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Abstract— We address the problem of a mobile manipulation
robot searching for an object in a cluttered domain that is
populated with an unknown number of objects in an unknown
arrangement. The robot must move around its environment,
looking in containers, moving occluding objects to improve its
view, and reasoning about collocation of objects of different
types, all in service of finding a desired object. The key contri-
bution in reasoning is a Markov-chain Monte Carlo (MCMC)
method for drawing samples of the arrangements of objects in
an occluded container, conditioned on previous observations of
other objects as well as spatial constraints. The key contribution
in planning is a receding-horizon forward search in the space of
distributions over arrangements (including number and type)
of objects in the domain; to maintain tractability the search is
formulated in a model that abstracts both the observations and
actions available to the robot. The strategy is shown empirically
to improve upon a baseline systematic search strategy, and
sometimes outperforms a method from previous work.

I. INTRODUCTION

As the perception, locomotion, and manipulation abilities
of robots begin to improve, we begin to contemplate con-
structing robots that can help with household chores or assist
in disaster recovery. In open domains such as these, robots
will have to be able to operate in cluttered domains and be
able to locate objects of interest within them.

In this paper, we address the problem of a mobile manip-
ulation robot searching for an object in a cluttered domain
that is populated with an unknown number of objects in
an unknown arrangement. The robot must move around
its environment, looking in containers, moving occluding
objects to improve its view, and reasoning about collocation
of objects of different types, all in service of finding a desired
object. We do not address issues of low-level perception or
of manipulation; rather, we provide a general framework for
reasoning about arrangements of unknown objects and for
planning how to search effectively for a desired object.

The key contribution in reasoning is a Markov-chain
Monte Carlo (MCMC) method for drawing samples of the ar-
rangements of objects in an occluded container, conditioned
on previously gathered information of a variety of types.
Relevant information includes: spatial knowledge, such as
the sizes and shapes of containers such as shelves, historical
knowledge, of which objects have already been removed
from the containers, type co-occurrence knowledge, which
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Fig. 1. A robot searching for objects in a 2-D domain. The colored
rectangles are the objects that can be observed by the robot if the robot
sits within the corresponding view window. The half-blue half-red object
can be observed both from the red view window and the blue view window.
The grey shaded objects are occluded, and are only visible after objects in
the front have been removed. In our problem, the robot is asked to obtain
an object of a specific type, and it must choose both where to look and
possibly what to remove in order to find the object. When the target object
type is occluded, contextual cues such as collocated object types and spatial
constraints can be used in an inference process to guide the search.

says which types of objects are most likely to occur near
one another, and other global constraints in the domain.

The key contribution in planning is a receding-horizon
forward search in the space of beliefs about (distributions
over) arrangements (including number and type) of objects
in the domain. In our domain, observations are drawn from
a continuous space of object poses, so making this search
tractable requires the construction of abstract observation
models, which reduce the effective branching factor and
number of state samples needed to represent beliefs.

II. RELATED WORK

The object-search problem has recently attracted a sig-
nificant amount of interest in the indoor service robotics
community. The earliest approach framed the problem as
active visual search [19], [17], which seeks the next best view
at which to place a visual sensor in order to find the desired
object. Much subsequent work in robotics has expanded
on this formulation; Aydemir et al. [1] provides a good
overview of the numerous works. Most of the later work
attempt to capture additional structural information found
in typical household environments, including object-location
and object-object co-occurrences [8], [1], spatial relations
[9], [11], object affordances [12] and scene ontologies [14].
While from these studies it is clear that additional knowledge
is beneficial, most are focused on relatively uncluttered
domains. In this case, since it is essentially guaranteed that



there exists some reachable viewing pose that will bring the
target within view, only robot motion needs to be considered.

For general cluttered environments such as kitchens (imag-
ine searching in the back of a fridge), we must be prepared
to manipulate objects as well, such as by moving occluding
ones out of the way to reveal hidden spaces. This requires
a more detailed analysis of the geometry and physical
constraints in the world. Our previous work showed that
considering how much space is remaining can be useful,
but uses greedy action selection [18]. Dogar et al. [3]
provides a careful analysis of conditions under which greedy
search (in terms of revealing the most unexplored space)
is optimal, but also present reasonable examples where the
conditions are violated. Lin et al. [10] also reasoned about
object placements, but A* search is used for planning, which
requires physical space to be discretized and is difficult to
scale. Additionally, the examples shown in these works are
significantly less cluttered than the ones we will consider.

