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Abstract

Autonomous mobile-manipulation robots need to sense and interact with objects to accom-
plish high-level tasks such as preparing meals and searching for objects. To achieve such tasks,
robots need semantic world models, defined as object-based representations of the world involv-
ing task-level attributes. In this work, we address the problem of estimating world models from
semantic perception modules that provide noisy observations of attributes. Because attribute
detections are sparse, ambiguous, and are aggregated across different viewpoints, it is unclear
which attribute measurements are produced by the same object, so data association issues are
prevalent. We present novel clustering-based approaches to this problem, which are more effi-
cient and require less severe approximations compared to existing tracking-based approaches.
These approaches are applied to data containing object type-and-pose detections from multiple
viewpoints, and demonstrate comparable quality using a fraction of the computation time.

1 Introduction

Much of the everyday human physical environment is made up of coherent physical objects. Envi-
ronmental dynamics are well described in terms of the effects of actions on those objects. Perceptual
systems are able to report detections of objects with type, location, color, and other properties.
Humans naturally designate both goals and prior information in terms of objects. Thus, it is ap-
propriate for robots to construct ‘mental models’ of their environment that are structured around
objects, their properties, and their relations to one another.

In this work, we define a semantic world model to be a set of objects with associated attributes
and relations. To illustrate this concept concretely, consider the following tasks, along with objects
and attributes that are potentially relevant:

• Cooking eggs on a pan: Objects — Eggs, pan, stove, etc.
Attributes — CookedTime, StoveSetting, EggPositionRelativeToPan

• Finding chairs for guests: Objects — Furniture, people
Attributes — IsChair, Sittable, Movable, Location, SittingOn(Person, Furniture)

• Rearranging objects on a table: Objects — Items on table
Attributes — Shape, Type, RelativePositionAndOrientation, GraspPoints

A common theme underlying these tasks, and many others, is that successful planning and ex-
ecution hinges on good world-state estimation and monitoring. Dynamic attributes listed above
also highlight why object-based representations are uniquely suitable for dynamic tasks: transition
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(a) Single viewpoint (b) Aggregation of object detections from multiple viewpoints

Figure 1: (a) Given a tabletop scene (top), we want to estimate the types and poses of objects in the scene using a
black-box object detector. From a single RGB-D image, however, objects may be occluded or erroneously classified.
In the rendered image (middle; detections superimposed in red), three objects are missing due to occlusion, and the
bottom two objects have been misidentified. The semantic attributes that result in our representation are very sparse
(bottom; dot location is measured 2-D pose, color represents type). (b) Aggregation of measurements from many
different viewpoints (top) is therefore needed to construct good estimates. However, this introduces data association
issues of the type addressed in this work, especially when multiple instances of the same object type are present.
From all the object detection data, as shown (bottom) by dots (each dot is one detection), our goal is to estimate
the object types and poses in the scene (shown as thick ellipses centered around location estimate; color represents
type, ellipse size reflects uncertainty). The estimate above identifies all types correctly with minimal error in pose.

dynamics tends to operate on the level of objects. For example, it is much more natural to express
and reason about eggs that are being cooked, as opposed to points in a point cloud or cells in an
occupancy grid that are ‘cooked’. Although we focus on the static case in this paper, our ultimate
goal is to provide a framework for estimating and monitoring large semantic world models involving
objects and attributes that change over time as a result of physical processes as well as actions by
the robot and other agents.

In this work, we address the problem of constructing world models from semantic perception
modules that provide noisy observations of attributes. For concreteness, Figure 1 depicts an ap-
plication of our methods; here the world model consists of objects’ types and poses, and attribute
measurements are outputs from a black-box object detector running continuously on sensed RGB-D
images. Due to noise, occlusion, and sensors’ limited field of view, observations from multiple view-
points will typically be necessary to produce a confident world model. Because attribute detections
are sparse, noisy, and inherently ambiguous, where it is unclear which attribute measurements were
produced by the same object across different views, data association issues become critical. This
is the greatest challenge; if the measurement-object correspondences were known, the resulting
object-attribute posterior distributions would be efficiently computable.

We begin by stating a formal model for a simplified 1-D version of the world-model estimation
problem in Section 3, and then review a classic solution approach based on tracking in Section 4.
The main contribution of this work is the development of several novel clustering-based data as-
sociation approaches, described in Sections 5 and 6. Application of the semantic world-modeling
framework to object type-and-pose estimation is then demonstrated in Section 7, where we present
experimental results using data collected with a Kinect sensor on a mobile robot.
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2 Related Work

Our work lies in the intersection of semantic perception, world modeling, and data association,
which we will first review before placing our contributions in context.

2.1 Semantic World Modeling

Understanding the mobile robot’s spatial environment, by deriving a world model from its sensors,
has long been a problem of interest to the robotics community (Crowley, 1985). Early work typically
focused on using ultrasonic range sensors, tracking low-level planar and corner features as landmarks
in a map (Cox and Leonard, 1994). The resulting geometric maps were useful for mobile robot
navigation, but objects were not a primary concern in these representations and tasks.

For mobile-manipulation robots that operate on objects, the world model must contain infor-
mation about objects in the world. With the advent of more effective visual sensors, image features,
and object detectors, world models are now capable of supporting richer representations of objects.
The important role of objects in spatial representations was explored by Ranganathan and Dellaert
(2007), where places were modeled using objects as the basic unit of representation. However,
like much of the related work in semantic mapping (Vasudevan et al., 2007; Zender et al., 2008;
Nüchter and Hertzberg, 2008; Pronobis and Jensfelt, 2012), the ultimate goal is place modeling and
recognition, which is most useful for navigation. Instead, we want to infer the precise object states
themselves, which are needed for mobile-manipulation tasks.

To measure object states, we rely on attribute detectors, particularly ones operating on 3-D
visual data. Object recognition and pose estimation has received widespread attention from the
computer vision and robotics communities. With the recent advances in RGB-D cameras, several
systems have been developed to detect object types/instances and their 6-D poses from 3-D point
clouds (Rusu et al., 2010; Glover et al., 2011; Lai et al., 2012; Aldoma et al., 2013; Marton et al.,
2014). We will use one such detector (Glover and Popovic, 2013) as our black-box attribute detector,
but we emphasize that our methods are agnostic to the detector used.

A basic world model could simply use a detector’s output on a single image as a representation
of the world. However, this suffers from many sources of error: sensor measurement noise, object
occlusion, and modeling and approximation errors in the detection algorithms. As motivated in the
previous section, aggregating measurements across different viewpoints can help reduce estimation
error. For example, Hager and Wegbreit (2011) demonstrate the utility of considering a prior 3-D
scene model and its potential evolution over scenes. Using this observation as a premise, active
perception approaches (e.g., Eidenberger and Scharinger (2010); Velez et al. (2012); Atanasov et al.
(2013)) seek the next best view (camera pose) where previously-occluded objects may be visible,
typically by formulating the problem as a partially-observable Markov decision process. Because
the focus is on planning instead of estimation, this line of work is complementary to the world
modeling problem, which considers estimation using measurements from an uncontrolled, arbitrary
collection of camera poses.

The primary challenge in aggregating object detections across multiple views of the world is
identity management, induced by the fact that measurements often cannot uniquely mapped to an
underlying object in the world. Blodow et al. (2010) formulated object identity resolution as an
inference problem in a Markov logic network, but acknowledge the complexity of their approach.
Most similar to our approach is the work of Elfring et al. (2013), which highlighted the data
association issues in semantic world modeling, and applied a classic multiple hypothesis tracking
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(MHT) approach to the problem. The limitations of MHTs will be discussed in the next subsection,
in the context of other data association methods, and revisited in Section 4.

Recently, besides estimating object states in the world via object attribute detections, there
has been interest in world modeling involving object information, but without explicit recognition.
As mentioned above, this is often the case for semantic mapping. Anati et al. (2012) showed
that object-based robot localization is still possible even if “soft” heatmaps of local image features
are used instead of explicit object poses. Mason and Marthi (2012) argue that, for long-term
and large-scale mapping, modeling and recognizing all objects is impractical. The recent success
of dense 3-D reconstruction (Newcombe et al., 2011) has also led to dense surface maps being a
viable representation of space. Discussion of which representation is the best for world modeling
is beyond the scope of this paper, and depends on the considered domain/task. Moreover, we
emphasize that object type-and-pose estimation was only chosen as a concrete and familiar proof-
of-concept application. Most of the presented related work is specific to this application, whereas
our framework is applicable to other semantic attributes and tasks.

2.2 Data Association

The data association problem was historically motivated by target tracking; Bar-Shalom and Fort-
mann (1988) provide a comprehensive overview of the foundations, as well as coverage of greedy
nearest-neighbor methods and an approximate Bayesian filter, the joint probabilistic data associa-
tion filter (JPDAF). Apart from being a suboptimal approximation, the JPDAF is also limited by
its assumption of a fixed number of tracked targets (objects), which is not valid for our problem.

A more principled approach when the number of tracks is unknown is multiple hypothesis
tracking (MHT) (Reid, 1979). In principle, MHT considers the tree of all possible association
hypotheses, branching on the possible tracks that each measurement can correspond to. However,
due to the number of measurements involved, maintaining the entire tree (and hence the exact
posterior distribution) is exponentially expensive and intractable for any non-trivial branching
factor. As a result, practical implementations of MHTs must use one of many proposed heuristics
(e.g., Kurien (1990); Cox and Hingorani (1996)), typically pruning away all but the few most-
likely branches in the association tree. Aggressive pruning potentially removes correct associations
that happen to appear unlikely at the moment. Although this problem is somewhat mitigated
by postponing ambiguous associations through delayed filtering, the window for resolving issues is
short because of computational limitations.

