢(p(X)). Such
parfactors are created by the SUM-OUT operator, as we saw
in the previous section.

When we remove such a logical variable, we get a par-
factor with fewer groundings: in our example, removing Y
decreases the number of groundings from |X| x |Y]| to |X|.
Thus, to preserve the same weighting function, we need to
raise the entries in ¢ to the power |Y]|.

Proposition4 Let ¢ € G be a normal-form parfactor
(L,C, A,). Let X be a logical variable in L that does
not occur free in any formula in A. Let L' = L\ {X}. Let

g = (L',C},, A, ¢') where for v € range (A),
d)/(v) — ¢(v)size(X:C).

Then wag = wc;\{g}u{g/}.

Multiplying parfactors One reason we might not be able
to sum out a formula « is that RV («) overlaps with the ran-
dom variables of another formula in a different parfactor. In
this case, we need to multiply the parfactors:

Proposition 5 Let gi,...,9, € G be parfactors with the
same logical variables L and constraint C, where g; =
(L,C,A;,¢i) and A; = (1, ..,Qm,;). Then define a
new parfactor MULTIPLY (g1,...,9,) = (L,C, A’ ¢") as
follows. Let A" = \J!'_| A;. Foreachi € {1,...,n} and
e {l,...,m;}, let j(i,0) be the index in A’ of o; 4. For
each v € range (A’), let

¢'(v) =[] 610660 Vjicima)-
=1

Then wa = W\ (g, ,...,gn FU{MULTIPLY (g1 ..., gn) }-

In the next section, where we describe operator ordering,
we will see how multiplication is used in practice.

Splitting As we will see later in the paper, there are cases
where we need to split a parfactor g into two parfactors g}
and g/ such that gr (¢7) U gr (g5) = gr (g). Specifically, we
will split g on a variable binding X = ¢, where X is a logical
variable in g and ¢ is either a constant or another logical
variable. For example, we could split ¥X.4(p(X),q(X)) on
X = ato yield ¢(p(a),q(a)) and VX : X # a.¢(p(X),q(X)).
We could also split VX, Y.¢(p(X),q(Y)) on X =Y, yielding
WY.¢(p(Y),q(Y)) and VX, Y : X # Y.¢(p(X), q(Y)).
Proposition 6 Let g € G be a parfactor (L,C, A,), X
be a logical variable in L, and t be a term such that
t ¢ EY. Define new parfactors g'_ and gl such that
g = glX/f] and g, = (L,C U{X # t},A,). Then
WG = WGe\{g}u{gl gL}

In general, we want to split as little as possible. However,
there are situations where no other operators are applicable.

If necessary, we can eliminate a logical variable X from a
parfactor by splitting on X = a for every a € gr (X : C).

Expanding counting formulas One final operator is use-
ful when a formula counts a set of random variables that par-
tially overlap with another formula. To be able to sum out
these variables, we must create a new parfactor where the
counting formula is expanded into a counting formula with
an additional constraint, and an atom. For example, given
factors ¢ (#x [p(X)]) and ¢2(p(c)), we can convert the first
factor to an expanded version ¢} (p(c), #x:x=c [P(X)]) so
that we can multiply and sum out p(c).

Proposition 7 Let g € G be a parfactor (L,C, A, ¢) with
A= (a1,...,qm), where o; = #x.p [0]. Let t be a term
that is not in EX and is in E$ for each logical variable
Y € ER. Nowlet g = (L,C, A’,¢') where A’ includes all
the formulas in A except «;, plus two additional formulas
ol = B[X/t] and o/;ﬁ = #x . (pu(x+t)) [B]. Foreachv ¢
range (A’), let

¢'(V) = (v, 01, M(V), vig1, s Om)
where h(v) is the histogram obtained by taking the his-

togram o,(v) and adding 1 to the count for the value

O/Z(V). Then wag = wg\{g}u{g/}.

As with splitting, we can fully expand a counting formula
by expanding it on X = qa forevery a € gr (X : D).