To our knowledge, imperfect perception has not been
considered within object search. We present a model that
is capable of handling erroneous object type detections, and
a sampling procedure for exploring the posterior distribution
of both object types and their spatial arrangements. It is also
capable of conditioning on prior knowledge about the density
of objects in containers as well as global domain constraints
on the number of instances of different types.

III. PROBLEM DEFINITION AND ASSUMPTIONS

The techniques presented here could be applied more
broadly to a variety of single or multi-vehicle teams with
arbitrary sensor suites, container sizes and shapes, and object
types. For concreteness, we focus on a version of the problem
motivated by a robot looking for something in a kitchen.

The kitchen can be thought of as being made up of a set of
containers, which are spatial regions containing manipulable
objects. Containers might be refrigerator shelves, cupboard
shelves, kitchen drawers, etc. The number, size, and shape of
the containers are known in advance. Objects are rigid and
are drawn from a finite universe of known types. The number
of objects in the universe is not known. For simplicity we
assume that the objects on a particular shelf rest only on the
shelf and not on one another. This allows us to model each
container as a two-dimensional object (as if all the objects are
projected down onto the shelf surface). The robot can view
the container from the front “edge” and see any objects that
in the front layer. This model is illustrated in Fig. 1.

More formally, we model the world as a set of N 2-
dimensional containers c1, · · · , cN . Each container has a
finite set of views, which can be thought of as places from
which a robot can observe the container; each view has a
corresponding view window which may only give a partial
view of the front of the container. The l-th view window
of container cn is denoted by vnl. For the purposes of the
experiments in this paper, we model objects as axis-aligned
rectangles, but this assumption is not crucial; it mainly
simplifies collision checking and other geometric routines.

The robot’s goal is to find a target object of query type
tq by moving among the view windows, observing, and
removing objects. The actions it can take are to:

• Move to a view point and make an observation;
• Look from the current view point;
• Remove an object that is currently in view.

An object can be observed and removed if the robot is at
a view window from which it can see at least half of the
object. The Move and Remove actions are entirely reliable,
and always have their desired effects. This latter assumption
of perfect manipulation may seem severe, but robustness in
grasping is gradually becoming achievable [6], [2], although
currently it is still inefficient and costly. There are no state
changes in the domain except those made by the robot.
When an object is Removed from its containers, it simply
disappears from the world (but the container it once belonged
to is remembered for the purposes of performing inference);
this is a reasonable model when there is a lot of “temporary
storage” space in which to put objects that are removed from
containers while looking for other objects. In domains with
very little free space, the problem becomes a much more
difficult, intricate mobile manipulation problem.

The Look action is stochastic. The nominal observation
from a view point consists of a set of observations of the
form (x, y, o), specifying a pose in the plane for the object
and an observed type o. An object is observed if at least
half of it is visible from the view window; its pose is always
correctly observed but there is a probability that the type will
be mistaken. That is, for visible objects, their true states are
(x, y, τ), where τ and o may be different. We have a pre-
determined T × T confusion matrix M that characterizes
the error modes of whatever object-recognition method the
system is using; its entries are Mij = P(o = tj | τ = ti),
the probability of observing type tj when the true type is ti.

When the robot executes the Remove action, it receives a
perfect observation of the type of the object removed; this is
a plausible model of the robot’s ability to identify the type
of an object it is actually holding in its hand (such as by
bringing it to an ideal pose for its sensor it detect the type).

The goal of the system is to arrive in a belief state that
assigns high probability to the event that an object of the
target query type tq is visible from the robot’s current view
point (including the case where the robot is holding onto
such an object after a Remove action).

To achieve this task, the robot must plan a sequence of
Move, Look, and Remove actions in the kitchen domain.
Since there is uncertainty in the object arrangements, in
particular, uncertainty about occluded objects and their types,
we model the problem as a partially-observable Markov
decision process (POMDP) [7]. We first describe how to
represent the belief and perform updates given observations,
which is a necessary step both during planning and execution.
We then discuss a simple forward-search procedure, as well
as abstractions to approximate the infinite observation space.



