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Abstract
In this paper, we describe our methodologies and empirical evaluations for the shot 
boundary detection and automatic video search tasks at TRECVID 2006. For the shot 
boundary detection task, we consider a simple and efficient solution. Our approach first 
applies adaptive thresholding on color histogram differences between frames to select 
candidates for shot boundaries, then runs several tests to dismiss less likely ones. These 
tests proved to be too finely tuned to the TRECVID 2005 shot boundary detection task 
data, producing mediocre results on the 2006 data set. For the video search task, we 
propose a novel multimodal and multilevel ranking scheme for video ranking. Different 
from traditional ranking schemes, most of them are based on supervised approaches, our 
approach suggests a semi-supervised ranking method which can exploit both labeled and 
unlabeled data effectively for the ranking task. At the meantime, our multilevel approach 
makes the semi-supervised ranking method efficient for large-scale search task in practice. 
We will evaluate the empirical performance of our approaches and give comments of our 
solution. 

 

1.  Introduction 
In TRECVID 2006, our group (Chinese University of Hong Kong) participated in two tasks, i.e. 
shot boundary detection and automatic video search. For the shot boundary detection task, a 
simple and efficient method is considered in this year’s solution. The main idea is based on 
adaptive thresholding on color histogram differences between frames. Our approach is simply based on 
color histogram features, varying the combination of tests and parameters used in the post-
detection stage to remove likely false positives. Though these methods produced satisfactory 
results on the TRECVID 2005 data, there was a significant drop in the performance on this 
year’s data.  
 
For the automatic video search task, we proposed a novel multimodal and multilevel ranking 
solution in order to rank video shots effectively and efficiently in the video search task. The main 
idea is to model the video data structure and search task by graphical models. Based on the 
graphical models, we can fuse the information from multiple modalities effectively over the 
graphs in the search task. We then address the common challenge in video retrieval task, i.e., 
small sample learning problem. To attack this challenge, we formulate the ranking task by semi-
supervised learning in order to exploit both labeled and unlabeled data. Since semi-supervised 
ranking method may not computational prohibited for large-scale problems, we then propose a 
multilevel ranking solution, which makes the semi-supervised ranking method efficient for large-
scale retrieval task.  



 
The rest of this paper is organized as follows. Section 2 presents our methodology and empirical 
evaluation in the shot boundary detection task. Section 3 gives our approach for automatic video 
search task and also the empirical evaluations. Section 4 concludes our work.  

2.   Shot Boundary Detection 
This section describes the shot boundary detection tools that we applied. Difference measures, 
adaptive thresholding candidate selection, and false positive detection methods are discussed. 
 

2.1 Difference Measures 
To produce the color histograms, we tried using both the RGB and HSV color spaces. This 
choice however did not appear to be significant from testing results. The gray-level histogram 
was eventually used as it is relatively fast and produced most of the better results. 
 
We experimented with Euclidean distance, color moment, and Earth Mover’s Distance (EMD) 
measures to calculate color differences between frames. The former two performed rather poorly 
as they were prone to being under-sensitive to true positives but over-sensitive to false-positives. 
As a result, they achieved average recall and precision rates of ~0.5 when tested on the 2005 data.  
The EMD method, however, was able to produce better results, as it was sensitive to most  
transition-like changes. Though it also produced more noise than the other two measures, this 
was not problematic when adaptive thresholding was applied. 

2.2 Adaptive Thresholding 
False positive cases which involve camera/object movement or flashes often give unsmooth, 
noisy EMD data. To distinguish such cases from the ‘cleaner’ true transitions, we used adaptive 
thresholding, taking into account the mean and standard deviation of EMD values in the 
neighborhood of peaks [1]. For every 11-frame window, the peak EMD value is taken to be a 
shot boundary candidate, and the following threshold is applied: 

  ),max(*),max(* rlsdrlmeanadaptive TTT σσµµ += ,    (1) 

where Tmean and Tsd are threshold multiplying factors. Through experimentation, it is optimal for 
Tmean and Tsd to be greater than 2 and 5 respectively; any larger values only adjust the recall and 
precision rates slightly with no overall improvement. In noisy cases, both the mean and standard 
deviation tend to be rather high, and it is unlikely that a random peak in such cases can exceed 
this threshold. However, true cut EMD values tend to be much higher than this threshold, and so 
adaptive thresholding works very well for short transitions, reaching recall and precision rates of 
about 0.9 on the TRECVID2005 data. 
 