The MHT pruning heuristics were necessitated by the combinatorial complexity of MHT, which
in turn is due to the enumeration of all possible association histories. Instead of attempting to
evaluate every point in this large space, most of which contains little probability mass, efficient
sampling techniques have been proposed that try to only explore high-probability regions. Markov-
chain Monte Carlo (MCMC) methods for sampling association matchings and tracks have been
explored by Dellaert et al. (2003) for structure-from-motion and by Pasula et al. (1999) for traffic
surveillance. More recently, Oh et al. (2009) generalized the latter work by considering a wider class
of transition moves during sampling, and provided theoretical bounds on the mixing (convergence)
time of their sampling algorithm, MCMCDA. Because only a small space of likely associations is
frequently sampled, and all measurement associations are repeatedly considered (unlike MHT with
pruning), MCMCDA empirically outperforms MHT both in efficiency and accuracy, especially in
environments with heavy detection noise.

Apart from the advantages of MCMC sampling methods, Dellaert (2001) also recognized the
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utility of considering attributes in data association problems. When occlusion and clutter are
present, correspondences are frequently ambiguous, and incorporating more information can help
separate the targets of correspondence. Dellaert (2001) specifically considered this idea in the
context of the structure-from-motion problem, proposing that image feature appearances should be
considered in addition to their measured locations, in order to better distinguish different features
between images. Our approach shares many resemblances to this line of work due to the use of
attributes and sampling-based inference.

2.3 Contributions

In the context of previous work, we view our approach as building on the semantic world modeling
problem formulation of Elfring et al. (2013) and the data association techniques of Oh et al. (2009).
As argued above and by Oh et al. (2009), MHT has various drawbacks, which are directly inherited
by the approach of Elfring et al. (2013). However, instead of directly applying MCMCDA to world
modeling, we will introduce more domain assumptions to make inference more efficient.

Unlike target tracking, for which most data association algorithms are designed, semantic world
modeling has three distinguishing domain characteristics:

• Objects can have attributes besides location, and hence are distinguishable from each other
in general (which likely makes data association easier). Some data association methods can
be readily generalized to this case (as was done by Elfring et al. (2013)), but it excludes some
from consideration, such as the probability hypothesis density (PHD) filter by Mahler (2007).

• Only a small region of the world is visible from any viewpoint. Most data association methods
operate in regimes where all targets are sensed (possibly with noise/failure) at each time point.

• Most object states do not change over short periods of time.

In light of the final point, we study the semantic world modeling problem under the stringent
assumption that the world is static, i.e., object states do not change.1 This does not trivialize the
data association problem, since it is still necessary to determine measurement-to-object correspon-
dences (and is exacerbated by the limited field of view). However, target-tracking algorithms no
longer seem most appropriate, since time is no longer an essential dimension. Instead, the problem
becomes more akin to clustering, where objects are represented by points in the joint attribute
(product) space, and measurements form clusters around these points.

A useful model for performing clustering with an unbounded number of clusters is the Dirichlet
process mixture model (DPMM) (Antoniak, 1974; Neal, 2000), a Bayesian nonparametric approach
that can be viewed as an elegant extension to finite mixture models. We apply this method to world
modeling in Section 5 and derive a Gibbs sampling algorithm to perform inference. The sampling
candidate proposals in this algorithm can be viewed as a subset of those considered by Oh et al.
(2009). However, clustering ignores a crucial assumption in data association; more details will be
given in Section 6, where we also introduce modifications and approximations to address this issue.

1Over long periods of time, this assumption is clearly unrealistic, but is beyond the scope of this paper. A näıve
solution is to refresh the world model using a short window of measurements prior to each query, assuming that the
world has not changed during that window.
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3 The 1-D Colored-Lights Domain

For clarity of explanation we begin by introducing a model of minimal complexity, involving objects
with 1-D locations and a single attribute (color). Despite this simplification, the fundamental issues
in data association are captured in the model described in this section. Generalizing to higher
dimensions and more attributes is relatively straightforward; in Section 7, we generalize to 3-D
locations and use object types as an attribute in our semantic world modeling application.

The world consists of an unknown number (K) of stationary lights. Each light is characterized
by its color ck and its location lk ∈ R, both of which do not change over time. A finite universe of
colors of size C is assumed. A robot moves along this 1-D world, occasionally gathering partial views
of the world with known fields of view [av, bv] ⊂ R. Within each view, Mv lights of various colors and
locations are observed, denoted by ovm ∈ [C] , {1, . . . , C} and xvm ∈ R respectively. These (ovm, x

v
m)

pairs may be noisy (in both color and location) or spurious (false positive – FP) measurements of
the true lights. Also, a light may sometimes fail to be perceived (false negative – FN). Given these
measurements, the goal is to determine the posterior distribution over configurations (number,
colors, and locations) of lights in the explored region of the world.

We assume the following form of noise models. For color observations, for each color c, there is
a known discrete distribution φc ∈ ∆C (estimable from perception apparatus statistics) specifying
the probability of color observations:

φci =

{
P(no observation for light with color c) , i = 0

P(color i observed for light with color c) , i ∈ [C]
(1)

A similar distribution φ0 specifies the probability of observing each color given that the observation
was a false positive. False positives are assumed to occur in a proportion pFP of object detections.
Each view may have multiple detections and hence multiple false positives. For location observa-
tions, if the observation corresponds to an actual light, then the observed location is assumed to be
Gaussian-distributed, centered on the actual location. The variance is not assumed known and will
be estimated for each light from measurement data. For false positives, the location is assumed to
be uniformly distributed over the field of view (Unif[av, bv]).

Next, we present the core problem of this domain. Given sets of color-location detections
from a sequence of views, {{(ovm, xvm)}M

v

m=1}Vv=1, we want to infer the posterior distribution on the

configuration of lights {(ck, lk)}Kk=1, where K is unknown as well. If we knew, for each light,
which subset of the measurements were generated from that light, then we would get K decoupled
estimation problems (assuming lights are independent from each other). With suitable priors, these
single-light estimation problems admit efficient solutions; details can be found in the Appendix.

The issue is that these associations are unknown. Therefore, we must reason over the space of
possible data associations. For each observation, let zvm be the index of the light that the observation
corresponds to (ranging in [K] for a configuration with K lights), or 0 if the observation is a false
positive. zvm is the latent association for measurement (ovm, x

v
m). Let zv be the concatenated length-

Mv vector of all zvm variables in view v, and let {zv} be the collection of all correspondence vectors
from the V views. We then aggregate estimates over all latent associations (some indices have been
dropped to reduce clutter, if clear from context; please refer to the previous paragraph for indices):

P
(
{(c, l)}

∣∣∣ {{(o, x)}}
)

=
∑
{zv}

P
(
{(c, l)}

∣∣∣ {zv} , {{(o, x)}}
)
P
(
{zv}

∣∣∣ {{(o, x)}}
)

(2)

6



The first term is given by the decoupled estimation problems mentioned above, and results in
a closed-form posterior distribution given in the Appendix. The desired posterior distribution on
the left is therefore, in exact form, a mixture over the closed-form posteriors. The problem is that
the number of mixture components is exponential in Mv and V , one for each full association {zv},
so maintaining the full posterior distribution is intractable. Finding tractable approximations to
this light-configuration posterior distribution is the subject of Sections 4–6.

4 A Tracking-Based Approach

If we consider the lights to be stationary targets and the views to be a temporal sequence, a
target-tracking approach can be used. Tracking simultaneously solves the data association (mea-
surement correspondence) and target parameter estimation (light colors and locations) problems.
As discussed in Section 2, a wide variety of tracking algorithms exist, and in particular multiple
hypothesis tracking (MHT) (Reid, 1979) has already been adopted by Elfring et al. (2013) on
the problem of semantic world modeling. We provide a gist of the MHT approach and discuss a
problematic issue below; readers are referred to Elfring et al. (2013) for details.

The MHT algorithm maintains, at every timestep (view) v, a distribution over all possible
associations of measurements to targets up to v. At each view, MHT therefore needs to propagate
each previous hypothesis forward with each possible association in view v. One way to consider
this is as a tree, where nodes of depth v are associations up to view v, and a distribution is
maintained on the leaves. Each view introduces a new layer of nodes, where the branching factor
is the number of valid associations in that view. Without loss of generality, assume that the views
are in chronological order. The distribution over associations up to view v is:

P
(
{z}≤v

∣∣∣ {{(o, x)}}≤v
)

= P
(
zv
∣∣∣ {z}<v , {{(o, x)}}≤v

)
P
(
{z}<v

∣∣∣ {{(o, x)}}<v
)

(3)

∝ P
(
{(ov, xv)}

∣∣∣ zv, {z}<v , {{(o, x)}}<v
)
P
(
zv
∣∣∣ {z}<v , {{(o, x)}}<v

)
P
(
{z}<v

∣∣∣ {{(o, x)}}<v
)

where superscript “v” indicates variables at view v only, “≤ v” for everything up to view v, and
“< v” for everything up to the previous view (excluding v). The first term is the likelihood of the
current view’s observations, the second is the prior on the current view’s correspondences given
previously identified targets, and the final term is the filter’s distribution from the previous views.