IV. BELIEF REPRESENTATION AND ESTIMATION

We generally represent a belief state as a set of samples,
because to our knowledge there is no good analytic repre-
sentation for combining the disparate types of information
we have about the state of the world. These samples are
drawn from a prior belief or a posterior distribution that
is conditioned on some history of previous actions and
observations, using a Metropolis-Hastings (MH) sampler
(see Gelman et al. [4] for background on sampling). The
reasoning can be thought of as happening in two phases:
first, incorporating prior information about object type co-
occurrence and conditioning on observed object types; and
second, incorporating prior knowledge about the spatial
extent of containers, the amount of remaining unobserved
space, and a prior distribution on the number of objects per
type in the world and the density of objects in each container.

A. Modeling co-occurrence between object types

The basic prior distribution for this task is founded on the
likelihood that objects of various types will co-occur in the
same container. We adopt the model from our previous work
[18]. Each object belongs to one of a finite universe of T
object types, denoted by {ti}. We assume the contents of
the containers are independent and that the composition of a
container can be modeled by θ, an element of the (T − 1)-
dimensional simplex (i.e., the space of T -element discrete
distributions), representing a normalized vector of the counts
of each type of object in the container. For example, a
container with 2 objects of type t1 and 3 of type t3, when
there are T = 4 possible types, would have θ = (.4, 0, .6, 0).
We view the composition as a discrete distribution over the
types of objects in the container.

Our prior on compositions is based on a T -dimensional
vector η drawn from a multivariate normal distribution:

η ∼ N (µ,Σ) µ ∈ RT ,Σ ∈ RT×T ,Σ � 0 (1)

The covariance Σ encodes the object-object type correlation.1

A logistic-normal transformation σ(·) is applied on η to get
θ in order to preserve membership in the simplex:

θi = σ(η) =
exp(ηi)∑T
k=1 exp(ηk)

1 ≤ i ≤ T (2)

P(τ = ti ; θ) = θi 1 ≤ i ≤ T (3)

Given observations of objects with types {τ} in a con-
tainer c, we would like to infer its latent composition θ
(equivalently, η). In our previous work, we assumed that the
types were observed perfectly. Unfortunately, even under this
assumption, the posterior on η (and θ) is non-conjugate:

P(η | {τ}) ∝ P({τ} | η)P(η) =

[∏
τ

P(τ | η)

]
P(η) (4)

=

[∏
τ

exp(ητ )∑T
k=1 exp(ηk)

]
N (η ; µ,Σ) (5)

1The hyperparameters µ and Σ can be estimated from empirical data of
θ. See Hoff [5] and Wong et al. [18] for more details.

We draw samples from the posterior on η using a Markov-
chain Monte Carlo (MCMC) sampler [5]. These samples
are then transformed using the logistic function, giving
posterior samples of the composition vector θ. When observ-
ing/removing a new object from the container, the probability
that the object will be of type ti is then approximated by the
average value of θi in the samples. Returning to the task of
searching for query type tq , one strategy could be to visit
the container with the highest inferred θq .

The above model was already explored in our previous
work. To be slightly more realistic, one frequent source of
noise was object type confusion. Although object poses tend
to be accurate (especially with depth sensors), recognizing
the object instance/type is often challenging. Hence we wish
to model an extra layer of uncertainty, where the true object
types may be also be unknown.

Recall that type error probabilities are given by:

Mij = P(o = tj | τ = ti) (6)

Then we wish to find the posterior:

P(η | {o}) ∝ P({o} | η)P(η) =

[∏
o

P(o | η)

]
P(η) (7)

∝

[∏
o

∑
τ

P(o | τ)P(τ | η)

]
P(η) (8)

=

[∏
o

∑
τ

Mτo exp(ητ )∑T
k=1 exp(ηk)

]
N (η ; µ,Σ) (9)

The extra summation over possible true types {τ} results in
a few more computational steps in evaluating the likelihood
of a configuration, a necessary step in MCMC sampling.

B. Incorporating constraints

In addition to information provided by the types of objects
in the same container, there are strong constraints provided
by geometry that govern the ability of sets of objects to be
placed inside a container. Additionally, there are constraints
from prior knowledge about the total number of objects in
the world; for example, it is typically more likely to have
ten forks than one fork in a kitchen.

To model geometric constraints on containers, we assume
that a likelihood function γn(Λn) on configurations Λn is
specified for each container cn. A configuration is the set of
all object states {(x, y, τ)} within the container. We can use
γ to specify prior information such as how sparsely populated
we think some containers are, or knowledge about particular
non-uniform arrangements (e.g., objects tend to be placed in
the back). For our case, we specified an empirical distribution
on the total counts of objects within each container, and
encoded physical (non-collision) constraints by forcing any
non-physical arrangement to have zero likelihood.

