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Summary. We present our vision-based system for grasping novel objects in clut-
tered environments. Our system can be divided into four components: 1) decide
where to grasp an object, 2) perceive obstacles, 3) plan an obstacle-free path, and
4) follow the path to grasp the object. While most prior work assumes availabil-
ity of a detailed 3-d model of the environment, our system focuses on developing
algorithms that are robust to uncertainty and missing data, which is the case in
real-world experiments. In this paper, we test our robotic grasping system using our
STAIR (STanford AI Robots) platforms on two experiments: grasping novel objects
and unloading items from a dishwasher. We also illustrate these ideas in the context
of having a robot fetch an object from another room in response to a verbal request.

1 Introduction

In this paper, we present our vision-based system for grasping novel objects
in cluttered environments.

In the past, most approaches to robotic grasping [1–4] assume availability
of a complete 3-d model of the object to be grasped. In practice, however, such
a model is often not available—the 3-d models obtained from a stereo system
are often noisy with many points missing, and 3-d models obtained from a
laser system are very sparse (see Fig. 2 and Fig. 4). This makes grasping a
hard problem in practice. In [5, 6], we developed a learning algorithm that
enabled a robot to grasp novel objects, even ones that it perceived for the
first time through vision. Although we were able to grasp a wide variety
of novel objects with an overall accuracy of 87.8%, those experiments were
performed in uncluttered environments with objects placed against a uniform
background. Grasping in cluttered environments, such as a dishwasher or a
normal home kitchen (Fig. 1), is a harder problem both from a planning
as well as a perception point of view. Further, in such environments, most
straightforward approaches, such as visual servoing [7], become more difficult
because the arm now needs to execute more complicated paths for grasping,
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Fig. 1. (a) Our robot (STAIR 1) unloading items from a dishwasher, (b) Our robot
(STAIR 2) grasping an object in a normal kitchen environment.

and occlusions (by the objects or by the arm itself) make it harder to track
the arm.

In this paper, we will describe our vision-based robotic grasping system,
which takes into account uncertainty in the location of obstacles when plan-
ning and when choosing where to grasp. Our algorithm consists of several
components: first, to decide where to grasp the object, second, to perceive the
obstacles, third, to plan a path to the object while avoiding obstacles, and
fourth, to actually execute the grasp.

We also describe our two robotic platforms, one having a 5-dof arm and
a two-fingered hand, and the other having a 7-dof arm and a three-fingered
hand. These robotic platforms are built as a part of a project whose long-term
goal is to build a useful, general-purpose household robot that can navigate in
indoor environments, pick up and interact with objects and tools, and carry
out tasks such as tidying up a room or preparing simple kitchen meals.

We tested our vision-based robotic grasping system in picking up novel
objects and unloading items from a dishwasher. As part of a larger team
effort, we also combined our grasping system with tools from various other
sub-fields of AI to have a robot fetch an object from another room in response
to a verbal request.

2 Prior Work

Most work in robotic manipulation assumes a known 3-d model of the object
and the environment, and focuses on designing control and planning meth-
ods to achieve a successful and stable grasp in simulation environments. In
practice, however, such a model is often not available. For example, the point
clouds obtained from a stereo system are noisy and/or missing, and points ob-
tained from a laser system are very sparse (see Fig. 2). Therefore, approaches
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Fig. 2. (a) An image of textureless/transparent/reflective objects. (b) Depths esti-
mated by our stereo system. The grayscale value indicates the depth (darker being
closer to the camera). Black represents areas where depth-finding failed. (c) An im-
age of a cup lying on a table, (d) Its 3-d model calculated from a laser scanner
(view from the right). The sparsity of the points makes perception of the 3-d model
difficult.

that assume availability of a complete 3-d model (to compute surface normals,
etc.) would not apply. Here, we will focus on prior work that has performed
real world grasping experiments, and refer the reader to [1–4] for a more gen-
eral survey of past work in robotic manipulation.