The likelihood term for view v follows mostly from the derivation in the Appendix. The obser-
vations are independent given the view’s correspondence vector zv, and the likelihood is a product
of Mv of the following terms:

P
(
ovm, x

v
m

∣∣∣ zvm = k, {z}<v , {{(o, x)}}<v
)

=


φ0o

bv−av , k = 0

P
(
ovm

∣∣∣ {{o}}<vz=k ) P
(
xvm

∣∣∣ {{x}}<vz=k ), k 6= 0
(4)

where the “z = k” subscript refers to observations (from previous time steps in this case) that have
been assigned to the same light, as indicated by the correspondence vectors {z}<v. Observations
corresponding to other lights are ignored because lights are assumed to be independent. The
two probability terms can be found from the posterior predictive distribution (Equations 25, 29
respectively). For new targets (where k does not index an existing target), the conditioning set of
previous observations will be empty, but can be likewise handled by the predictive distributions.
The false positive probability (k = 0) follows from the observation model (Equation 1).
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The prior on the current view’s correspondences, the second term in Equation 3, is due to Reid
(1979). Assume we know which of the existing targets are within the current field of view based
on the hypothesis on previous views (this can be found by gating). Denote the indices of these
targets as the size-Kv set {k}v. Another plausible assumption used in the tracking literature, due
to sensor characteristics, is that in a single view, each target can generate at most one non-spurious
measurement. We will refer to this as the one-measurement-per-object (OMPO) assumption.

We now define validity of correspondence vectors zv. Recall that in this length-Mv vector, the
m’th entry zvm is the (positive integer) target index to which (ovm, x

v
m) correspond, or 0 for a false

positive. First, an entry in zv must either be 0, a target index in {k}v, or a new (non-existing)
index; otherwise, it corresponds to an out-of-range target. Second, by the OMPO assumption, no
entry may be repeated in zv, apart from 0 for false positives. A correspondence zv is valid if and
only if it satisfies both conditions.

The following quantities can be found directly from zv:

n0 , Number of false positives (0 entries) (5)

n∞ , Number of new targets (non-existing indices)

δk , I
{

Target k is detected (∃m. zvm = k)
}
, k ∈ {k}v

n1 , Number of matched targets = Mv − n0 − n∞ =
∑
k

δk (by OMPO)

where I {·} is the indicator function. Then we can split P
(
zv
∣∣ {z}<v , {{(o, x)}}<v

)
by conditioning

on the above quantities, which are deterministic functions of zv:2

P
(
zv
)

= P
(
zv, n0, n∞, n1, {δk}

)
= P

(
zv
∣∣n0, n∞, n1, {δk} ) P(n0, n∞, n1, {δk} ) (6)

By the assumed model characteristics, the second term is:

P
(
n0, n∞, n1, {δk}

)
= Binomial

(
n0 ; Mv, pFP

)
P
(
n∞ ; Mv

)
P
(
{δk}

)
(7)

P
(
{δk}

)
=

∏
k∈{k}v

[
pD(k)

]δk [1− pD(k)
]1−δk (8)

where pD(k) is the (target-specific) detection probability defined in Equation 26 in the Appendix.
The number of new targets n∞ is typically Poisson-distributed.

Determining the correspondence given the quantities above involves assigning zvm indices to the
three groups of entries (of sizes n0, n∞, and n1) and matching a size-n1 subset of {k}v (as indicated
by {δk}) to the indices in the final group. A common assumption is that all assignments and
matches of indices are equally likely, so the first term in Equation 6 is the reciprocal of the number
of valid correspondence vectors (given n0, n∞, n1, and {δk}), given by:

nvalid
(
n0, n∞, n1, {δk}

)
=

(
Mv

n0, n∞, n1

)
n1! =

Mv!

n0!n∞!
(9)

Combining Equations 4–9 gives the necessary expressions used in the MHT filter (Equation 3).

2The probabilities implicitly depend on previous correspondences {z}<v and observations {{(o, x)}}<v, as shown
in the second term of Equation 3, via the targets in view {k}v and their detection probabilities in Equation 8.
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The expression for nvalid, which is related to the branching factor in the tree of associations
that the MHT considers, highlights the complexity of this approach. To obtain the total number
of valid associations, we need to also consider all possible settings of n0, n∞, n1, and {δk}:

ntotal =
Mv∑
n0=0

(Mv−n0)∑
n∞=0

(
Kv

n1

)
nvalid

(
n0, n∞, n1, {δk}

)
(10)

Even with 4 measurements and 3 within-range targets, the branching factor is 304, so considering all
hypotheses over many views is clearly intractable. Many hypothesis-pruning strategies have been
devised (e.g., Kurien (1990); Cox and Hingorani (1996)), the simplest of which include keeping the
best hypotheses or hypotheses with probability above a certain threshold. More complex strategies
to combine similar tracks and reduce the branching factor have also been considered. In the
experiments of Section 7 we simply keep hypotheses with probability above a threshold of 0.01. As
we will demonstrate in the experiments, an MHT filter using this aggressive pruning strategy can
potentially cause irreversible association errors and make incorrect conclusions.

5 A Clustering-Based Approach

If we consider all the measurements together and disregard their temporal relationship (static
world assumption), we expect the measurements to form clusters in the product space of colors and
locations ([T ] × R), allowing us to derive estimates of the number of lights and their parameters.
In probabilistic terms, the measurements are generated by a mixture model, where each mixture
component is parameterized by the unknown parameters of a light. Since the number of lights in
the world is unknown, we also do not want to limit the number of mixture components a priori.

As mentioned in Section 2, the Dirichlet process mixture model (DPMM) supports an un-
bounded number of mixture components. The Dirichlet process (DP) acts as a prior on distributions
over the cluster parameter space. Teh (2010) provides a good review of DPs and its application to
mixture models. From a generative perspective, a random distribution G over cluster parameters is
first drawn from the DP; G is discrete with probability one (but possibly with unbounded support).
For each measurement, a (possibly-repeated) set of cluster parameters is drawn from G, and data is
then drawn according to the corresponding observation model given by the parameters. Although
the model can potentially be infinite, the number of clusters is finite in practice, as they will be
bounded by the total number of measurements (typically significantly fewer if the data exhibits
clustering behavior). The flexibility of the DPMM clustering model lies in its ability to ‘discover’
the appropriate number of clusters from the data.

We now derive the DPMM model specifics and inference procedure for the colored-lights domain.
A few more assumptions need to be made and parameters defined. Our model assumes that
the cluster parameter distribution G is drawn from a DP prior DP(α,H), where H is the base
distribution and α is the concentration hyperparameter (controlling the similarity of G and H,
and also indirectly the number of clusters). H acts as a ‘template’ for the DP, and is hence also
a distribution over the space of cluster parameters. We set it to be the product distribution of
π, the prior on colors c, and a normal-gamma distribution over the location l and its observation
precision τ (see the Appendix for details on this latter distribution, as well as an interpretation of
the subscripted hyperparameters):

H(c, l, τ) , πc NormalGamma (l, τ ; λ0, ν0, α0, β0) (11)
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To accommodate false positives, which occur with probability pFP, we scale G from the DP prior
by a factor of (1− pFP) for true positives, and let the remaining probability mass correspond to a
parameter-less cluster to which all false positives are assigned.

To illustrate the analogy of the DPMM to finite mixture models, we express the DP prior in
an equivalent form based on the stick-breaking construction (Sethuraman, 1994). The idea is that
the sizes of clusters are determined by a random process that first selects some proportion β1 of
the unit interval (‘breaks the stick’), where β1 ∼ Beta (1, α), and defines that to be the size of the
first cluster (as a proportion). Smaller α tends to result in larger sticks earlier in the process, hence
fewer clusters are preferred. This process is then recursively applied ad infinitum to the remaining
length-(1− β1) stick, resulting in a countably infinite subdivision of the interval. A corresponding
infinite sequence of cluster parameters {(ck, lk, τk)} is drawn from the base distribution H and
associated with each stick. The stick-breaking process is typically denoted by:

{βk} ∼ Griffiths-Engen-McCloskey(α) ; {(ck, lk, τk)} ∼ H (12)

By defining G(c, l, τ) ,
∑∞

k=1 βk I [(c, l, τ) = (ck, lk, τk)], i.e., the sum of stick weights with cor-
responding parameters equal to (c, l, τ), G is a distribution over the cluster parameters and is
distributed as DP(α,H). Different draws in the stick-breaking process may lead to G having sup-
port on different numbers of cluster parameter atoms, whereas a finite mixture model can be viewed
as the case where G has a fixed number of atoms in its support.

