
Introduction
As the field of artificial 

intelligence becomes increasingly 
advanced and integrated, it is time 
to revisit the half-century old “AI-
Dream,” where intelligent robotic 
agents were envisioned to interact with 
the general human population. To this 
end, the Stanford Artificial Intelligence 
Robot (STAIR) project aims to 
introduce robots into home and office 
environments, where they will facilitate 
and cooperate with people directly. In 
order for robots to have any non-trivial 
use in such environments, they must 
have the ability to manipulate objects, 
which is provided through robotic 
arms. An arm usually has a manipulator 
“hand” attached at the end to allow finer 
manipulation and, more importantly, 
grasping. The ability to grasp is crucial; 
if we were unable to grasp with our 
hands, we would find it very difficult 
to perform essential tasks such as 
eating, and more complex actions such 
as cooking and working in an office 
would definitely be unachievable. A 
robust and infallible grasping system 
is therefore necessary for STAIR to 

achieve its goal.
In this paper, a novel approach for 

robotic grasping will be discussed. By 
considering information acquired from 
our 3-D visual sensors, we developed 
a reliable and efficient grasping system 
for STAIR that works in unknown and 
cluttered environments.

Background
 The problem of robotic 
grasping has existed and has been well 
studied over the past few decades. The 
conventional approach use the forces 
applied by the fingers on the object 
at their contact points to determine 
whether a stable grasp can be achieved1. 
While in theory this fully determines 
the result of the grasp, this approach is 
not practical because a complete and 
precise model of the target object is 
necessary. If the model was inaccurate, 
force computations would likely be 
incorrect. When working in unknown 
and dynamic real-world environments, 
STAIR can only acquire a model of the 
environment through visual perception, 
which is subject to inaccuracies and 
incompleteness. In practice, applying 
force computations directly on these 
models leads to poor results.
 The limitations imposed by 
perception have spurred interest over 
the past two decades in vision-based 
grasping systems. In particular, it has 
been found that perception of 2-D planar 
objects usually suffers from fewer 
problems. For such objects, the object 
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Figure 1: STAIR grasping from a very cluttered environment.1Stanford University
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surface contour can be found reliably 
from vision. Criteria for successful 
grasps, derived from the mentioned 
theoretical force computations, can 
then be found for the object2,3. A similar 
approach was used by kamon, Flash, 
and Edelman, where features indicative 
of successful grasps were computed 
given a 2-D image of the object4. A 
learnt model then used these features 
to compute an overall grasp quality, 
which predicted whether a grasp would 
succeed or not. While their results are 
promising, the methods are limited to 
2-D objects and generalize poorly to 
the 3-D scenarios that STAIR faces.

Robot Description
 The STAIR robot that this 
project is targeted for consists of a 7-dof 
arm (WAM, by Barrett Technologies) 
situation on a mobile platform. The 
arm is equipped with a 3-fingered hand 
with 4 degrees of freedom, one for each 
finger and one for the spread of the 

fingers (varying between being adjacent 
to each other and where two fingers are 
opposite the middle finger) (see Fig. 2). 
The arm is capable of reaching objects 
within a 1m radius. The hand can close 
its fingers inwards until the fingers hit 
an object, which is useful for grasping.

STAIR is also equipped with two 
cameras mounted on the robot frame. A 
stereo camera (Bumblebee2, by Point 
Grey Research) captures a 640*480 
image using both its lenses, and uses the 
image differences to compute the depth 
for each image pixel, thereby giving 
3-D point information. We shall refer 
to the set of 3-D points returned by the 
camera as the scene’s “point-cloud.” 
The point-cloud returned by the stereo 
camera is very incomplete, as stereo 
correspondences cannot be found for 
regions without texture such as object 
surfaces and tabletops, and only the 
front face of objects can be detected (the 
back face is occluded). To compensate 
for this missing information, another 
camera (SwissRanger, by MESA 
Imaging) provides a 144*176 array of 
depth estimates by firing an infrared 
light source and measuring the time 
it takes to reflect back to the camera. 
While this gives a much more complete 
image of the scenario, the data points 
are relatively sparse, and object 
surfaces that absorb or scatter the light 

are undetected by the camera. While 
the point clouds from STAIR’s vision 
system are relatively accurate, they 
clearly still suffer from large amounts 
of missing data, hence an approach that 
does not apply force computations to 
evaluate grasps is necessary (see Fig. 
3).

Approach
 The objective is to, given a 
model of the environment through 
visual perception, determine a robot 
configuration (joint angles for the arm 
and hand) such that, when closing the 
fingers at that point (until they are fully 
closed or they hit an object), some object 
in the environment is successfully 

Figure 2: STAIR. 7-dof Barrett WAM Arm and 
4-dof 3-fingered BarrettHand with “open” spread 
pictured. The spread can be “closed” such that 
all 3 fingers will be at the top. Vision system 
mounted on robot frame; blue arrow marks 
SwissRanger, green arrow marks Bumblebee2.