The C-FOVE Algorithm

Now that we have the basic operations, we can combine
them to form a complete lifted variable elimination algo-
rithm. We assume that we are given a set of parfactors G
representing the model; observed values for certain ground
atoms; and some query ground atoms. First, for each evi-
dence atom «; with observed value v;, we add a factor ¢(a;)
to GG, where ¢ assigns weight 1 to v; and weight 0 to all
other values. The weighting function w¢(v) defined by the
resulting set of parfactors is proportional to the conditional
probability of v given the evidence. Our task, then, is to
sum out all the random variables in the model except those
corresponding to the query atoms.

We do this by iteratively modifying G using the opera-
tions described above. The problem of choosing an efficient
sequence of operations is a generalization of the elimination
ordering problem from standard VE, which is NP-hard. Our
system attempts to find a good ordering using greedy search.
At each step of the algorithm, we generate a set of operations
that can be applied to the current set of parfactors; assign
each one a cost; and execute the lowest-cost operation. We
continue until G is just a set of factors on the query atoms.

Summing Out Random Variables Globally

To help our greedy search algorithm find better orderings,
we let the set of available operations consist not of the basic
operations defined above, but of macro-operations that bun-
dle together a sequence of basic operations. The most impor-
tant macro-operator is GLOBAL-SUM-OUT (« : C), where
« is a formula and C' is a constraint. When applied to a
set of parfactors G, GLOBAL-SUM-OUT (« : C') combines
multiplication, summing out from a single parfactor, and
exponentiation so that the resulting set of parfactors rep-
resents the marginal of w¢ on the random variables not in
RV (a: O).

First, GLOBAL-SUM-OUT (« : C) identifies the parfac-
tors {g1, . .., gn } in G whose random variables overlap with
RV (a : C). In order for the operation to be applicable, each
of these parfactors g; must contain only one formula occur-
rence «; that overlaps with RV (a : C'), and all the logical
variables in g; must occur as arguments in «;. Then for each
i € {1,...,n}, the operation attempts to construct a vari-
able renaming 6; — that is, a one-to-one substitution from
variables to variables — that makes «; equal to o and makes
g;’s constraint equal to C'. If such a substitution exists, then
it is unique: each logical variable X in g; occurs at some
position in «;’s argument list, so 6;(X) must be the variable
at the same position in o’s argument list.

If the desired variable renamings 61, ...,#, exist, then
GLOBAL-SUM-OUT (« : C) is applicable. It first replaces
each g; with g¢;0;, which does not change the weighting
function because the renamings are one-to-one. The result-
ing parfactors g1 01, . . ., gn0, all have the same logical vari-
ables, so the multiplication operation of Prop. 5 can be ap-
plied to yield a product parfactor g. The applicability con-

straints for GLOBAL-SUM-OUT (« : C') ensure that the con-
ditions of Prop. 2 are satisfied. So the operation can sum out
« from g to get the desired marginal. If any of the logical
variables in « no longer occur in the resulting parfactor, they
are removed using the exponentiation operation (Prop. 4).

Shattering

Suppose our model contains a parfactor VX.¢(p(X),q(X)),
and we have a deterministic evidence factor on the ground
atom p(c). We cannot apply GLOBAL-SUM-OUT (p(X))
or GLOBAL-SUM-OUT (p(c)), because p(X) and p(c)
depend on overlapping random variables. In order to sum
these variables out, we need to split the first parfactor on
X = ¢, yielding ¢(p(c),qa(c)) and VX : X # c.¢(p(X),a(X)).
We can then apply GLOBAL-SUM-OUT (p(c)) and
GLOBAL-SUM-OUT (p(X)). Similarly, if we have a parfac-
tor ¢(#x [p(X)]) and evidence on p(c), we need to expand
the counting formula to get ¢ (p(c), # (x: xc) [P(X)])-

Thus, C-FOVE needs to perform splits and expansions in
order to handle observations (and queries) that break sym-
metries among random variables. Following Poole (2003),
we define a shattering operation. Shattering performs all the
splits (and, in our case, expansions) that are necessary to en-
sure that for any two formula occurrences «; and as in the
parfactor set G and the query set, either RV (1) = RV (as)
or RV (1) NRV (a2) = 0. We also do additional splits and
expansions in some cases to ensure that the constraints are
in normal form. As in de Salvo Braz et al. (2007), our algo-
rithm performs shattering at the beginning of elimination.