For long gradual transitions (GTs), however, peak values tend to be rather low, and neighboring 
values are also rather high, which make them appear like false positive noisy cases. Very low 
threshold factors had to be used to select candidates, greatly reducing the power of adaptive 
thresholding. We therefore had to use another collection of techniques to remove less likely long 
gradual candidates from the results pool. 
 
 



 

 
2.2 False Positive Detection 
A distinguishing characteristic between cuts, long GTs, and false positives is the smoothness of 
their EMD values across time. Cuts appear similar to delta functions, with almost zero values 
around a very high peak. Long GTs, especially those that change regularly (dissolves, wipes) 
have smooth gradients. Finally, false positives, mainly comprising of random motion or object 
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Figure 1. Shot boundary detection algorithm 



appearances, have fluctuating values, often creating large jumps. The gradient around a peak can 
therefore be used to distinguish the transition type, dismissing it in the case of false positive 
behavior. Since cuts have already been treated by adaptive thresholding, it is possible to use the 
gradient solely to determine whether a candidate is more likely to be a gradual transition or false 
positive based on the gradient on both sides of the peak value. In fact, few GTs are lost this way, 
while a significant number of false positives are removed. However, this still does not exclude a 
majority of more structured false positives such as rapid camera rotation. 
 
 
Another basic check that proved useful is to calculate the 
difference between two frames before and after the 
candidate transition. Assuming that the boundaries of the 
transition are determined correctly, the frames at each 
boundary should have a relatively large difference value. 
Since there are only very few candidates compared to 
frames in the video, more complex tests can be  
applied without consuming too much overall time. Both 
the EMD and Euclidean distance measures for color 
histogram difference are used for cut candidates; as for 
GT candidates, the EMD and edge histogram are used. As 
these methods involve additional features from the videos, 
a second pass is required. Although these false positive 
detection methods also eliminated some true positives, in 
particular the more color-invariant candidates, on average 
only one true positive is lost for every three false 
negatives eliminated. 
 

2.3 Overall Algorithm 
Our shot boundary detection algorithm is outlined in Figure 1 below. As described previously, 
candidates are first selected using adaptive thresholding. In the case of a GT candidate, the 
gradients of the EMD values around its peak are calculated to find the beginning and end of shot. 
Systematic checks are finally applied to the candidates to filter out likely false positives. 
 

2.4 Experimental Results 
We submitted 10 runs, each applying the above algorithm with slightly different parameters for 
adaptive thresholding and GT gradient methods. The evaluation result is listed in Table 1. The 
odd and even-numbered groups differ significantly; however, within each group the results vary 
very little. The odd/even distinction is caused by the GT gradient threshold; even-numbered runs 
used a lower threshold than odd-numbered ones, hence allowing more GT candidates and 
creating a significantly higher GT/frame recall, while also pulling down the GT/frame precision. 
In contrast, changing the adaptive thresholding parameters, which creates differences within the 
groups, had little effect as seen by the insignificant differences within the groups. This was 
expected as all values were above the minimal values of Tmean = 2, Tsd = 5 (see Section 2.2). 
 
 

Figure 2. TRECVID 2006 Results 



Table 1. Our Shot Boundary Detection Results at TRECVID 2006 
Run Total Cuts Graduals Frame Accuracy 

 Rcl Prc F1 Rcl Prc F1 Rcl Prc F1 Rcl Prc F1 
tv6cuhk1 0.648 0.700 0.673 0.659 0.767 0.709 0.620 0.560 0.588 0.697 0.787 0.739 
tv6cuhk2 0.627 0.684 0.654 0.695 0.686 0.690 0.444 0.677 0.536 0.586 0.909 0.713 
tv6cuhk3 0.647 0.715 0.679 0.667 0.778 0.718 0.591 0.572 0.581 0.695 0.793 0.741 
tv6cuhk4 0.649 0.659 0.654 0.713 0.657 0.684 0.476 0.668 0.556 0.586 0.901 0.710 
tv6cuhk5 0.655 0.693 0.673 0.660 0.760 0.706 0.643 0.557 0.597 0.699 0.784 0.739 
tv6cuhk6 0.634 0.678 0.655 0.700 0.677 0.688 0.455 0.679 0.545 0.585 0.907 0.711 
tv6cuhk7 0.657 0.709 0.682 0.675 0.772 0.720 0.608 0.569 0.588 0.696 0.792 0.741 
tv6cuhk8 0.631 0.694 0.661 0.705 0.697 0.701 0.434 0.677 0.529 0.584 0.915 0.713 
tv6cuhk9 0.660 0.685 0.672 0.668 0.755 0.709 0.640 0.544 0.588 0.694 0.781 0.735 
tv6cuhk10 0.638 0.672 0.655 0.708 0.671 0.689 0.451 0.676 0.541 0.573 0.898 0.700 
 