Figure 3: Imperfect perception. Original bowl, and the point cloud obtained via vision (shown in 
simulation). Red points come from Bumblebee2, gray points from SwissRanger. Only some edges 
are picked up by the Bumblebee2, and neither the bowl surface or table is seen. The SwissRanger 
gives a much more complete bowl front face and table, but no other side of the bowl is seen. Inter-
estingly, the two cameras complement each other in this scenario; however, the perception of the 
bowl is still far from complete.

Figure 4: 2-D image-based classifier identi-
fying potential grasp points (depicted in red 
squares)5,6.
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grasped. This configuration shall be 
denoted as a “grasp.” A successful grasp 
is defined here to be where the object 
can be lifted up into the air (such that 
the table is not supporting it) without it 
falling out of the hand.
 We split this problem into 
two parts. We first find a set of likely 
candidate configurations that may 
achieve a good grasp, then use features 
of these candidates and a learnt model 
to score each of the candidates, and 
finally execute the highest scoring 
grasp. The first component has already 
been addressed by previous STAIR 
work on grasping5,6,7. Specifically, a 
2-D image-based classifier uses the 
images from both cameras to select a 
set of corresponding 3-D points that 
are likely to be good grasp points (see 
Fig. 4). Given a 3-D point, there are 
still many orientations at which the 
arm can reach that point (and very 
few result in successful grasps), hence 
orientations are uniformly sampled for 
each point. These point-orientation 
pairs are then converted to joint angles, 
giving the corresponding robot grasp 
configuration. This forms our candidate 
configuration set.
 The second component is 
inspired by the work of kamon, Flash, 
and Edelman as described in the 
background section, where features 
of grasps are extracted and used to 
determine the “quality” of a grasp. 
The motivation behind this is that 
while force computations on perceived 
objects do not perform well and are 
inefficient, there are local properties of 
a grasp that inform us whether grasping 
at that location will be successful. There 
are several advantages to using local 
information. First, the most important 
3-D region to consider for grasping is 
the region where the grasp will occur; 
little can be gained by considering 
the ends of a stick that we grasp in 
the middle. Second, while the vision 
data is incomplete, its distribution of 
incompleteness is very skewed; a bowl 
will have most of its front face perceived 
by the SwissRanger, but most of the 

back half would be missing. Hence we 
can get a more complete model when 
we grasp at the front face. Finally, 
there are usually much fewer points 
in the local region, which significantly 
speeds up computation. The previous 
work was limited to 2-D information, 
hence more sophisticated features, as 
described in the next section, will be 
computed using our 3-D local point 
cloud. A supervised learning algorithm 
will then be used to train a classifier 
based on these features, which can 
then be used to predict a score between 
0 and 1 of the quality of a candidate 
grasp.
 The described procedure for 
grasping an object is summarized in 
the algorithm in Table 1.8

Features
 Three main properties of 
grasping were considered. First, the 
grasp must be able to achieve good 
contact with the target object, otherwise 
the object may be entirely missed by 
the hand. Second, the grasp should be 
stable, so in particular an object should 
not be grasped at a tip or corner when 
that is unnecessary. Third, the grasp 
must be able to apply forces on the 
object effectively, which is dictated 

by the direction and orientation of the 
grasp; for example, consider grasping 
a long tube along its axis versus 
perpendicular to its axis. A total of 19 
features were developed under these 
three categories.
 The contact between the hand 
and the object can be approximated by 
presence of point-cloud points inside 
the hand. Intuitively, the more points 
within the volume of the hand, the 
bigger the grasping area and volume of 
the object, hence the less likely a miss 
will occur. Similarly, if there are very 

Figure 5: The cubes represent the local region. 
The red points within the local region denote the 
edge region.

Table 1: Algorithm for grasping an object
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1.   Acquire 2-D candidate grasp points set from camera images using classifier5,6,7

2.   Use camera depth information to find corresponding 3-D candidate grasp points set
3.   FOR each grasp point in 3-D candidate grasp points set DO
4. Sample orientations from 3-D orientation space
5. FOR each orientation sampled DO 
6.          Use arm inverse kinematics to generate configuration with hand center near the   
                        3-D grasp point and satisfying the 3-D orientation chosen.