For grasping 2-d planar objects, most prior work focuses on finding the
location of the fingers given the object contour, which one can find quite
reliably for uniformly colored planar objects lying on a uniformly colored table
top. Using local visual features (based on the 2-d contour) and other properties
such as force and form closure, the methods discussed below decide the 2-d
location at which to place the fingertips (two or three) to grasp the object.
Piater et al. [8, 9] estimated 2-d hand orientation using K-means clustering
for simple objects (specifically, square, triangle and round blocks). Morales
et al. [10,11] calculated 2-d positions of three-fingered grasps from 2-d object
contours based on feasibility and force closure criteria. Bowers and Lumia [12]
also considered the grasping of planar objects and chose the location of the
three fingers of a hand by first classifying the object as a circle, triangle,
square or rectangle from some visual properties, and then using pre-scripted
rules based on fuzzy logic.

In more general grasping, Kamon et al. [13] used Q-learning to control
the arm to reach towards a spherical object to grasp it using a parallel plate
gripper. Edsinger and Kemp [14] grasped cylindrical objects using a power
grasp by using visual servoing. Platt, Grupen and Fagg [15] used schema
structured learning to learn control policies for power grasps for objects. These
methods apply to power grasps for simple objects (spherical and cylindrical)
and do not apply to grasping for general shapes (e.g. grasping a cup by its
handle) or to grasping in cluttered environments.

In other related work, Hsiao et al. [16] used Partially Observable Markov
Random Process (POMDP) for whole body grasps; however only in simula-
tion. Simeona [17] assumed perfect knowledge of the scene and the objects to



plan a more global path (i.e. to go from point A to point B for grasping) using
Probabilistic Roadmaps (PRM).

3 Algorithm

Our robotic grasping system consists of the following components:

1. Inferring grasping points: This component infers a 3-d point and an
orientation at which to grasp the object. It takes into account the arm
and hand kinematics.

2. Perception of the environment: The robot needs to find the object,
the obstacles, and the destination where the object is to be placed.

3. Path planner: This component finds a path that takes the arm from the
initial position to the grasp position, and then from the grasp position to
the destination, while avoiding obstacles.

4. Control: Low level control for the arms, the hand, and the mobile base.

Besides the above, various other components are needed, such as an object
recognizer to find an object, and a calibration system that calibrates different
sensors and actuators in the same coordinate system.1

3.1 Inferring Grasping points

There are some visual features that indicate good grasps and are consistent
across objects, e.g., cups could be grasped by their “handles,” and bowls
and glasses could be grasped at their “lips.” We proposed a learning algo-
rithm [5,6,18] that learns these visual features for identifying a 3-d point and
an orientation at which to grasp the object, given its image. (Fig. 3b,c) This
algorithm, trained using labeled synthetic images of objects (Fig. 3a), gives a
set of candidate points (and their orientation) that are good grasps. (We have
made the code available at the URL given in Section 6.2.)

However, this algorithm does not take into account the robot kinematics
or the shape of the robot’s workspace. Among the candidate points, some
points could be better reached by a robot; for example, in Fig. 6a it is easier
for the robot to pick up the martini glass by its neck rather than by its lip.
In fact, some of the candidate grasping points (and orientations) predicted by
the algorithm might not even be reachable because of the robot kinematics.

Therefore, we select the best grasp from the set of candidate grasps G as
follows:

1 Note that for vision based grasping systems, a good calibration of the vision
sensors and the robot arm in a fixed coordinate system is essential, because the
errors in the calibration directly show up as errors in the 3-d location of the
predicted grasping point.
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Fig. 3. Grasping point classification. (a) A synthetic image of a coffee mug with
the grasp labels shown in red, (b,c) Test on new real objects: The red points in each
image show the locations most likely to be the grasping point, as predicted by our
algorithm. (Best viewed in color.)