We also allow specification of global constraints, which
generally have form φ(Λ1, . . . ,ΛN ). For our application, we
only consider likelihood functions of the form φi(k), which
specifies the likelihood that there are a total of k objects of
type ti in the domain (i.e., total across all N containers).



Fig. 2. Example particle configurations for the prior (left) and posterior belief (right) after observing a set of objects (middle). In this bird’s-eye projection,
the ‘front’ of the container is at the bottom, where the robot’s viewing window is situated. The samples on the right are consistent with the observation
in the middle; the only variation between samples is the occluded region (top left of square), and the potentially-confused type of yellow objects.

Such global constraints cause the containers to no longer be
independent of each other, since the presence of an object in
one container has implications about the number of objects
of the same type within other containers.

We have developed a Metropolis-Hastings (MH) algorithm
to sample configurations incorporating the above constraints.
Each sample configuration must be consistent with existing
observations, so under our assumptions it must include a
set of objects with types {τi} that could have potentially
generated the observed types {oj}, at the set of true observed
locations (recall that we assumed these were detected per-
fectly). The configuration (Λ1, . . . ,ΛN ) in each particle is a
complete geometric realization of objects in the containers.

Figure 2 shows an example of sampled configurations for
a single container, in belief particles both before and after a
belief update step. Before making any observations, the agent
has some prior belief about the container’s contents, which
is shown in the five samples on the left. After observing
the object types in the middle figure (from a view window
that only sees part of the container, as seen if the robot
was situated at the ‘bottom’ facing ‘up’), a belief update
is performed, resulting in new sample configurations, five of
which are shown on the right. In this example, the red object
type is not confused with any other types, hence all posterior
samples reflect this perfect observation. On the other hand,
blue objects are occasionally observed as yellow ones, as
seen in the first configuration on the right.

The idea behind Markov-chain Monte Carlo (MCMC)
methods is that it constructs a Markov chain (sequence)
of samples, whose stationary distribution converges to the
desired posterior distribution. Hence, the sequence of sam-
ples can be viewed as coming from the posterior, although
samples adjacent in time will tend to be dependent. This is
often the case because the sample space is complicated and
exploration is based on local transitions.

The Metropolis-Hastings (MH) algorithm is a particular
type of MCMC method that requires specifying two func-
tions: a (unnormalized) posterior probability P(Λ | {o}), and
a proposal function/distribution g(Λ → Λ′) (specifying the
likelihood of transitioning from state Λ to candidate Λ′). To
obtain a new sample from the current state Λ, the proposal
function is queried for a candidate state Λ′, and the following
acceptance ratio is computed:

α(Λ→ Λ′) = min

[
1,

P(Λ′ | {o}) g(Λ′ → Λ)

P(Λ | {o}) g(Λ→ Λ′)

]
(10)

A number is drawn from Unif(0, 1). If the number is below
α, then the candidate is accepted and Λ′ becomes the new
state of the Markov chain. Otherwise, it is rejected, and the

state remains at Λ (and is counted as another sample, hence
illustrating that consecutive samples may be dependent).

In our example, the sample space is the space of configu-
rations (of all N containers). At each sampling step, the MH
algorithm may propose moves of the following types:
• Add an object of type ti with probability θi to a randomly-

chosen location in a randomly-chosen container cn, as
long as the move does not violate the spatial constraints
of the container cn, penetrate other existing objects in
the container, occlude an object that has been observed,
or placed in a location that could have been seen by a
previous observation action.

• Remove an object of type ti if the object has not been
observed. This object is chosen uniformly from a randomly
chosen container cn, and from all existing objects in
container cn that have not been observed.

• Relabel the underlying types of the objects that have been
(noisily) observed. Randomly generate a non-zero proba-
bility type-relabeling of the observed objects, as long as
the new types do not violate spatial constraints or penetrate
existing objects. This step is not technically necessary
for MCMC convergence since it can be replicated by a
sequence of add and remove steps. However, since there
is often uncertainty in the object types, introducing an
explicit move that can quickly move between different type
labelings is helpful for faster mixing of the Markov chain.
Let Λk be the k-th sample in the MCMC chain. The state

Λk = (Λk1 , . . . ,Λ
k
N ) specifies the configuration for each of

the N containers. Recall that the configuration of container
cn, Λkn, consists of a set of object states {(x, y, τ)}.