Overall, the results dropped by about 0.1 for both recall and precision compared to the tests run 
on the 2005 training data. This reflects that some major sources of error existed in the 2006 data 
that were not anticipated from training results. Cuts suffered the most, dropping from a 0.9 recall 
and precision level mainly due to a one-frame shift on many two-frame short GTs, and for each 
such error created both an insertion and deletion. Almost a half of the cut errors arose from this, 
and a post-evaluation run which only corrected this boosted both the recall and precision rates 
well over the 0.8 mark. Another major source of errors is the confusion between cuts and GTs, 
either by concatenating several close cuts and short GTs together, or by splitting a long GT into 
several cuts. These occur when there is rapid motion between frequent short transitions and when 
there is unsmooth changing in a long GT respectively. Like the cut errors, each of these problems 
induce multiple insertions and deletions, so although they do not occur as regularly, about one 
quarter of all errors arise due to such transition type confusion. 
 
Apart from algorithmic errors listed above, the other major source of error arises from the choice 
of difference measure used to determine whether there is a shot transition between two frames. 
For our experiments, we used the EMD between frame color histograms almost as the sole 
feature, which is quite limited despite being relatively efficient. While color change is a good 
indication of scene changes, it is particularly prone to creating false positives in shots with rapid 
motion (including people walking by directly in front of the camera) or animated logos (which 
may occur many times in a television news clip); on the other hand, only detecting color changes 
also misses out a significant number of scene transitions with little color change, such as where 
the background changes very slightly. An expansion of techniques is necessary to detect such 
cases, either by including more specific tools such as logo detectors, or by changing the approach 
entirely such as using SVM classification. We would like to attempt these other techniques in the 
future, while also developing other novel approaches. 

3.   Automatic Video Search 
3.1 Overview of Video Search Tasks 

In the video search tasks, we focus our attention on the automatic search task without human 
interactions or manual information. This is the most challenging and fundamental task in video 
search tasks. Specifically, there are several well-known difficulties in video search tasks.  

First of all, the video search task is a multimodal search problem, i.e., a task of combining 
information from multiple resources for ranking video shots given some query topic. In 



TRECVID, query of each search task usually contains both text and visual examples. This 
multimodal ranking problem is a long-term challenging issue in video search tasks.  

Another problem in video search tasks is the small sample learning problem. Typically, only a 
few visual examples are provided in each query topic. This poses a challenging issue of learning 
ranking function with limited number of examples in the search tasks. Many ranking approaches 
based on machine learning algorithms may suffer significantly from the insufficient training 
examples.  

Moreover, a video search task can be computationally intensive since the dataset is usually of 
large-scale. This is challenging for a real-world video search application, particularly if 
complicated machine learning algorithms are employed in the video ranking solution. It is 
important to develop an efficient solution for large-scale problems. In addition to these 
difficulties, other common issues, such as the short query problem, noisy text data, and semantic 
gaps also pose a lot of challenges for an automatic video search task.  

To tackle these challenges in a unified solution, we proposed a multimodal and multilevel 
ranking framework for video search tasks. The main idea is to solve the multimodal ranking 
problem by graph based ranking methodology, which is able to fuse information from multiple 
resources smoothly in a probabilistic scheme. Further, to tackle the small sample learning 
problem, we suggested a semi-supervised ranking method using semi-supervised learning 
techniques for learning ranking functions on both labeled and unlabeled data. To make our 
solution efficient for large-scale problems, we design the ranking scheme using a multilevel 
ranking solution. We will explain details of our solution as follows. 