Once {βk} and {(ck, lk, τk)} are drawn from the DP prior, the rest of the generative process is:

θk =

{
pFP , k = 0

(1− pFP)βk , k 6= 0
Cluster proportions (with FPs)

zvm ∼ θ ; m ∈ [Mv] , v ∈ [V ] Cluster assignment (for each obs.) (13)

ovm ∼

{
φ0 , zvm = 0

φcz , zvm 6= 0
Color observation

xvm ∼

{
Unif[av, bv] , zvm = 0

N
(
lz, τ

−1
z

)
, zvm 6= 0

Location observation

Despite being a nice theoretical tool, an infinite collection of sticks cannot be directly handled
computationally. The most straightforward way to perform inference in a DPMM is by Gibbs
sampling. In particular, we derive a collapsed Gibbs sampler for the cluster correspondence variables
{{zvm}} and integrate out the other latent variables, (c, l, τ) and θ. In Gibbs sampling, we iteratively
sample from the conditional distribution of each zvm, given all other correspondence variables (which
we will denote by {{z}}−vm). By Bayes’ rule:

P
(
zvm = k

∣∣∣ {{z}}−vm , {{(o, x)}}
)

(14)

∝ P
(
ovm, x

v
m

∣∣∣ zvm = k, {{z}}−vm , {{(o, x)}}−vm
)
P
(
zvm = k

∣∣∣ {{z}}−vm , {{(o, x)}}−vm
)

∝ P
(
ovm, x

v
m

∣∣∣ {{(o, x)}}−vmz=k

)
P
(
zvm = k

∣∣∣ {{z}}−vm )
In the final line, the first term can be found from the posterior predictive distributions described
in the Appendix (Equations 25 and 29), in a similar fashion to that in the MHT (Equation 4).
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Input: Observations {{(ovm, xvm)}M
v

m=1}Vv=1

Number of samples S
Output: Samples of cluster assignments

{{{zv (s)
m }Mv

m=1}Vv=1}Ss=1

1: Init. K := 0; z
v (0)
m := 0 for all m ∈ [Mv], v ∈ [V ]

2: for s := 1 to S; v := 1 to V ; m := 1 to Mv do
3: Find cluster predictive distributions and sizes

using most-recent samples {{zv (s−1)
m }}−vm

4: Compute sampling distribution (Equation 14)
by multiplying Equation 4 and Equation 15
for each k ∈ {0} ∪ [K + 1], then normalizing

5: Sample z
v (s)
m from sampling distribution

6: if z
v (s)
m = K + 1 then

7: K := K + 1
8: Remove cluster with index z

v (s−1)
m if

it has no other assigned observations

(a) Collapsed Gibbs sampling for DPMM

Input: Observations {{(ovm, xvm)}M
v

m=1}Vv=1

Cluster penalty parameter λ
Output: Cluster assignments {{{zvm}M

v

m=1}Vv=1}
1: Init. K := 1; zvm := 1 for all m ∈ [Mv], v ∈ [V ]
2: repeat
3: for v := 1 to V ; m := 1 to Mv do
4: dvm(k) := − logP (ovm, x

v
m | {{(o, x)}}z=k)

for each k ∈ [K] (using Equation 4)
5: if mink d

v
m(k) > λ then

6: zvm := K + 1; K := K + 1
7: else
8: zvm := arg mink d

v
m(k)

9: until convergence
10: Sort clusters by size |{zvm = k}|, remove smallest

clusters containing a total of a pFP-proportion of
all observations, and set associated zvm = 0

(b) Hard-clustering algorithm for DPMM,
inspired by DP-means (Kulis and Jordan, 2012)

Figure 2: Two algorithms for performing inference in DPMMs, one by sampling, the other by hard clustering.

This allows us to collapse the latent cluster parameters (c, l, τ). Note that the observations being
conditioned on exclude (ovm, x

v
m) and depend on the current correspondence variable samples (to

determine which observations belong to cluster k).
The second term, the distribution of zvm given all other cluster assignments, is given by the

Chinese restaurant process (CRP), which is obtained by integrating out the DP prior on θ. Together
with our prior on false positives:

P
(
zvm = k

∣∣∣ {{z}}−vm ) =


(1− pFP)

N−vm
k

α+N−vm , k ∈ [K] (k exists)

(1− pFP) α
α+N−vm , k = K + 1 (k new)

pFP , k = 0

(15)

where N−vmk is the number of observations currently assigned to cluster k (excluding (ovm, x
v
m)),

N−vm =
∑K

k=1N
−vm
k is the total number of non-false-positive observations across all views, and

K is the number of instantiated clusters. This expression illustrates the role of the concentration
parameter α from a sampling perspective: larger α leads to more frequent creation of new clusters.

By combining Equations 14 and 15, we can sample from the conditional distribution of individual
correspondences zvm. Although the model supports an infinite number of clusters, the modified CRP
expression (Equation 15) shows that we only need to compute K ′+ 2 values for one sampling step,
where K ′ is the number of existing clusters with N−vm > 0, which is finite, since clusters without
data are removed. One sampling sweep over all correspondence variables {{zvm}} constitutes one
sample from the DPMM. Given the correspondence sample, finding the posterior configuration is
simple. Each non-empty cluster corresponds to a light. For each cluster, applying Equations 24 and
27 from the Appendix to the cluster’s associated data provides the posterior distributions on the
light’s color and location (with observation model precision) respectively. The posterior marginal
distribution on the light’s location is a t-distribution with parameters given in Equation 28.

Although Gibbs sampling is a conceptually simple inference method for recovering the posterior
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(a) Single viewpoint (b) DPMM sample clustering (c) DPMM-FullView sample

Figure 3: A real-world example demonstrating issues with the DPMM approach from Section 5. (a) A scene
containing many instances of the same object type, viewed from above. The relative proximity of similar objects
make them easily confusable for data association. (b) The DPMM approach performs particularly poorly in this
scenario because it ignores false-negative information and the one-measurement-per-object constraint. One sample
from the posterior distribution is shown by the thick ellipses, centered around the mean cluster locations, with sizes
depicting posterior variance and colors depicting object type (red = red soup can, black = orange baking-soda box);
the small dots show raw measurements. Ignoring FNs causes spurious clusters (e.g., left-most thin green circle) to
be more likely, since they are not discounted by absences in other views. Ignoring the OMPO assumption causes
measurements from similar nearby objects to be aggregated into a single cluster, even if they were observed together in
a single view, as was the case for the four soup cans in the middle. (c) By taking into account view-level information
and constraints, the DPMM-FullView method described in Section 6.1 recovers the correct interpretation of the scene.

distribution in the DPMM, it is relatively inefficient because it requires a substantial number
of samples to reach convergence. Kulis and Jordan (2012) recently proposed an elegant hard-
clustering method, DP-means, that produces a single clustering assignment. The algorithm is
derived from analyzing the small-variance asymptotics of the DPMM Gibbs sampler, and bears
great resemblance to k-means. Like k-means, data points are assigned to their closest cluster centers,
with the exception that points farther than λ away from all existing clusters are instead assigned
to instantiate a new cluster. The process is repeated until convergence, which is guaranteed. The
original presentation involved only Gaussian-distributed cluster means. Figure 2(b) shows our
extension to the algorithm, which handles the discrete color parameter and also false positives.
Although this method produces a single assignment instead of a distribution, we will use it in the
next section to initialize algorithms that handle more data association constraints.

6 Incorporating View-Level Information and Constraints

The DPMM-based solution to the colored-lights problem is a straightforward application of the
DPMM, but ignores two fundamental pieces of information:

• Visible region information and false negatives (FN): The DPMM does not consider
the field of view [av, bv], and hence neither which clusters are visible when a measurement is
made. Clusters that are frequently visible but only sporadically detected suggest that there
may in fact be no light there, that the detections were errors. Because the DPMM does not
consider this, it may posit a cluster for a spurious measurement when its absence in other
views would have suggested otherwise. It may also assign a measurement to a cluster that
should not be visible from the current view, although this case is less likely to occur.

• One-measurement-per-object (OMPO) assumption: When two lights of the same color
are placed close to each other, they are easily confusable. The only way to distinguish between
them is if both are consistently detected together. Then, by the OMPO assumption, the two
detections cannot be assigned to the same light, so the second detection must come from a
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second light, or be an FP. With sufficient views, two clusters emerge. Because the DPMM
ignores the OMPO assumption, it may associate both detections to the same cluster. In fact,
the DPMM generally prefers larger clusters (instead of two small ones) due to the ‘rich gets
richer’ phenomenon in the Chinese restaurant process (Equation 15).

Figure 3 illustrates a real-world example of both issues.
The above issues are consequences of the DPMM’s conditional independence assumptions. To

see this, consider the concrete example depicted in Figure 4, where we wish to sample cluster
assignments for an entire view’s Mv = 4 measurements. The DPMM Gibbs sampler samples the
cluster assignment for each measurement individually, as shown in Figure 4(b). This causes the two
right-most measurements to be assigned to the same cluster, a violation of the OMPO assumption.
The assumption states that at most one measurement in a single view can be assigned to each
cluster; this view-level constraint cannot be incorporated on the level of individual measurements.
Likewise, a false negative only arises if none of the measurements in a view are assigned to a cluster
within the field of view. To handle these constraints we must couple the measurements and sample
their assignments jointly.

6.1 DPMM-FullView

More formally, instead of sampling a view v’s correspondence variables {zvm}
Mv

m=1 one by one, we
consider sampling from the conditional distribution of the joint correspondence vector zv:

P
(
zv
∣∣∣ {z}−v , {{(o, x)}}

)
∝ P

(
{(ov, xv)}

∣∣∣ zv, {z}−v , {{(o, x)}}−v
)
P
(
zv
∣∣∣ {z}−v ) (16)

Like the previous two sections, the first term is an observation likelihood term that factors into a
product of Mv terms, each of which is similar to Equation 4. The second term is the DP conditional
distribution on zv, and can be found by repeated application of the CRP (Equation 15):

PDPMM

(
zv
∣∣∣ {z}−v ) = P

(
zvMv

∣∣∣ zvMv−1, . . . , z
v
1 , {z}

−v
)
. . . P

(
zv2

∣∣∣ zv1 , {z}−v ) P
(
zv1

∣∣∣ {z}−v ) (17)

=
pn0
FP (1− pFP)(n1+n∞) αn∞

[∏
{m}1

N−vzvm

]
∏(n1+n∞)−1
m′=0 α+N−v +m′

(18)

where n0, n∞, n1 are the previously-defined functions of zv (Equation 5), and {m}1 is the set of
indices that are matched to existing targets (i.e., n1 = | {m}1 |).