7.          Select a finger configuration (sample spread and finger opening) that does not
                         result in arm and hand colliding with obstacles
8.          Add arm/hand configuration from 7 (if any) to candidate configuration set
9. END FOR
10.   END FOR
11.   FOR each configuration in candidate configuration set DO
12. Compute features using the configuration and its hand’s local point cloud
13. Score[grasp] := score from classifier given features from 12
14.   END FOR
15.   WHILE grasp not executed AND candidate configuration set not empty DO
16. grasp* := argmax Score[grasp]
17. Plan path to execute grasp* using Probabilistic Roadmap motion planner9

18. IF plan successful THEN execute plan
19. ELSE remove grasp* from candidate configuration set
20.   END WHIlE



few points within the hand, the grasp 
may likely fail because the points may 
just have been noise (where the hand 
will grasp air) or may have been a small 
tip of the object (where the hand should 
grasp some other part of the object). We 
therefore simply count the number of 
points within the local region, defined to 
be a sphere with 10cm radius centered 
at the hand center. Just counting this 
region however is insufficient, as an 
object may be near the hand but is not 
in the grasp (since the region is larger 
than the hand’s grasp). Hence the 
points in the actual grasp region, i.e., 
on the inside region of the fingers, are 
also counted. The last region that was 
counted is a special “edge” region, 
defined as all points in the local region 
not extending further than the fingertip’s 
reach (see Fig. 5). This region usually 
defines the edge of the object, hence 
the given name. Note that this feature 
has certain drawbacks, as small objects 
will naturally have fewer points but 
should not be undesirable to grasp; 
such subtleties are accounted for by the 
training set and the learning algorithm.
 Stability of a grasp depends on 
the distribution of the object within the 
hand, or in our case, the distribution 

of the point cloud. Ideally, about the 
center of the hand, the point cloud 
should be evenly distributed along all 
axes. The outward axis from the hand is 
accounted for by the previous feature; 
if not enough points are within the 
hand, especially within the edge region, 
the grasp will be marked as bad. The 
“horizontal” axis, defined to be the axis 
between the fingers (when the outer 
fingers are directly opposite the middle 
finger), is not too important. A skewed 
distribution along this axis means that 
when closing the fingers to grasp, the 
closer finger(s) will push the object 
towards the farther finger(s), which is 
not a problem. The final “vertical” axis, 
which is normal to the other two axes, 
needs to be accounted for. Denoting 
one side of this axis about the center 
as “above” and the other “below,” we 
desire that the number of points above 
and below the hand center to be near 
a 1:1 ratio (see Fig. 6). We therefore 
compute this feature by 

 

, which is the absolute difference 
between the ideal (where points above 
= points below) and actual distributions. 
We also consider a similar measure 
where we only count points strictly 
above and below the hand (not enclosed 
by the hand). These measures are also 
computed with both the local and edge 

regions to increase robustness towards 
different cases; for example, the second 
measure may be more useful when 
considering large objects. The previous 
feature category combined with this 
therefore account for grasp stability.
 Apart from being stable, it 
is more important that the forces of a 
grasp must be applied effectively on the 
object. Intuitively, an object should be 
grasped at narrow sides and not at wide 
sides, as at narrow places a tight closure 
on the object can be easily achieved, 
whereas at wide sides this is difficult (if 
the side is wider than the hand, then it 
is impossible). To capture this intuition, 
we consider the principal components 
of the local and edge regions. Using 
singular value decomposition (SVD), 
we obtain three orthonormal component 
directions ui with variances σi, with 
σ1 largest and σ3 smallest. The larger 
the variance, the more important the 
direction is in defining the region; for 
example, for a plate, u1 and u2 will 
lie on the face (with large σ1 and σ2), 
whereas u3 will be normal to the plate 
(small σ3) (see Fig. 7). If we consider 
the unit horizontal axis vector h (axis 
running between the fingers), which is 
the direction in which the fingers close, 
we want h to be parallel to directions 
with small variances, and orthogonal to 
those with large variances. We therefore 
compute the directional similarity    

Figure 6: Definition of being above and below 
the hand. Red points denote regions strictly 
above and below the hand (not enclosed in 
hand).

Figure 7: Example of principal component directions of plate. u1 (left), u2 (middle) lie on the plate, 
whereas u3 (right) is normal to the plate. Only this direction gives good grasps.
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for each component direction, which is 
large when ui and h are parallel. Hence 
we desire that s1 be 0 and s3 be 1. We 
therefore measure this by computing 
the difference between the directional 
similarity and its ideal value by  

Depending on how large σ2 is, it may 
or may not be desirable to grasp in the 
direction of u2. These features therefore 
capture whether the grasp configuration 
has a good orientation.
 The features from all three 
categories were computed for a training 
set of 300 grasps, consisting of an 
equal number of good and bad grasps 
on plates, bowls, and wooden blocks, 
and achieved an 85% average test set 
accuracy when using 10-fold cross 
validation.