The likelihood of a configuration is given by

P(Λk | {o}) ∝ P({o} | Λk1 , . . . ,ΛkN )P(Λk1 , . . . ,Λ
k
N ) (11)

=

[∏
i

(∏
n

L(ti, cn)

)
φi (C(ti))

][∏
n

γn(Λn)

]
(12)

As before, the index i iterates over object types, and n
iterates over containers. In the above, C(ti) is the total
number of objects of type ti across all containers. L(ti, cn)
is the product of likelihood terms for of all objects of type
ti in container cn. In particular, for each object in cn with
τ = ti, L(ti, cn) contains the following product:

θi
∏
o

P(o | τ) = θi
∏
o

Mτo (13)

Finally, recall that φi is the global constraint on numbers
of objects of type ti, and γn is likelihood of the geometric
arrangement in container cn (specified by Λn).

Finally, to complete the description of the MH algorithm,
we have to specify the transition probabilities in the proposal
distribution. Each move type is chosen with equal probability.



• Add: If we add an object of type ti to container cn at
location l in the current sample configuration, then

P(Λ→ Λ′) = P(cn)P(l | cn) θ
(n)
i (14)

We choose uniformly across the containers, so P(cn) = 1
N ,

where N is the total number of containers. We obtain
P(l | cn) by finding the probability of placing an object
of type ti at the particular location l = (x, y) given the
available configuration space in container cn by using
rejection sampling to find locations that do not violate any
constraints. We use the ratio of the number of samples we
keep over the total number of samples as P(l | cn), the
probability of placing an object of type ti at a particular
location l.

• Remove: If we remove an object obj of type ti in container
cn, then

P(Λ→ Λ′) = P(cn)P(select obj) (15)

If there are m objects in the container configuration that
have not been observed yet, P(select obj) = 1

N . We again
have P(cn) = 1

N .
• Relabel: Given a set of observed object types {o}, we

consider all possible types in the configuration as long as
there is non-zero probability. Since the space of relabelings
is O(T |{o}|), most of which have low probability, we do
not choose a relabeling uniformly at random. Instead, we
sample labeling candidates according to the likelihood of
confusion given by M .
In order to determine how many samples to use, we verify

convergence on the underlying distribution of configuration,
we monitor convergence by running independent trials. We
then compare the between- and within-sequence variances as
outlined by Gelman et al. [4]. We then discard the first half
of the samples as “burn-in”, and use the rest of the samples
to infer the probability an object resides in a container by
counting the proportion of samples that contain it.

V. ACTION SELECTION

The system interacts with the world by repeatedly: gen-
erating a set of samples from the current belief distribution,
using these samples in a finite-horizon forward search to
select an initial action, executing that action in the world,
getting an observation, and using that action and observation
to condition the next belief distribution.

We plan in belief space by growing a belief tree. Each
belief node comprises a set of belief particles. Each belief
particle contains the configuration of the contents of all
the containers. We perform particle filtering on these belief
particles each time we grow the tree to a deeper level based
on the observation on each branch.

A. Clustered observation models

Because the set of possible observations is infinite, we
must actually construct an abstraction of the complete be-
lief tree. Rather than branching on every possible set of
observed poses and types, the search tree branches on classes
of observations. These classes, or clusters, partition the

observation space a small number of possible “abstract”
observations. The partitioning method is designed to ag-
gregate observations that may have similar effects on the
subsequent attainable value in the remainder of a plan. In
particular, we would like to ignore any irrelevant aspects of
observations, such as uninformative pose information, and
project observations into a much smaller finite space. This
is motivated purely for computational reasons in planning.