To see the derivation, consider the known values of n0, n∞, n1 given zv. This means that there
must be n0 entries in zv with value 0, n∞ entries with a new positive value, and n1 entries with
an existing positive value. These three types of entries correspond exactly to the cases for the
CRP, hence in Equation 17, n0 of the terms must be pFP, and so on. N−v is the total number of
non-view-v, non-FP observations, and N−vzvm is the number of observations assigned to the cluster
with index equal to the value of zvm, excluding view v. The latter type of counts are used in
the CRP case when the assignment zvm corresponds to an existing cluster index k. In general,
N−vmk ≥ N−vk (former from CRP, latter discussed above), so the expression in Equation 18 does
not hold in general. However, because of the OMPO assumption, no other observation in view v
could be assigned to cluster k, so in fact N−vmk = N−vk , and Equation 18 holds in our case.

Equation 16 is essentially the product of Mv conditional distributions used in the DPMM,
and does not yet achieve our goal of incorporating FNs and the OMPO assumption. To use FNs

13



and field-of-view information, we take inspiration from the MHT formulation, and first suppose
we knew which Kv of the existing K lights are within the field of view, i.e., {k}v from Section 4.
This, together with zv, allows us to determine the detection indicator variables {δk} (Equation 5)
and their probabilities (Equation 8). For the OMPO constraint, we simply assign zero probabil-
ity to violating correspondences. We combine the additional information with the DPMM-based
conditional distribution above (Equation 18) in a conceptually simple fashion:

PFullView

(
zv
∣∣∣ z−v, {k}v ) ∝ PDPMM

(
zv
∣∣∣ z−v) P

(
{δk}

)
I
[
zv satisfies OMPO

]
(19)

The final term evaluates to 1 if the joint correspondence satisfies the OMPO assumption, and
0 otherwise. Hence by construction the correspondence variables sampled from this conditional
distribution will incorporate the FN information and OMPO constraint.

To use PFullView as the prior over zv in Equation 16, we must remove the assumption that we
know {k}v. The correct Bayesian approach is to integrate over the posterior distribution of the
lights’ locations, which are independent t-distributions, given by Equation 28 in the Appendix. Al-
though this is intractable, it can be approximated by sampling the lights’ locations, which is simple
for t-distributions, then averaging the subsequent probabilities from Equation 19. In practice, we
found that using the posterior mean location was sufficient, i.e., including light k if νk ∈ [av, bv].

Although PFullView combines all the desired information, the inherent difficulty is hidden in the
‘∝’ sign. The distribution first needs to be normalized before we can sample from it, which is ineffi-
cient now because the support of the distribution is the set of correspondence vectors satisfying the
OMPO assumption. The OMPO constraint fully couples the measurements’ cluster assignments,
and all assignments must be considered jointly, as depicted in Figure 4(d). We have essentially
reverted to the high branching factor of the MHT! In the Figure 4 example, PFullView must be
evaluated for 304 different values of zv, compared to the 4× 5 = 20 required for the DPMM.

6.2 DPMM-Factored

A closer look at the nature of the OMPO violation suggests a potential approximation to PFullView.
In Figure 4(c), the violation is caused by only the two right-most measurements; the two measure-
ments on the left are not easily confusable with the others and hence are easy to handle from a
data association perspective. This suggests coupling only those measurements that cause OMPO
violations, and assume that violations involving other measurements are unlikely. Taking this a step
further, we can even consider the other measurements independently, as in the DPMM, essentially
splitting the view into three independently-considered components, as depicted in Figure 4(e).

More generally, suppose we can partition each view’s set of measurements into ‘violating’ sub-
sets, where all OMPO violations are contained within a single subset, with high probability. That
is, a good partition has the property that any two measurements belonging to different subsets will
have low probability of being assigned to the same cluster (and hence causing an OMPO violation).
Let Pv denote such a partition on the measurement indices in view v, and let {zv|p}p∈Pv denote
the restrictions of zv to each subset p ∈ Pv (i.e., zv|p represents the collection of correspondence
variables {zvm}m∈p). Then we can approximately split the OMPO constraint over the partition:

I
[
zv satisfies OMPO

]
≈
∏
p∈Pv

I
[
zv|p satisfies OMPO

]
(20)
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FP New

(a) Input view

FP New

+
FP New

+
FP New

+
FP New

(b) DPMM

FP New

(c) OMPO Violation

FP New

(d) DPMM-FullView

FP New

+

FP New

+

FP New

(e) DPMM-Factored

Figure 4: A concrete example for illustrating concepts in Section 6. (a) Each thick outer box depicts measurements
in the same single view (inner box), and the clusters that each measurement can be assigned to (row below inner
box). The view we consider has 4 measurements of lights’ locations and colors. The 3 existing clusters within the field
of view are shown as colored circles (these were determined from other views). Measurements can also be assigned to
the two ‘clusters’ to the left and right, for false positives and new clusters respectively. The task is to assign one of the
5 clusters in the bottom row to each measurement in the inner box. (b) The DPMM samples cluster assignments for
each measurement independently. (c) This causes potential violations of the one-measurement-per-object (OMPO)
assumption, where each cluster generates at most one observation within each view. (d) One solution is to consider
all measurement assignments in the view jointly. However, as explained in Section 6.1, this is inefficient. (e) A more
efficient approximation is derived in Section 6.2 by jointly considering only measurements that are OMPO-violating.
Measurements that are unlikely to cause constraint violation, such as the two left ones in the example, are considered
independently. This provides a trade-off between DPMM and DPMM-FullView.

Returning to Figure 4(c), the most-refined partition contains three subsets, where the sole non-
singleton contains the two right-most OMPO-violating measurements.

To make inference more efficient, we use the partition Pv to split PFullView. Ultimately, we want
to express the right-hand side of Equation 19 as a product of independent factors, each corresponding
to one subset of measurements in the partition. Because the terms are independent, sampling over
the conditional distribution can be performed by sampling each factor and combining the results.
Each factor is normalized over its significantly-smaller set of valid correspondence vectors, thereby
improving on the bottleneck step in Gibbs sampling for DPMM-FullView.

We now consider how to factor the other two terms in PFullView (Equation 19). PDPMM (zv | z−v)
is already a product over the conditional distributions of the correspondence variables, which is
clear from Equation 17. By collecting terms according to the partition Pv, we can write:

PDPMM

(
zv
∣∣∣ z−v) =

∏
p∈Pv

PDPMM

(
zv|p

∣∣∣ z−vp) (21)

The remaining term, P ({δk}), is also a product of distributions, but over the set of lights {k}v that

15



Input: Observations {{(ovm, xvm)}M
v

m=1}Vv=1

Fields of view {[av, bv]}
Number of samples S

Output: Samples of cluster assignments

{{{zv (s)
m }Mv

m=1}Vv=1}Ss=1

1: Init. K := 0; z
v (0)
m := 0 for all m ∈ [Mv], v ∈ [V ]

2: for s := 1 to S; v := 1 to V do
3: Find cluster post./pred. distributions and

sizes using most-recent samples {z(s−1)}−v
4: Find {k}v, the lights within field of view:

include light k iff. mean location νk ∈ [av, bv]
5: for each valid correspondence vector zv

(from total given by Equation 10) do
6: Compute sampling ‘probability’

P
(
zv
∣∣ {z(s−1)}−v, {{(o, x)}} , {k}v

)
(unnormalized; using Equations 8, 16–19)

7: Sample zv (s) from normalized distribution
8: K := K + n∞(zv (s))
9: Remove clusters with no observations

(a) Collapsed Gibbs sampling for DPMM-FullView

Input: Observations, fields of view, num. samples
Cluster penalty parameter λ

Output: Samples of cluster assignments

1: Init. K, {{zv (0)
m }} from DP-means (Figure 2(b))

2: for v := 1 to V do
3: Pv := Partition induced by transitive closure

of Rv, where (i, j) ∈ Rv iff. z
v (0)
i = z

v (0)
j 6= 0

4: for s := 1 to S; v := 1 to V do
5: Find cluster post./pred. distributions and

sizes using most-recent samples {z(s−1)}−v
6: for each subset of indices p ∈ Pv do
7: Find assigned lights {k}v|p: k ∈ {k}v|p

iff. mini∈p ‖νk − xvi ‖ < minj /∈p ‖νk − xvj‖
8: Sample zv (s)|p by performing steps 5–7

of DPMM-FullView (Figure 5(a)),
using {k}v|p and {(ovm, xvm)}m∈p

9: zv (s) := Concatenation of
{
zv (s)|p

}
p∈Pv

10: Update clusters (DPMM-FullView steps 8–9)
11: Agglomerate elements in partitions with

OMPO violations (steps 2–3)

(b) Partitioning and sampling for DPMM-Factored

Figure 5: Two modifications to the DPMM Gibbs sampling algorithm (Figure 2(a)), by incorporating view-level
information and constraints (DPMM-FullView), and using an efficient factored approximation (DPMM-Factored).

are within the field of view. Unfortunately, this cannot be immediately written as a product over
the partition. We therefore make a further approximation by assigning each light to some p ∈ Pv.
In particular, for each light, the closest measurement (from the light’s posterior mean location)
was determined, and the light was assigned to the partition subset containing the measurement.
Another way to view this scheme is that the partition Pv induces a partition over Voronoi cells
in the space of location measurements (bounded by the field of view), and lights are assigned to
partition elements according to the cells that their posterior mean locations are situated in.