Experimental Results
 We first considered grasping 
single objects from 13 novel classes 
(i.e., of different types from the training 
set) in a total of 150 experiments. These 
objects also differed significantly in 
size, shape, and appearance. In each 
trial, one object was placed randomly on 
a table in front of the robot. STAIR was 
able to achieve an overall grasp success 
rate of 76%, which is an improvement 
from the 70% achieved previously9. 
Moreover, the success rate was much 
higher at 86% for objects that were 
1.5-3 times the size of the hand.
 We also conducted grasping 
experiments in cluttered environments, 
which was the main objective of this 
project. In a total of 40 experiments, 
where more than 5 objects were placed 
randomly but close to each other, STAIR 
had to avoid hitting other objects and 
grasp a single object from the scenario. 
Although this was a significantly 
harder task in terms of perception, 
manipulation, and planning, STAIR 
had a success rate of 75%.
 The videos and results of the 
experiments are at: http://stair.stanford.

edu

Conclusion
 We presented a robust and 
efficient algorithm that, given a 2-D 
image and 3-D point cloud of the 
environment from STAIR’s vision 
system, can generate candidate grasp 
configurations and use local point cloud 
features to select a good grasp. The 
algorithm has been tested in simulation 
and in real-world experiments on 
STAIR, and has achieved significant 
improvement compared to previous 
systems, especially when grasping 
in cluttered environments. To further 
improve the algorithm, more features 
that describe general properties of 
grasps should be developed, and more 
grasp candidates should be searched 
and evaluated to increase the chances 
of finding and selecting an optimal 
grasp. In particular, instead of randomly 
sampling hand orientations uniformly 
from 3-D orientation space, better 
candidates can be found by applying 
heuristics to prune the search space. 
Eventually, we also hope to provide 
STAIR the sense of touch via force 
feedback, which would be extremely 
helpful in determining whether a secure 
grasp has been made yet. The challenge 
is to integrate all these components into 
a robust system without compromising 
for efficiency.
 
Acknowledgments
 More details of the algorithm 
and results can be found in Saxena, 
Wong, Quigley et al.6, Saxena, 
Driemeyer, and Ng7, and Saxena, Wong, 
and Ng8. This project would not have 
been possible without all members of 
the STAIR Perception-Manipulation 
team and their efforts to develop and 
expand the functionality of the STAIR 
robots. Special thanks also to Ashutosh 
Saxena and Professor Andrew Ng for 
providing guidance for this project.

References
Bicchi A, Kumar V. Robotic grasping 1. 

and contact: a review. IEEE Intl Conf on 
Robotics and Automation Proceedings 
2000; 1:348-353.
Morales A, Chinellato E, Sanz PJ et 2. 
al. Learning to predict grasp reliability 
for a multifinger robot hand by using 
visual features. Intl Conf on AI and Soft 
Computing 2004.
Chinellato E, Morales A, Fisher R 3. 
et al. Visual quality measures for 
characterizing planar robot grasps. 
IEEE Trans on Systems, Man, and 
Cybernetics, Part C: Applications and 
Reviews 2005; 35:30-41.
Kamon I, Flash T, Edelman S. Learning 4. 
to grasp using visual information. IEEE 
Intl Conf on Robots and Automation 
Proceedings 1994; 3:2470-2476.
Saxena A, Driemeyer J, Kearns J et 5. 
al. Robotic grasping of novel objects. 
Advances in Neural Info Processing 
Systems 2007; 19:1209-1216.
Saxena A, Wong L, Quigley M et al. A 6. 
vision-based system for grasping novel 
objects in cluttered environments. Intl 
Symposium of Robotics Research 
Proceedings 2007.
Saxena A, Driemeyer J, Ng AY. Robotic 7. 
grasping of novel objects using vision. 
Intl Journal of Robotics Research 2008; 
27(2):157-173.
Saxena A, Wong L, Ng AY. Learning 8. 
grasp strategies with partial shape 
information. Assoc for Advancement in 
AI Proceedings 2008.
Schwarzer F, Saha M, Latombe JC. 9. 
Adaptive dynamic collision checking for 
single and multiple articulated robots in 
complex environments. IEEE Trans on 
Robotics 2005; 21(3):338-353.

SURJ

69



lAWSON WONG is a junior and coterminal master’s student at Stanford University majoring in 
computer science (with honors), and specializes in artificial intelligence. He hopes to ultimately 
understand what intelligence is and how to algorithmically replicate it, and currently plans to pursue 
a PhD in machine learning. Before studying at Stanford, lawson spent his entire life in Hong kong, 
where he developed a passion for mathematics, physics, and logic that remains till today and occupies 
his time outside of computer science.  He thinks that undergraduate teaching and research are extremely 
valuable and enriching learning experiences, and he thanks Professor Andrew Ng and Ashutosh Saxena 
for their guidance on the STAIR project. More information about lawson can be found at http://www.
stanford.edu/~lsw/.

70