We explored two strategies for partitioning observations,
the type-based observation model and the target-based ob-
servation model.

a) Type-based observation model: In the type-based
observation model, we construct branches for observing each
possible type of object as well as observing nothing. If there
are T object types in the universe, the branching factor for
the observation is T + 1. Given the container configuration
in a particle, label the branch for type ti with the probability
of seeing at least one object of that type. For each particle,

Pti = Pcn(observe at least one object of type ti)

= 1−
∏

observable τ

(1− P(o = ti | τ)) (16)

P∅ = Pcn(observe nothing) (17)

= 1−
∑
i

Pcn(observe at least one object of type ti)

We then update the weights for all the particles, by multi-
plying the old weight with the above probability (depending
on the observation branch). The weight update for a particle
in the observation branch for observing ti is

wnew
ti = wold

ti Pti (18)

The observation probability for this particular branch is∑
wnew
ti /

∑
i

∑
wnew
ti . We then renormalize the weight of

the particles in each belief node, so the weights of all the
particles in a belief node sums up to 1.

b) Target-based observation model: In the target-based
observation model, we use an (unrealistically) idealized
sensor model that tells us, for the container, either: an object
of type t∗ is present and visible (”see target”), an object
of type t∗ is present in the container but currently invisible
(”hidden target”), or an object of the desired type is not
present in the container (”no target”). Since we are ultimately
interested in searching for an object of query type tq , in our
application we choose t∗ = tq .

Along the “see target” branch, the weight update is the
same as for the corresponding case in the type-based obser-
vation model:

Pfront
t∗ = Pcn(obs ≥ one obj of type τ∗ in front layer)

= 1−
∏

observable τ

(1− P(o = t∗ | τ)) (19)

Along the ”hidden target” branch, we ignore all the objects
in the front layer, and look at the likelihood of observing a



target object in the rest of the configuration, defined to be

Phidden = (1− Pfront
t∗ )Pback

t∗ (20)

Pback
t∗ = Pcn(observe ≥ 1 object of type τ∗ in the back)

= 1−
∏

unobservable τ

(1− P(o = t∗ | τ)) (21)

For the ”no target” branch,

Pno target = 1− Pt∗ − Phidden (22)

By grouping observation branches into three categories,
the target-based observation model significantly reduces the
branching factor and makes it independent of the number of
types in the domain, but it represents a significant perturba-
tion of the actual observation model of the robot. We might
expect it to generate action values that are over-optimistic,
due to thinking it will get more information about a container
than is actually available.

B. Actions

In order to control the size of the search space, we
also construct an action space that is an abstraction of the
true action space. We assume, for example, that rather than
specifying the real-valued parameters of the robot’s motion,
they are parameterized by the observed position of the object
it is going to pick up.

For all observation models, these two types of actions are
available to the robot, both during planning and in execution.
• Move: Move to a different view window, which may or

may not have been visited previously.
• Observe: Make an observation at the current view window.
• RemoveAt: Remove an object that has been previously

observed in the real world (using the coordinates at which
it was observed perfectly.)
Since we use abstract observation models that do not gen-

erate actual observations with type and pose information, we
cannot use the RemoveAt action during planning. Instead,
we introduce different abstract actions for each of the two
clustered observation models. Each action can be applied an
any (belief particle) configuration. The actions are designed
to reflect the abstractions made in the observation model.

In the target-based observation model, these two addi-
tional actions are available:
• RemoveOccluder: If the most recent observation branch

is labeled “hidden target” or “no target,” remove the object
in the front layer that occludes the most unviewed space
in the container.

• RemoveTarget: If the most recent observation branch is
“see target”, remove the visible object that has the highest
probability of being of the target type. That is, we consider
P(o = t∗ | τ) for every object in the front layer in a
particle’s configuration.
In the type-based observation model, an additional family

of actions is available:
• RemoveType(t): Remove the object that has the highest

probability of being type t.

C. Search process
Starting at the root node, which contains a set of particles

sampled from the current posterior belief distribution, the
tree is grown by:
• Adding a branch for each possible action, and copying all

of the particles into each node;
• Adding a branch for each possible observation (given

the observation mode) and copying the parent set of
particles, reweighting them according to the likelihood of
that observation in each particle and renormalizing.

• If all of the particles contain a visible instance of the target
type, that node is not expanded further.

• At a fixed depth K, the process is terminated. Instead of
adding further layers of branching, a value is assigned to
each node according to the static evaluation function.

• Values are propagated back up the tree, taking the expec-
tation of the children values at observation nodes and the
maximum over the children values at action nodes.

• The top-level action whose child node has the highest
value is selected for execution.
These steps are described in more detail below.

a) Static evaluation function: The static evaluation
function takes a belief node as input and returns an estimated
cost of finding an object of the target type, under the
assumption that there is at least one such object in the
domain. We have explored two different choices for this
function.