Putting everything together, we arrive at the following factored approximation:

PFactored

(
zv
∣∣∣ z−v, {k}v ) ∝ ∏

p∈Pv

PDPMM

(
zv|p

∣∣∣ z−vp) P
(
{δk} |p

)
I
[
zv|p satisfies OMPO

]
(22)

where {δk} |p denotes the restriction of {δk} to the lights assigned to subset p according to the
scheme described above. This form makes clear that each factor can be normalized and sampled
independently. With a good partition, the large joint computation in DPMM-FullView is broken
into several smaller ones within each element of Pv. For the concrete example in Figure 4, the
sampling process is depicted in Figure 4(e), where the partition is such that only the OMPO-
violating measurement pair is considered jointly. This results in computing 5 + 5 + 22 = 32 values,
which is slightly greater than DPMM (20) but significantly fewer than DPMM-FullView (304).

One issues remains: Where does the partition come from? This is crucial for all factored
approximations: the aggressiveness of partitioning determines the trade-off between approximation
error and efficiency. On one extreme, the DPMM model is similar to a fully-factored model (but
does not take into account false negatives); on the other extreme, DPMM-FullView is equivalent to
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View 22

View 28

Clusters

(a) Iteration 0 (b) Iteration 2 (c) Iteration 4

Figure 6: An illustration of the DPMM-Factored method being applied on the real-world example from Figure 3.
The top two rows show two views (of 28) taken for the scene, with different partitions of measurements (surrounding
boxes) assigned by DPMM-FullView over several iterations. The final row depicts the inferred clusters/objects and
their attributes (in thick ellipses) after aggregating correspondences from the 28 views. (a) The correspondences are
initialized by DP-means, which assumes that measurements are independent, hence partitions consist of singletons
only. The resulting clusters suffer from the same issues depicted in Figure 3, as expected. In particular, the red
measurements in the middle are frequently aggregated into two large clusters, which is incorrect. (b) In view 22, an
OMPO violation is detected because the four red measurements in the middle are all previously assigned to one of the
large clusters. These singleton partition elements are agglomerated to respect the assumption that OMPO violations
are contained within a single subset, and are sampled together to ensure their joint correspondence does not violate
the OMPO assumption. This modification significantly improves the cluster estimates, with only one error remaining.
The other two red measurements on the right, and the three in view 28, are not coupled at this point because they
respect the OMPO assumption so far. (c) The two measurements in the top right now form an OMPO violation.
This shows that measurements that were previously not in violation could later become OMPO-violating, because the
clusters, and therefore the probability of being assigned to them, change between iterations. The partition is updated
again to couple the OMPO-violating measurements and results in the correct clustering. (The large partition element
in view 22 does not contain the bottom right measurement, which is a singleton in the partition.)

a one-set partition. The example in Figure 4(c) once again provides an answer: ‘violating’ subsets
can be found by examining clusters in the DPMM samples. Specifically, if measurements tend to
be assigned to the same cluster across samples, then clearly they are strong violators and should
be considered jointly. We therefore group measurements together if the proportion of samples in
which they are assigned to the same cluster exceeds some threshold value. This proportion allows
one to select an appropriate trade-off level.

For further efficiency in determining the partition, we also considered using the DP-means
hard-clustering algorithm described at the end of Section 5. The observations were first used to
quickly generate a deterministic clustering, after which the cluster assignments were examined. If
two measurements within the same view were assigned to the same non-false-positive cluster, they
were marked as coupled together. The partitions used by DPMM-Factored were then determined
by taking the transitive closure of the coupling relation in each view. Formal details on finding this
partition and determining the subsequent assigned lights can be found in Figure 5(b).

Returning to the real-world example from Figure 3, the steps taken by DPMM-Factored are
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partially illustrated in Figure 6. Initially, DP-means is used to cluster the measurements, and
considers correspondences independently, which is equivalent to using a partition of singletons
(boxes around each measurement in iteration 0). Like the DPMM sample shown in Figure 3(b),
measurements in the middle from similar nearby objects are aggregated into two large clusters. The
partition is updated by examining the current correspondences in each view and grouping together
measurements (in the same view) that are assigned to the same cluster, i.e., violating the OMPO
assumption. This results in the large box for view 22 in iteration 2. Concretely, this means that
during sampling, the correspondences for the four measurements are considered jointly, as a single
product term in Equation 22, such that an OMPO violation will not exist for this subset of four
measurements only. This partition expansion is considered for each view, and as a result splits the
large cluster into four separate ones. However, this creates a new OMPO violation, so partition
expansion is performed again, resulting in an even larger partition for iteration 4. This finally
resolves all OMPO violations and identifies objects in the scene correctly.

This example also illustrates the computational advantages of using DPMM-Factored, as op-
posed to DPMM-FullView and MHT. Although multiple iterations are needed to converge to a
partition that resolves all OMPO violations, these iterations are fast if the initial partition is
aggressively fine (e.g., the all-singleton partition induced by DP-means). Our partition expan-
sion scheme couples measurements together where necessary but no further, unlike MHT, which
tends to couple more measurements even with aggressive gating, and DPMM-FullView, which cou-
ples together all measurements in a single view. For example, the four measurements on the left
(black/green) tend to be sampled jointly by other approaches, but DPMM-Factored detects that
they are sufficiently well-separated empirically (OMPO violations are rare) and leaves them to be
sampled independently. Another example is illustrated in the final iteration for view 22, where
the six measurements on the right (red) are split into a subset of five measurements, and a single-
ton (bottom right); other methods would consider all six together. Because the number of valid
correspondence vectors to consider is combinatorial in the number of measurements (Equation 9),
finer partitions directly imply more efficient inference (at the potential expense of accuracy). Us-
ing Equation 10, the total number of associations that potentially need to be considered with six
measurements is ntotal(M

v = 6,Kv = 6) = 58576, whereas the number for the DPMM-Factored
partition is ntotal(M

v = 5,Kv = 5) + ntotal(M
v = 1,Kv = 1) = 5755, an order of magnitude less.

In practice, when gating is applied for the situation shown, MHT typically evaluates 1800–2400
correspondences, whereas DPMM-Factored only considers 250-350.

7 Application to Object Type-and-Pose Estimation

As mentioned in Section 3, the colored-lights domain is representative of the semantic world-model
estimation problem by considering lights as objects, and colors/locations as discrete/continuous at-
tributes respectively. Other attributes are straightforward to incorporate as long as their predictive
distributions are simple to compute. To see this, recall that in our various approaches to compute
or sample from the distribution of measurement associations (Equations 3, 14, and 16), attribute
measurements only appear in predictive likelihood terms (e.g., Equation 4). These predictive terms
assess how well each measurement (o, x) fits with an object, whose attributes have a posterior
distribution determined by all the other measurements {{(o, x)}}z=k currently associated with the
object. Such computations are necessary for each measurement, so simplicity in calculating the
predictive likelihood is crucial. However, the measured attribute values do not appear elsewhere;
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in particular, the correspondence priors described in Sections 4–6 do not depend on the observed
values, and can be applied as described for arbitrary numbers and types of attributes.

Object attributes such as type and pose will produce predictive distributions similar in form to
that for color and location in the colored-lights domain (see the Appendix for the forms). More
generally, discrete attributes will have terms resembling ‘color’, and continuous attributes with
Gaussian-like noise will have terms resembling ‘location’. If attributes are independent, we can take
the product of their observation models to determine the joint posterior or predictive distributions,
such as the product in Equation 4. Dependent attributes will need to be jointly considered as a
single unit. For example, for pose estimates with non-diagonal error covariances, the normal-gamma
prior needs to be replaced with a normal-Wishart prior. For simplicity, we assume that the error
covariance is axis-aligned and use an independent normal-gamma prior for each dimension. This is
partially justified by the empirical observation that our measurements do not align significantly in
any particular direction (see the small dots in Figure 7, depicting individual measurements).

We applied our discussed approaches to object type-and-pose estimation on tabletop scenes,
illustrated in Figure 1. We recognize that estimating object types and poses from separate object
detections in the fashion proposed below is unlikely the most effective use of visual data, and that
much information (e.g., image features, contextual cues, similarities between consecutive frames)
are discarded in the process. However, we are ultimately interested in situations where only black-
box attribute detectors are accessible. Object type-and-pose estimation was chosen as an exemplary
problem because it is simple to understand and has immediate application.

Estimating object types and poses is similar to the colored-lights problem, where ‘type’ is
a discrete attribute equivalent in form to ‘color’, and ‘pose’ is a 3-D version of ‘location’ with
Gaussian-like observation noise. For our experiments, we placed a uniform prior on the ‘type’ at-
tribute, with the P(correct detection) = 0.6, P(false negative) = 0.1, and the rest of the probability
mass spread uniformly across other types. In the notation of Equation 1, for type i we assume that:

φii = 0.6 φi0 = 0.1 φij 6=i =
1− φii − φi0
C − 1

(23)

For ‘pose’, we assumed that objects are resting stably and upright above a surface, so only the
(x, y, θ) positions of their reference points were considered. Further, as mentioned above, we as-
sumed the observation noise is independent in each dimension, and placed a normal-gamma distribu-
tion on each, with the same hyperparameters as specified in the Appendix (α0 = 10, β0 = 9×10−3).
The observation likelihood of each measurement is similar in form to Equation 4, except with two
additional terms in the product that resemble ‘location’ for the two extra attribute dimensions.