Our algorithm for shattering is essentially the same as
that of Poole (2003). Two changes are necessary to deal
with counting formulas. First, Poole determines whether
RV (aq : C1) and RV (ay : C) overlap by seeing if vy and
oo are unifiable (and if applying the most general unifier to
C and () yields no contradictions). This is not correct for
comparing an atom and a counting formula, which may have
overlapping random variables even though there is no sub-
stitution that makes them equal. Thus, when we check for
overlaps with a counting formula v = #x.p [], we apply
unification to the atom [rather than - itself. When check-
ing constraints, we combine the counting constraint D with
the constraint from the parfactor where ~ occurs. Second,
Poole’s algorithm eliminates partial overlaps by repeatedly
splitting parfactors on variable bindings of the form X = a
or X = Y. In our case, the algorithm may yield variable
bindings that apply to the bound variable in a counting for-
mula. When this occurs, we expand the counting formula.

Choosing an Operation

After the initial shattering, our greedy-search implementa-
tion of C-FOVE uses four macro-operators. The first is
GLOBAL-SUM-OUT («, C), which we discussed above. At
each step, we consider all the valid GLOBAL-SUM-OUT
operations for formulas that occur in the current parfactor
set. The second operator is COUNTING-CONVERT(g, X),
where ¢ is a parfactor and X is a logical variable that oc-
curs only in a single atom in g. This operator performs
the conversion described in Prop. 3. The next operator
is PROPOSITIONALIZE(g, X), which takes a parfactor ¢

(with constraint C') and a logical variable X, and splits g
on X = a for every constant a € gr (X : C). The op-
erator then invokes the shattering procedure to eliminate
any partial overlaps with other parfactors. Finally, there
is FULL-EXPAND(g,), which takes a parfactor g and a
counting formula v = #x.p], and expands v on X =
a for every a € gr(X : D). Like PROPOSITIONALIZE,
FULL-EXPAND performs shattering.

We define a cost for each operation by computing the
total size of all the potentials that the operation creates.
GLOBAL-SUM-OUT reduces the size of a potential in its
summing-out phase, but its multiplication phase can some-
times create a large potential. As we will see in our ex-
periments, a COUNTING-CONVERT operation is sometimes
cheaper, even though it increases the size of a potential.
PROPOSITIONALIZE and FULL-EXPAND are operations of
last resort.

Completeness and Complexity

The C-FOVE operators are always sufficient for summing
out the non-query variables: in the worst case, we can propo-
sitionalize all the parfactors and fully expand all the count-
ing formulas, so that G becomes a set of factors on ground
atoms. Then the standard VE algorithm can be executed by
applying GLOBAL-SUM-OUT to ground atoms. C-FOVE
can also replicate any elimination ordering used by FOVE:
we can replicate FOVE’s elimination operation by applying
PROPOSITIONALIZE or COUNTING-CONVERT until a tar-
get atom « can be summed out, and then summing out «
and all the other affected formulas. The use of counting for-
mulas allows us to separate COUNTING-CONVERT from the
summing-out operation, which gives us greater flexibility in
choosing elimination orderings.

The theoretical complexity of inference on a graphical
model is usually measured by its treewidth — a graph-
theoretic concept that determines the size of the largest po-
tential created while executing the best possible sequence of
sum-out operations (Dechter 1999). An appropriate measure
in the lifted setting is the size of the largest potential created
by the optimal sequence of C-FOVE operations (of which
sum-out is just one). In models with sufficient symmetry,
this maximum potential size may be exponentially smaller
than that predicted by the treewidth of the underlying graph-
ical model, since C-FOVE can represent large factors com-
pactly using counting formulas.