ψ∗ = arg min
ψ∈Ψ, g∈G

||ψx − gx||2 − µ|ψq · gq| (1)

where Ψ is the set of all end-effector poses (3-d location and 3-d orientation)
that are possible because of robot kinematics, ψx ∈ R

3 represents the 3-d loca-
tion of the end effector, and ψq ∈ R

4, ||ψq||2 = 1 represents the 3-d orientation
of the end effector in quaternion representation. (The quantities gx and gp are
the 3-d position and orientation of the candidate grasp respectively.) This
method gives a location and an orientation of the end-effector that is closest
to one of the grasping points (and its orientation)—the weight µ decides how
much weight we give to the orientation versus the location. This optimization
problem is solved efficiently by choosing Ψ to be a small neighborhood around
g.

On STAIR 1, we have a 5-dof arm, therefore, knowing the location/orientation
of the end-effector, we can easily compute the goal joint angles in the config-
uration space using inverse kinematics. However, STAIR 2 is equipped with
a 7-dof arm; therefore instead of one, we will have a set of goal joint angles
corresponding to the extra degree-of-freedom. As discussed in Section 3.3, we
will attempt to choose the goal for which the planned path has maximum
distance from the obstacles.

3.2 Perception of the environment

An environment consists of a variety of objects, such as the robot itself, walls,
floor, tables, objects to be grasped, etc. In order to successfully move the
arm without hitting an obstacle, and to make certain decisions (e.g., where
to place an object after picking it up), a robot needs to build a 3-d model of
the environment.

We use a stereo system for this purpose; however, this has some problems.
First, these models are usually incomplete because many of the depths com-
puted by the stereo system are missing. It is hard to complete the models
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Fig. 4. (a) STAIR 1 grasping a plate from a dishwasher, (b) Imperfect 3-d structure
perceived by the robot using stereovision. Determining where to grasp and planning
becomes hard because of missing 3-d points and the clutter in the environment. (c)
STAIR 2 grasping a bowl, (d) Only a few 3-d points are perceived by the robot on
the textureless bowl using the stereo system.

because the objects are unknown. (Even if they are known by using object
recognition algorithms, it is difficult to complete the model because of the
unknown pose of the object.) Second, the limited view of the camera provides
only a partial view of the scene. Such incomplete models sometimes result
in a failure to grasp. For example, a robot might not correctly perceive a
textureless table (for which a stereo system usually fails to find depths), and
therefore hit the table while attempting to grasp an object lying on it.

We address this problem by noticing that many objects, such as walls,
floor, tables, etc. are fixed, and hence the robot can pre-store their 3-d struc-
ture. We can use various 3-d mapping algorithms for building 3-d models
depending on the sensors available, such as laser-based algorithms [19], or
vision-based algorithms [20–23].2 In our experiments, we localize the robot
relative to these fixed objects by finding a few known template structures.

3.3 Path Planner

Once a grasp has been identified, the robot needs to plan a path to reach the
grasp, and then from the grasp to the destination, while avoiding obstacles.

We used a probabilistic roadmap (PRM) planner from the Motion Plan-
ning Kit (MPK) [24] for this purpose. The MPK requires the start and goal
positions in configuration space, which is parametrized by the arm’s joint
angles. We use inverse kinematics to convert the start and goal positions to
joint angles. The path planning includes the hand joints as well, which signif-
icantly increases the accuracy of the grasping system because many failures
are caused by the hand hitting the object to be grasped. For computing the
goal configuration of the fingers (hand pre-shape), we used a criterion that
attempts to minimize the opening of the hand while leaving a small margin
(about 0.5cm) between the fingers and the object to be grasped.

2 Because of the resolution of the laser, one would still miss objects that have size
less than a few inches.



The algorithm above works well, except that in presence of noisy obstacles
the planner often fails to find a good path. We modified the PRM to have a
“soft” tolerance by allowing the path to hit fewer than a number of points.
(We empirically chose M = 3 as the number of points.) The intuition is that 3-
d points corresponding to obstacles tend to be clustered, and a single isolated
point is more likely to be noise. This allows our method to robustly find paths
in cluttered environments with noisy data.3

3.4 Control

The output of the path planner is a set of joint angles in configuration
space (milestone configurations) that the robotic arm must traverse through
smoothly in order to get from the start to the goal without hitting any obsta-
cles. We control the arms in position-controlled mode to follow the milestones.