Detections of object type and pose came from 3-D point-cloud data obtained from a Kinect
sensor mounted on a mobile robot. The object detector starts by clustering the points above a
resting surface, such as a table or a shelf. It assumes that objects are separated on the surface,
so that each point cloud corresponds to at most one object. For each cluster, it tries fitting
point-cloud object models to the observed points, by optimizing a fitness function with respect to
the object pose (x, y, θ). The z-position of the object is constrained so that the bottom of the
object touches the resting surface. The optimizer tries alignments starting from several different
model resting orientations based on the convex hull of the object model. The fitness function is
computed as a weighted linear combination of least-squares range-image errors and point-cloud
nearest-neighbor distances (approximated with a distance transform of the model point cloud).
The detection pipeline is related to the system described by Glover and Popovic (2013).
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For our scenarios, objects of 4 distinct types, possibly with multiple instances of the same type,
were placed on a table. A robot moved around the table in a circular fashion, obtaining 20-30 views
in the process; see Figures 9 and 10 for RGB images of example views (although only depth data
is used to detect objects). When a view is captured, the object detection system described above
is given the Kinect point cloud as input, as outputs a list of object types and (x, y, θ) poses, one
for each segmented cluster in the point cloud. Figure 8 visualizes the detections (superimposed in
red using the known shape models) for several views; common detection errors are also illustrated.
We constructed 12 scenes of varying object and occlusion density to test our approaches; results
for 5 representative scenarios are described in the next section.

7.1 Qualitative Results

Qualitative results for 5 representative scenarios are shown in Figure 7. Images from above are
for comparison convenience only; the camera’s viewing height is much closer to the table height,
as shown in Figures 9 and 10, so in each view only a subset of objects is detectable. We compare
three approaches: multiple hypothesis tracking (MHT from Section 4; a re-implementation of the
approach by Elfring et al. (2013)), generic DPMM clustering (DPMM from Section 5), and the
factored approximation to DPMM-FullView (DPMM-Factored from Section 6.2). In Figure 7,
the most likely hypothesis is shown for MHT, and the maximum a posteriori (MAP) sample (out
of 100) is shown for the clustering-based approaches.

All approaches work well for scenario 1, where objects are spaced far apart. As objects of similar
type are placed near each other, DPMM tends to combine clusters since it ignores the OMPO
assumption. This is most apparent in scenario 4 (also illustrated in Figures 3 and 6), where four
soup cans (red) were combined into a single large cluster. By reconsidering the OMPO assumption,
DPMM-Factored performs significantly better and is on par qualitatively with the MHT, except
for an extra cluster (bottom left, green) in scenario 2.

In more detail, for scenario 2, the measurements corresponding to the white L-shaped object
are dispersed, causing the shown extra-cluster error to be likely. Examining more samples reveals
that a significant proportion (31%) do not have the extra cluster; they just happen not to be MAP
samples. This means that the estimator has significant uncertainty as to whether or not the extra
object exists. Although in this case the DPMM-Factored MAP sample is wrong, it highlights
a feature of our approach. Consider a task, e.g., grasping, that requires an accurate estimate of
this object’s neighborhood. Given the high uncertainty in the samples, the robot should decide to
gather more observations of the region instead of operating based on the incorrect MAP sample. In
contrast, the MHT is over 90% certain of its estimate because most other possibilities have been
pruned. Although MHT would have been less certain as well if all hypotheses were retained during
filtering, the necessary aggressive pruning tends to make MHT overconfident in its estimates.

Scenario 5, shown in Figure 9, highlights another difference between the tracking filter and batch
approaches. There is significant occlusion early in the sequence, which throws off MHT, causing
it to make incorrect associations which result in poor pose estimates. Here two closely-arranged
boxes are placed near a shelf, such that from most views at most one of the two boxes can be seen.
Only in the final views of the sequence can both be seen (final image in Figure 9). Due to the
proximity of the boxes, and the fact that at most one was visible in the early views, MHT eventually
pruned all the then-unlikely hypotheses positing that measurements came from two objects. When
finally both are seen together, although a hypothesis with two orange boxes resurfaces, it is too
late: the remaining association hypotheses already associate all previous measurements of the
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(a) Scene from above (b) MHT (c) DPMM (d) DPMM-Factored

Figure 7: Qualitative results for 3 world-model estimation approaches in 5 scenarios. The bird’s-eye view of the
scenes is for comparison convenience only; the actual viewing height is much closer to the table. The most likely
hypothesis is shown for MHT, and the maximum a posteriori sample is shown for the clustering-based approaches.
Each small colored dot is a semantic (object type-and-pose) detection. Each target/cluster is depicted by an ellipse,
centered at the posterior mean location. Ellipse axis lengths are proportional to the standard deviation in their
respective dimensions. Ellipses are color-coded by the most likely posterior object type: red = red soup can, black =
orange baking-soda box, green = white L-shaped block, blue = blue rectangular cup. Line thickness is proportional
to cluster size. See text in Section 7 for qualitative comparisons.

(a) Scenario 2 (b) Scenario 3 (c) Scenario 4

Figure 8: Examples of object detections in several views (superimposed in red using the known shape model of the
detected type). The top row shows cases where the detections are relatively accurate, whereas the bottom row shows
cases where most detections are missing or wrong. Missing objects are typically due to occlusion by other objects.
When only a small part of an object is visible, it is often not segmented properly, which then affects the fitted poses.
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Figure 9: Examples of views from scenario 5. In all views except the final one, only one of the two orange baking-
soda boxes was detected. This causes MHT to incorrectly infer that all measurements came from a single object
(and prune other possibilities), whereas batch approaches such as clustering can revisit previous associations and
correct them using new information, such as the final view where both boxes are finally detected.

Figure 10: Examples of views from scenario 3. Objects were placed relatively close together, resulting in significant
occlusion, causing the object detector to frequently miss detections or produce errors.

boxes to the same target, in turn giving an inaccurate location estimate. In contrast, DPMM-
Factored re-examines previous associations (in the next sampling iteration) after the two boxes
are seen together, and can correct such errors. One way to consider this difference is that the
clustering-based methods repeatedly revisits all association decisions, whereas MHT prunes away
most association hypotheses, and once having done so it cannot revisit a wrong decision.

7.2 Quantitative Comparisons

Quantitative metrics are given in Table 1, averaged over the association hypotheses for MHT,
and over 100 samples for DPMM, DPMM-FullView, and DPMM-Factored (after discarding
burn-in). We also compare against our version of the hard-clustering algorithm DP-means, for
several different penalty parameter (λ) settings; recall that larger λ tends to lead to more, tighter
clusters (see Figure 2(b), line 5 to see its role as a threshold for cluster membership). Finally, we
consider a baseline approach, Raw, that does not perform any data association. It uses the object
types and poses perceived in each view directly as a separate prediction of the objects present
within the visible field of view. The metrics in the table are evaluated for each view’s prediction,
and the Raw table rows show the average value over all views.

The need for aggregating measurements across views is exemplified by Raw’s tendency to miss
objects or confuse their types within single views. Out of the 12 scenes attempted, scenario 3,
shown in Figure 10, was the most challenging for Raw, because objects were placed close together.
This caused segmentation errors frequently occur and resulted in clear errors and unidentifiable
point cloud clusters. Significant occlusion also caused missed detections. As a result, using any
single view’s detections is unlikely to produce an accurate estimate of objects in the world. In
the scenario’s sequence of 21 views, although most objects are detected (sometimes incorrectly)
fewer than 5 times, the combined information is sufficient for MHT, DPMM-FullView, and
DPMM-Factored to achieve good qualitative and quantitative results.
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Table 1: Average accuracy metrics and computation wall times for the five scenarios shown in Figure 7. Raw is
a baseline that does not perform data association; object detections are used ‘as-is’. The three ‘λ’ rows refer to the
DP-means algorithm, for different settings of the penalty parameter. To evaluate predicted targets and clusters
against our manually-collected ground truth, for each ground truth object, the closest cluster within a 5 cm radius
is considered to be the estimate of the object. If no such cluster exists, then the object is considered missed; all
predicted clusters not assigned to objects at the end of the process are considered spurious. For the two parameter
accuracy metrics (most-likely type, location error), parameters were only evaluated for clusters that were matched to
the ground truth (i.e., for the clusters counting towards the number of correct clusters), so values are not comparable
across all methods. Computation wall times were computed on a single core of an 2.3 GHz Intel Core i7 processor,
using implementations in Python. Correspondences evaluated and computation times are not provided for Raw
since no processing in the measurements is required. The ‘†’ symbol for MHT and DPMM-FullView in scenarios
1 and 4 indicate that external guidance was necessary, in the form of manually splitting the views (each into 2-3
parts, consisting of 3-6 measurements each). Without such help, both algorithms take over an hour to complete for
scenarios 1 and 4; scenario 2 is an example of a case of moderate complexity, where no guidance was provided.