Let β be an individual belief particle in belief node b and
let v be a view window. Every particle β has a specified
view window, which is where the robot is positioned in that
state; we denote it by β.v. The cost for the robot to move
from v1 to v2 is MoveCost(v1, v2). The cost, in a particular
world state β for the robot to remove the minimum set of
objects occluding an object of type q from view window v
is MinPickCost(β, q, v); if there is no object of type q then
this value is infinite.

Define a(h) to be the action sequence of length h.
Cost(β, a(h)) is the cost of executing the action sequence
a(h) in the configuration layout of belief particle β.

We denote k∗ as the number of steps we look ahead when
we plan in the belief tree, so the value function of the leaf
belief node would be V (bk∗).
• Optimistic: Voptimistic(bk∗) =
Eβ [minv[MoveCost(β.v, v) + MinPickCost(β, q, v)]]

• Choosing the best action sequence with respect to the
belief distribution:
V0(bk∗) = mina(h) Eβ [Cost(β, a(h))]

b) Deciding on an action: We compute the value of a
belief node recursively by taking the expected value across
the child observation branches and choose the action a∗ that
minimizes the total cost in the tree below the action node
itself. More concretely, at tree level k, we have

V (bk) = min
a

∑
o

P(o | bk, a)V (bk+1) + cost(a) (23)

a∗k = arg min
a

∑
o

P(o | bk, a)V (bk+1) + cost(a)



VI. EXPERIMENTS

We are primarily interested in whether our more-detailed
state estimator (Sec. IV) and non-myopic planner (Sec. V)
help reduce the overall execution cost for finding a target
object. We are also interested in seeing if there are any
significant differences between the two clustered observation
models used in planning (target-based and type-based). For
planning, we evaluated both 1-step and 2-step lookahead
search to examine the benefits of a longer planning horizon.

For comparison, we implemented two baseline methods.
The first is a systematic action selection strategy that
chooses, uniformly at random, a container to move to, re-
moves all visible objects, observes at the same location again,
and repeats this process until the target is found, or all objects
in the container are removed. If a container is emptied, a
new container is chosen and the process repeats. The second
baseline is the greedy algorithm that we expanded based on
the work by Wong et al. [18], which uses the object type
co-occurrence prior that we build on, and greedily chooses
the container with the highest probability of containing the
target type. Once a container is chosen, the robot moves to
the container, and takes an observation. Given an observed
type o, the robot removes the object that has the highest
P(object is tq | object observed to be ti). Now the robot has
noiseless observation on the object that has just been picked
up, as well as noisy observations on the rest of the scene
prior to picking up the object. The robot then performs belief
updates on θ using the MCMC update outlined by Wong
et al. [18]. The robot then moves to the container that has
the highest likelihood of containing the target type (possibly
the same container as before), and the process repeats. If
a container is emptied, the container with the next highest
likelihood of containing the target type is chosen.

All experiments were performed in simulation. We gen-
erated simulated domains by specifying the positions of
containers, then randomly sampled the true initial configura-
tion from our prior. The prior hyperparameters were trained
using a set of examples containing counts of object types
in containers. Visualizations of four illustrative domains are
shown in the top row of Fig. 3. All four domains are
generated from the same prior. In these domains, we placed
three containers, two of which are close together, and one
far away. Four object types are present (color-coded). Yellow
and red objects tend to be co-located; green and blue objects
tend to be co-located. The cost of moving is given by the
distance shown on the horizontal axis. The cost of removing
an object is 15, and for observing is 8. The robot is initially
at position 55. The total execution costs shown in Fig. 3 were
averaged over 25 trials for each domain.

In the three leftmost domains, the goal is to find a blue
object. Blue and yellow objects are confused with each
other with probability 0.2; red and green objects both have
noiseless observations. so even if a blue object is visible,
multiple observations may be necessary. In the rightmost
domain, the goal is to find a green object.

We observe three qualitative trends: Our proposed method

occasionally achieves lower execution cost (and always finds
the lowest among the methods), but the variance tends to
be high; the type-based method performs similarly to the
target-based method except in the first domain; and addi-
tional lookahead did not improve execution cost significantly.