Evaluation

We compare the performance of C-FOVE, FOVEZ?, and a
ground VE algorithm on two inference problems: com-
peting workshops and workshop attributes. In the com-
peting workshops problem, we are organizing a workshop
and have invited a number of people. For each person
P, there is a binary random variable attends(P) indicating
whether that person attends our workshop. In addition, there
are competing workshops W that each have a binary ran-
dom variable hot(W) indicating whether they are focusing

2We use the FOVE code
http://12r.cs.uiuc.edu/~cogcomp

available at

i -
50 -
—_ FOVE - A
g 200 =
[]
® 150 t
2
E L
E 100 o |
= T .
£ 50 oo

0 R N N — Ao\

Number of Invitees

Figure 2: Performance on the competing workshops problem.

900
800
700 rC-
600
500
400
300
200
100

Time (milliseconds)

0
0 2
Number of Workshop Attributes

Figure 3: Performance on the workshop attributes problem.

on popular research areas. There is also a random vari-
able series, indicating whether our workshop is successful
enough to start a series of related meetings. The distribu-
tion is defined by two parfactors. First, there is a parfactor
VP, W. ¢1 (attends(P), hot(W)) that has small potential values
and models the fact that people are not likely to attend our
workshop if there are popular competing workshops. There
is also a parfactor VP. ¢ (attends(P), series) with larger val-
ues, indicating that we are more likely to start a series when
more people attend our workshop.

Figure 2 shows a graph of running times for answer-
ing a query on series in the competing workshop problem.
The marginals were computed for 10 workshops with an in-
creasing number of people n. The cost of VE scales lin-
early in n (after n exceeds the number of workshops), but
with a very large constant, because it must sum out each
attends(P) variable separately and create a large potential
on the hot(W) variables each time. FOVE applies count-
ing elimination to both attends(P) and hot(W); its cost is
much lower, but still increases with n. C-FOVE chooses
to apply counting conversion on W to create a parfactor
VP. ¢/ (attends(P), #w [hot(W)]); it then multiplies together
the parfactors and sums out attends(P) at a lifted level. Fi-
nally, it sums out # [hot(W)]. This cost of this sequence of
operations is constant with respect to the number of people.

The second evaluation is in the workshop attributes do-
main. This scenario is similar to the previous one, but
instead of competing workshops, we now include a set
of m binary random variables attr; ...attr,, that repre-
sent different attributes of our workshop (location, date,

fame of the organizers, etc.). The distribution is defined
by m + 1 distinct parfactors: VP. ¢q(attends(P), series),
VP. ¢4 (attends(P), attry), . .. , VP. ¢, (attends(P), attr,,).

Figure 3 shows performance for answering a query on
series with 50 people and an increasing number of attributes
m. VE and FOVE both eliminate the attends(P) variables
first. Although FOVE does this at a lifted level, both algo-
rithms create potentials over all m workshop attributes, with
a cost that is exponential in m. C-FOVE, on the other hand,
chooses to apply counting conversion to attends(P) in each
parfactor VP.¢; (attends(P), attr;), and then eliminate the as-
sociated attr; variable. As a last step, it multiplies the result-
ing factors and sums out the #p [attends(P)] formula. The
time required is only linear in both the number of attributes
and the number of invitees.

Related Work

The idea that lifted dependencies are often determined by
the number of objects with specific properties is not new.
The FOVE algorithm (de Salvo Braz, Amir, & Roth 2005;
2006) has a counting elimination operator that is equivalent
to introducing a set of counting formulas and then sum-
ming them out immediately; it cannot keep counting for-
mulas around while it eliminates other random variables, as
C-FOVE does in the workshop attributes scenario. Gupta et
al. (2007) present a message passing algorithm for MAP in-
ference that allows a limited form of counting dependencies
in the input language. The introduction and elimination of
counting formulas during inference distinguishes C-FOVE
from both of these approaches.