Metric Num. correct Num. missed Num. spurious F1 score

→ objects (TPs) objects (FNs) clusters (FPs) = 2× precision×recall
precision + recall

Scenario 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Raw 8.0 3.3 1.6 5.3 1.0 2.0 3.7 5.4 4.7 2.0 0.8 1.3 0.3 0.1 0.7 0.85 0.53 0.32 0.64 0.74

λ = −1 4.0 2.0 2.0 1.0 0.0 6.0 5.0 5.0 9.0 3.0 1.0 1.0 0.0 2.0 1.0 0.53 0.40 0.44 0.15 0.00

λ = −2.5 8.0 2.0 5.0 4.0 3.0 2.0 5.0 2.0 6.0 0.0 2.0 4.0 0.0 1.0 0.0 0.80 0.31 0.83 0.53 1.00

λ = −4 10.0 7.0 6.0 6.0 3.0 0.0 0.0 1.0 4.0 0.0 4.0 5.0 2.0 3.0 1.0 0.83 0.74 0.80 0.63 0.86

MHT 10.0 7.0 6.0 10.0 2.4 0.0 0.0 1.0 0.0 0.6 0.0 0.0 0.0 0.0 0.6 1.00 1.00 0.92 1.00 0.81

DPMM 8.0 2.1 2.1 4.0 2.7 2.0 4.9 4.9 6.0 0.3 1.0 2.7 0.0 1.0 0.0 0.84 0.36 0.46 0.53 0.94

FullView 10.0 7.0 6.0 10.0 3.0 0.0 0.0 1.0 0.0 0.0 0.1 1.5 0.2 0.0 0.0 1.00 0.91 0.91 1.00 1.00

Factored 10.0 7.0 6.0 10.0 2.9 0.0 0.0 1.0 0.0 0.1 0.8 3.1 0.3 0.0 0.0 0.96 0.82 0.90 1.00 0.97

Metric Most-likely type Location estimate Num. correspondences Computation

→ is correct (%) error (cm) evaluated (×103) wall time (s)

Scenario 1 2 3 4 5 1 2 3 4 5 1† 2 3 4† 5 1† 2 3 4† 5

Raw 98 93 67 85 56 2.5 2.7 1.9 2.2 2.1 N/A N/A

λ = −1 100 100 50 100 - 2.0 2.5 3.8 1.1 - 4.48 2.50 0.21 1.70 0.03 24.3 7.4 1.0 8.6 0.6

λ = −2.5 100 100 80 100 100 2.2 2.4 2.4 1.0 2.2 9.09 2.65 0.76 2.16 0.25 19.4 6.2 0.5 6.7 0.6

λ = −4 100 100 100 100 100 2.1 2.6 1.7 1.3 2.4 12.7 5.58 0.86 3.80 0.21 12.8 5.3 0.1 4.0 0.1

MHT 100 100 83 100 100 2.1 2.8 1.8 1.3 2.6 5.72† 195 18.3 105† 0.25 16.9† 593 41.6 211† 0.5

DPMM 100 100 56 100 95 2.2 2.4 3.8 1.0 2.7 69.9 23.5 3.37 22.0 2.88 144 39.8 3.6 37.3 4.2

FullView 100 100 90 100 100 2.0 2.6 1.6 1.4 2.2 44.9† 582 19.3 167† 2.62 171† 1346 33.7 278† 5.3

Factored 100 100 88 100 96 2.1 2.6 1.6 1.3 2.4 8.91 6.84 1.48 19.0 0.98 127 64.9 9.9 90.6 4.5
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Summarizing the results in Table 1, we find that DPMM overcomes noise in a single view
by clustering across views, but still misses many objects because it ignores the OMPO assumption
and agglomerates nearby similar objects. DPMM-FullView respects this constraint and performs
significantly better, missing few objects while maintaining accuracy in the posterior type-and-pose
estimates. DPMM-Factored performs similarly in quality, with an increase in spurious clusters.
However, this minor hit in quality comes with an order-of-magnitude computational improvement
compared to DPMM-FullView. The clustering approaches tend to have more spurious clusters
because we chose hyperparameters that encourage positing new clusters and faster exploration of
the association space, but this can be corrected at the expense of convergence speed. The MHT
achieves the overall best quantitative performance, but in most cases is only marginally better than
DPMM-Factored, an improvement that comes at a high computational expense, and potentially
introduces filtering-related overconfidence issues mentioned earlier.

8 Discussion

We have presented several clustering-based data association approaches for estimating semantic
world models. We use Dirichlet process mixture models (DPMM) as our underlying framework.
However, DPMMs perform poorly in their generic form because they ignore crucial view-level infor-
mation and constraints. Two improvements were therefore developed by incorporating the OMPO
constraint exactly and approximately respectively. In preliminary experiments based on tabletop
object type-and-pose estimation, the latter approach (DPMM-Factored) achieved performance
comparable to a tracking-based approach (MHT) using a fraction of the computation time.

If only a single posterior association is needed (instead of a distribution), the hard-clustering
algorithm DP-means performs surprisingly well, and is much faster than all the other methods.
However, performance depends heavily on setting this parameter appropriately. To some extent,
this could be alleviated by starting with an overly-conservative (large) value of λ, with few clusters
and many OMPO violations, and then gradually decreasing λ until most violations are resolved.
This will still lead to an abundance of spurious clusters, as seen in the results. Using view-level
information to merge clusters (instead of sampling cluster assignments) may prove beneficial.

As discussed in the introduction, semantic world models are useful in many object-centric tasks,
involving a diverse set of attributes. We are currently exploring applications involving attributes
beyond object type and pose. To be truly applicable, world models must also cope with objects
moving over extended periods of time. Since the presented sampling procedure for inference iterates
through all views, it is at present impractical to apply it to the entirety of the robot’s observation
history. Instead, a hybrid approach combining the benefits of filtering and batch data association
is desirable. Extending our framework to handle temporal dynamics while maintaining tractability
over long horizons is the subject of future work.
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Appendix: Posterior and predictive distributions for a single light

In this appendix, we verify the claim from Section 3 that finding the posterior and predictive dis-
tributions on color and location for a single light is straightforward, given that we know which
observations were generated by that light. Let {(o, x)} denote the set of light color-location detec-
tions that correspond to a light with unknown parameters (c, l). Color and location measurements
are assumed to be independent given (c, l) and will be considered separately. We assume a known
discrete prior distribution π ∈ ∆(C−1) on colors, reflecting their relative prevalence. Using the color
noise model (Equation 1), the posterior and predictive distributions on c are:

P (c | {o}) ∝ P ({o} | c) P (c) ∝

 ∏
i∈{o}

φci

 πc (24)

P
(
o′
∣∣ {o}) =

C∑
c=1

P
(
o′
∣∣c) P (c|{o}) =

C∑
c=1

φco′ P (c | {o}) (25)

We can use this to find the light’s probability of detection:

pD , 1− P
(
o′ = 0

∣∣ {o}) = 1−
C∑
c=1

φc0 P (c | {o}) (26)

Unlike the constant false positive rate pFP, the detection (and false negative) rate is dependent on
the light’s color posterior.

For location measurements, we emphasize that both the mean l and precision τ = 1
σ2 of the

Gaussian noise model is unknown. Modeling the variance as unknown allows us to attain a bet-
ter representation of the location estimate’s empirical uncertainty, and not näıvely assume that
repeated measurements give a known fixed reduction in uncertainty each time. We use a stan-
dard conjugate prior, the distribution NormalGamma(l, τ ;λ, ν, α, β). The typical interpretation of
normal-gamma hyperparameters is that the mean is estimated from λ observations with mean ν,
and the precision from 2α observations with mean ν and variance β

α . It is well known (e.g., Bernardo
and Smith (1994)) that after observing n observations with sample mean µ̂ and sample variance
ŝ2, the posterior is a normal-gamma distribution with hyperparameters:

λ′ = λ+ n ν ′ =
λ

λ+ n
ν +

n

λ+ n
µ̂ (27)

α′ = α+
n

2
β′ = β +

1

2

(
nŝ2 +

λn

λ+ n
(µ̂− ν)2

)

25



Often we are only interested in the posterior distribution of the mean; the marginal distribution
on µ is a three-parameter (degrees of freedom, mean, scale) non-standardized t-distribution:

P (l | {x} ; λ, ν, α, β) = StudentT

(
l ; 2α′, ν ′,

√
β′

λ′α′

)
(28)

where the normal-gamma hyperparameters have been updated using {x} according to Equation 27.
Prior to any observations, the hyperparameters are set to λ0 = 0, ν0 = 0 (representing a noninfor-
mative prior over location) and α0, β0 chosen such that β0

α0
is equal to a prior value of the variance,

using α0 to toggle the prior strength. For location, we use α0 = 10 and β0
α0

= 9×10−4, representing
a weak prior where the location standard deviation is expected to be around 3cm.

The upshot of using a conjugate prior for location measurements is that the marginal likelihood
of location observations has a closed-form expression. The posterior predictive distribution for the
next location observation x′ is obtained by integrating out the latent parameters l, τ :

P
(
x′
∣∣ {x} ; λ, ν, α, β

)
=

∫
(l,τ)

P (x | l, τ)P (l, τ | {x} ; ν, λ, α, β) (29)

=

∫
(l,τ)
N
(
x ; l, τ−1

)
NormalGamma

(
l, τ ; ν−, λ−, α−, β−

)
=

1√
2π

β−
α−

β+α
+

√
λ−√
λ+

Γ(α+)

Γ(α−)

where hyperparameters with “−” superscripts are updated according to Equation 27 using the
empirical statistics of {x} only (excluding x′), and ones with “+” superscripts are likewise updated
but including x′. The ratio in Equation 29 assesses the fit of x′ with the existing observations {x}
associated with the light.
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