In our experiments, since the hand pre-shape is such that the fingers are
just short of touching the object, the actual grasp control is simply closing
the fingers of the manipulator, until they stop moving. This method works
very well in practice for non-deformable objects; however there were some
instances where the grasp failed because the hand knocked the object off. In
those cases, using various complementary methods described in prior work
(Section 2) that use haptic (force) feedback [25] or visual feedback [7] would
quite likely improve the performance of our grasping system.

4 Robot Platforms

Our experiments were performed on two robots built for the STAIR (STan-
ford AI Robot) project. Each robot has an arm and other equipment such as
cameras, lasers, computers, etc. (See Fig. 5a,b.)

STAIR 1 consists of a harmonic arm (Katana, by Neuronics) mounted on
a Segway robotic mobility platform. Its 5-dof arm is position-controlled and
has a parallel plate gripper. The arm has a positioning accuracy of ±1 mm,
a reach of 62cm, and can support a payload of 500g. Our vision system used
a low-quality webcam (Logitech Quickcam Pro 4000) mounted near the end
effector, a stereo camera (Bumblebee, by Point Grey Research) and pan-tilt-
zoom (Sony DV100) cameras mounted on a frame behind the arm. In addition,
the robot has a laser scanner (SICK LMS-291) mounted approximately 1m
above the ground for navigation purposes, and an additional laser scanner
(SICK LMS-200) on a pan-tilt motor (Amtec Powercube) atop the sensor

3 If the goal joint angles are such that a path could not be found without hitting
fewer than M obstacle points, then we take the next best grasp from Eq. 1. In
case of STAIR 2, we have an extra degree of freedom; therefore from the set of
equally good goal configurations, we choose the one for which the path has a large
distance from the obstacles.
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Fig. 5. (a) STAIR 1 is equipped with a 5-dof arm and a parallel plate gripper, (b)
STAIR 2 is equipped with 7-dof Barrett arm and three-fingered hand, (c) The graph
for grasping experiments in Sections 6.1 and 6.2.

frame. The second laser was used to gather the point cloud images shown
previously. For our robotic grasping experiments in Section 6.1 and 6.2, we
used only the webcam and the stereo camera.

STAIR 2 sits atop a holonomic mobile base designed and constructed by
Reuben Brewer of the Stanford Biorobotics Laboratory. The base has four
steerable wheel turrets, allowing arbitrary 2-d translations and rotations. Its 7-
dof arm (WAM, by Barrett Technologies) can be position or torque-controlled,
is equipped with a three-fingered hand, and has a positioning accuracy of ±0.6
mm. It has a reach of 1m and can support a payload of 3kg. The vision system
consists of a stereo camera (Bumblebee2, by Point Grey Research).

5 Software architecture

We are using a purpose-built distributed software framework, which we call
Switchyard, to route messages between the different computers and periph-
erals that make up the STAIR platform. This section contains a high-level
overview of the framework, focusing on the aspects important to this paper.
For more details, please see [26].

Switchyard supports distributed computation through TCP message pass-
ing, providing inter-process communication across computers and operating
systems. The framework is based upon modular software design, where a large
software system (such as the STAIR robot) is constructed at run-time by
launching many small processes and connecting them together via message
passing. Thus, Switchyard software systems are essentially directed graphs.
Each node in the graph is a process running on some machine, and the edges
represent TCP streams between processes. The graph used for the grasping
experiments is shown in Fig. 5c.



Although all nodes in the graph have a “control” connection to the master
server, data transmitted between nodes flows on peer-to-peer TCP sockets.
This drastically improves system performance, particularly since large robots
such as STAIR often have a wide variety of connection speeds between various
computers comprising the system (e.g., offboard machines are connected to
each other via Ethernet, but the mobile robot is only connected via 802.11).
In comparison, we found that architectures in which all data flows through
a central server may route significant traffic across the slowest link in the
system, particularly as the system grows in data load and number of machines
connected.