In the first (left-most) domain, since our method tends
to consider the likelihood of finding the target type as well
as the action costs together, the robot moves to the middle
container first in most trials despite the fact that the leftmost
container has the highest likelihood of generating the target
blue type. Since the observation between yellow and blue
objects is noisy, observing two yellow objects in the middle
container makes the planner thinks there is a high probability
that at least one of the two yellow objects is in fact blue. On
the other hand, the greedy algorithm lets the robot go to the
leftmost container and removes an object. The strong prior
on the leftmost container containing the target type makes the
robot keep looking in the same container. Clearly the blue
object can be revealed almost immediately after the robot
removes the yellow object.

In the second domain, the blue objects are more occluded,
so systematic becomes a poor strategy (especially if it
chooses the container on the right). Based on the object type
co-occurrence prior, only the left-most container is likely to
contain blue objects, and since there is a blue object that
is not occluded at all in the left-most container, all other
strategies quickly find it and achieve similar performance.

In the third domain, our method could find solutions that
are of the lowest cost. Instead of going straight to the leftmost
container like greedy, our method considers moving cost,
and chooses to visit the middle container first in most trials,
and the innermost blue object in the middle container can
be revealed instantly (the red objects only occluded a small
portion of the blue object, and using our formulation, we
consider the innermost blue object as instantly revealable.)
We also observe that the 2-lookahead performs slightly
better in terms of the variance of the cost across trials,
because the 2-lookahead discourages the planner to choose
to go to the rightmost container as its first action. The
2-lookahead considers a longer-term gain, so visiting the
rightmost container is likely to incur a higher moving cost
to move towards the other two containers in the case of not
finding the target object in the rightmost container.

Finally, in the fourth domain, we see that our approach
has the greatest advantage against greedy. In this domain,
the goal is to look for the green object. Greedy tends to
go to the leftmost container because of the strong prior that
the leftmost container tends to have the green object. It then
tends to remove everything in the leftmost container. Unlike
our method, greedy is incapable of reasoning that given a
few removed objects from a container, it greatly constrains
the available space for the target object to exist. Instead, it
only looks at θ, the generative probability of object types.
Among the trials, we observe that in the cases that our
method chooses to go to the leftmost container, it does not
get stuck keeping removing objects from it. Instead, it could
move away to other containers to find the green object.



Fig. 3. Four illustrative simulated domains, and execution costs for different strategies on the domains. The top row shows the configurations of three
containers; object types are color-coded, and the distances between containers are to-scale. The bottom row shows box plots of total execution costs
(including motion, removing, and observation actions) over 25 trials for 6 different planning strategies. Each box and whisker visualizes the distribution
of executions costs: the red line is the median, the box shows the first and third quartiles (i.e., is the inter-quartile range), the whiskers extend to the range
of the costs, and the “+” markers are significantly beyond this range. See text for a comparison between the different strategies on each domain.

VII. DISCUSSION

The lack of systematic performance differences between
the two clustered observation models was somewhat sur-
prising and warrants further investigation. In one case, a
planning horizon of two was significantly more helpful than
a look-ahead of one; it is possible that even deeper look-
ahead would have value, but it would be computationally
quite costly. For the observation models, although in our
case they used a similar amount of time for planning and
achieved similar execution costs, we note that their branching
factors scale differently. In particular, while the target-based
approach has a constant branching factor of 3, the type-
based approach factor scales with the number of types T .
In our case, T was 4, so performance was similar; in a
more realistic scenario, we expect T to be much larger, and
we expect the target-based abstract observation model to
perform much better in terms of planning time.

We were also surprised to observe that greedy generally
achieves good near-deterministic performance on our simu-
lated domains, despite making drastic assumptions. Although
lookahead planning is often on par and occasionally im-
proves on the execution cost, it comes with a much greater
computational cost and variance in execution performance.
We believe that further complexity in the world will cause
the lookahead strategy to gain further advantage. Also, more
sophisticated online POMDP planning techniques [13] such
as POMCP [15] and DESPOT [16] may be able to make
planning more efficient while providing deeper-lookahead
exploration. On the other hand, it may also turn out that a
greedy strategy equipped with a good inference mechanism
is sufficient for the object search problem.

In future work, we will seek ways to improve efficiency
of the inference, to allow scaling up to realistic kitchen-sized
domains. We will also study whether it is important to model
error in the geometric aspects of sensing when planning at
this level of abstraction, and consider strategies for handling
objects that are stacked on top of one another, as well.
These techniques may ultimately be the basis for mobile
manipulation robots that use and understanding of space,
visibility, and spatial organization to be of real assistance

to humans in complex domains.
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