The parfactor representation was introduced by
Poole (2003) and used in the FOVE algorithm (de
Salvo Braz, Amir, & Roth 2007). A parfactor is similar to
a clique template in a relational Markov network (Taskar,
Abbeel, & Koller 2002); a clause in a Markov logic network
(Richardson & Domingos 2006); or a relational potential
in a logical conditional random field (Gutmann & Kersting
2006): these representations all define potentials that are
repeated in an undirected graphical model.

Discussion and Future Work

In this paper, we presented the C-FOVE algorithm, which
uses counting formulas to compactly represent interchange-
ability within large potentials during variable elimination.
Our experiments illustrate cases where flexible elimination
orderings and the introduction of counting formulas lead to
asymptotic improvements in running time.

Counting formulas are a specific instance of a class of
related functions. Many other aggregations (MAX, AVER-
AGE, SUM, etc.) can be computed as functions of count his-
tograms. They can be represented compactly with counting
formulas; we could represent them even more compactly by
adding, say, SUM formulas, which have the same value for
many different histograms. Exploring these possibilities is
an important area for future work.

Additionally, we would like to incorporate counting for-
mulas into approximate approaches that perform lifted be-
lief propagation (Jaimovich, Meshi, & Friedman 2007) or

incorporate lifting into sampling algorithms (Milch & Rus-
sell 2006; Zettlemoyer, Pasula, & Kaelbling 2007). Another
way to scale up these algorithms is to exploit approximate
interchangeability, where we have slightly different beliefs
about the objects in some set, but we are willing to treat them
as interchangeable to speed up inference.

Acknowledgments

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA), through the
Department of the Interior, NBC, Acquisition Services Di-
vision, under Contract No. NBCHDO030010.

References

de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted first-
order probabilistic inference. In Proc. 19th IJCAI, 1319-
1325.

de Salvo Braz, R.; Amir, E.; and Roth, D. 2006. MPE and
partial inversion in lifted probabilistic variable elimination.
In Proc. 21st AAAI

de Salvo Braz, R.; Amir, E.; and Roth, D. 2007. Lifted first-
order probabilistic inference. In Getoor, L., and Taskar, B.,
eds., Introduction to Statistical Relational Learning. MIT
Press. 433-451.

Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence 113(1-2):41-85.
Getoor, L., and Taskar, B., eds. 2007. Introduction to Sta-
tistical Relational Learning. MIT Press.

Gupta, R.; Diwan, A.; and Sarawagi, S. 2007. Efficient
inference with cardinality-based clique potentials. In Proc.
24th ICML.

Gutmann, B., and Kersting, K. 2006. TildeCRF: Condi-
tional random fields for logical sequences. In Proc. 17th
ECML.

Jaimovich, A.; Meshi, O.; and Friedman, N. 2007.
Template-based inference in symmetric relational Markov
random fields. In Proc. 23rd UAL

Milch, B., and Russell, S. 2006. General-purpose MCMC
inference over relational structures. In Proc. 22nd UAI,
349-358.

Pfeffer, A.; Koller, D.; Milch, B.; and Takusagawa, K.
1999. SPOOK: A system for probabilistic object-oriented
knowledge. In Proc. 15th UAI, 541-550.

Poole, D. 2003. First-order probabilistic inference. In
Proc. 18th IJCAI, 985-991.

Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62:107-136.

Taskar, B.; Abbeel, P.; and Koller, D. 2002. Discriminative
probabilistic models for relational data. In Proc. 18th UAL
Zettlemoyer, L. S.; Pasula, H. M.; and Kaelbling, L. P.
2007. Logical particle filtering. In Proceedings of the
Dagstuhl Seminar on Probabilistic, Logical, and Rela-
tional Learning.

Zhang, N. L., and Poole, D. 1994. A simple approach to
Bayesian network computations. In Proc. 10th Canadian
Conf. on AL