There are many message-passing frameworks in existence, such as [27–29].
We developed our own framework to address the previously-mentioned issue
of cluster traffic routing across heterogeneous networks, and our own practical
desires for a cross-platform framework that minimizes client boilerplate code.

6 Experiments

6.1 Grasping Novel Objects

In these experiments, we asked a person to place several objects in front of
the STAIR 2 robot. The bowls were placed upright at a random location on a
table (with height unknown to the robot), and the plates were stacked neatly
in a rack (also in a random location). Using our robotic grasping system that
was trained on five types of objects (mugs, martini glasses, eraser, book and
pencil), STAIR 2 achieved a grasping success rate of 60% for cereal bowls,
and 80% for plates (5 trials for each object). In our earlier experiments [5,30]
on STAIR 1, the grasp success rate was 87.8%.

6.2 Unloading Items from dishwasher

The goal of the STAIR project is to build a general purpose household robot.
As a step towards one of STAIR’s envisioned applications, in this experiment
we considered the task of unloading items from dishwashers (Fig. 1a and 6).
This is a difficult problem because of the presence of background clutter and
the occlusion between objects—one object that we are trying to unload may
physically block our view of a second object.

In this experiment, we asked a person to randomly arrange several objects
neatly in the upper tray of the dishwasher. STAIR 1 used the image from
the stereo camera and used our robotic grasping system to unload items from
a dishwasher. In these experiments, we did not use color information, i.e.,
the images fed to the algorithm were grayscale. We evaluated the algorithm
quantitatively on five different objects from each of four object classes: plates,
bowls, mugs and glasses. (We have successfully unloaded items from multiple
dishwashers; however, we performed quantitative experiments only on one



Table 1. Grasp-success rate for unloading items from a dishwasher.
Objects

Tested on Grasp-Success-rate

Plates 100%

Bowls 80%

Mugs 60%

Wine Glass 80%

Overall 80%

(a) (b) (c)

Fig. 6. Dishwasher experiments (Section 6.2): Our robotic arm unloads items from
a dishwasher.

dishwasher.) In five trials for each object class (each trial used a different
object), the robot was able to successfully pick up objects 80.0% of the time
on average (see Table 1). Our algorithm was able to successfully pick up
objects such as plates and wine glasses most of the time. Videos of our robot
grasping objects and unloading items from a dishwasher are available at:

http://ai.stanford.edu/∼asaxena/learninggrasp

6.3 Fetch an object in response to verbal request

As part of a larger team effort, we demonstrate how our robotic grasping
system was used, along with other tools from various fields of Artificial
Intelligence—an object recognizer from computer vision [31], motion plan-
ning, and a spoken dialogue system [32]—to accomplish the task of having a
robot fetch an item in response to verbal request from another room.

In particular, the following video shows one of us verbally asking a robot to
fetch a stapler, in response to which the robot drives around in the lab while
avoiding obstacles, finds a stapler in another room, picks it up, and brings it
back to the person.

http://www.cs.stanford.edu/group/stair/multimedia.php

7 Conclusions

We presented our vision-based system for grasping novel objects in cluttered
environments. Our algorithms are robust in that they can grasp objects of



types not seen before, in a wide variety of new environments. We used our
algorithms in the tasks of unloading items from a dishwasher and of fetching
an object in response to a verbal request from another office.

The ability to pick up novel objects represents a first step towards our
larger goal of enabling robots that can perform a large variety of household
tasks, such as tidying up a living room after a party, and interacting with
objects and tools for preparing simple meals in a kitchen. In future work, we
plan to develop further perception algorithms for robotic manipulation, and
thereby hopefully bring robots into more human environments; for example,
we are currently working on applying variations on the algorithms described
in this paper to enable STAIR to prepare simple meals using a normal home
kitchen.
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