3.2 Multimodal and Multilevel Framework for Video Search  

The multimodal and multilevel ranking framework is shown in Fig. 3. Basically, our framework 
comprises four different ranking stages: 

(1) Text-based Ranking Stage 

The text based retrieval approaches are usually more effective than visual based approaches from 
past experiences in TRECVID. Therefore, we consider the text-based ranking solution in the first 
ranking stage. For a text based ranking task, there are two challenging issues. One is the noisy 
texts, which are usually obtained from automatic speech recognition or OCR techniques. The 
other is the short query problem. To address these issues, pseudo relevance feedback (PRF) 
techniques are suggested in our approach to alleviate these challenges. 

 (2) Nearest Neighbour Reranking Stage 

This is the most efficient way of combing visual information for multimodal video ranking tasks. 
For textual modality, we employ the normalized ranking scores from the text based ranking stage 
for computing the ranking scores. For visual modality, in which data are often given in vector 
space, we measure Euclidean distances between normalized training data examples and query 
data examples for similarity measures. Other more general Mahalanobis metrics may also be 
considered for better performance.  

(3) Supervised Large Margin Reranking Stage 

The third ranking stage is based on the supervised large margin reranking method, in which large 
margin learning methods are used for learning the ranking functions. In our current stage, we 
employ support vector machines (SVM) [2], the most well-known large-margin learning method 



with state-of-the-art performance, to learn the ranking function with visual examples in this stage.  
SVM usually is a binary classification method, which requires training data from both positive 
and negative classes. However, for the search task, only positive visual examples are provided 
initially. To address this problem, we consider the negative example from the list of most 
irrelevant examples ranked from the previous stage by NN ranking, which is also known as 
negative pseudo-relevance feedback studied in the multimedia community [5]. 

(4) Semi-Supervised Reranking Stage 

The last ranking approach is the semi-supervised reranking method, which learns the ranking 
functions in exploiting both labeled and unlabeled data examples. The semi-supervised ranking 
approach is to attack the small sample learning problem, which is challenging for many learning 
algorithms. The semi-supervised ranking method, exploiting the unlabeled data information, can 
be more effective than large margin methods, although it may involve more computational cost. 
Since we consider only a small portion of training examples in the semi-supervised reranking 
stage, the semi-supervised ranking approach on a small-scale problem can still be accomplished 
efficiently based on our multilevel ranking solution.  

In summary, we propose the novel multilevel ranking framework to learn multimodal ranking 
functions efficiently based on four different ranking stages using different learning strategies. In 
the first stage, the text-based ranking method to obtain a set of top M ranked video stories, which 
are associated with a set of N1 video shots. In the second stage, the NN ranking method reranks 
the N1 shots and outputs top N2 most relevant video shots. In the third stage, the SVM ranking 
method reranks the N2 shots and outputs top N3 most relevant video shots. In the last stage, the 
SSR ranking method reranks top N4 shots of SVM output results. Finally, the multilevel ranking 
framework returns top k shots for performance evaluation. It is clear that N1>N2>N3>N4. 

 

 
Figure 3. A Multimodal and Multilevel Ranking Framework 



3.3 Story Segmentation and Textual Processing  

Texts were extracted from the ASR and MT procedures. It is a difficult issue for relating the text 
information to specific video shots. We are aware the fact that shots in a same video story are 
usually more likely to be relevant. Therefore, we consider to segment the video text by relating 
the text information to video shots in a story level, i.e., video shots in a same story share the 
same text information. To this purpose, we consider the automatic video story segmentation 
method [6]to detect the boundaries of video stories. 

Once the text stories are obtained, all text stories and query texts are parsed by a text parser with 
a standard list of stop words. The Okapi BM-25 formula is used as the retrieval model together 
with pseudo-relevance feedback (PRF) for text search. In our implementation, the Lemur toolkit 
was adopted for textual processing and indexing in our experiment [7]. 

3.4 Visual Feature Representation  
Three kinds of visual features are considered in our approach: color, shape and texture. For color, 
we employed Grid Color Moment (GCM). Each image is partitioned into 3*3 grids, in which 
three types of color moments are extracted for each grid. Therefore, an 81-dimensional color 
moment is adopted for color features. 
 
For shape, we used edge direction histogram. A Canny edge detector is used to get the edge 
image and then the edge direction histogram is computed. Each histogram is quantized into 36 
bins of 10 degrees each. An additional bin is used to count the number of pixels without edge 
information. Hence, a 37-dimensional edge direction histogram is used for shape features.  
 
For texture, we studied Gabor feature. Each image is scaled to 64*64. Gabor wavelet 
transformation is applied on the scaled image with 5 scale levels and 8 orientations, which results 
in 40 subimages. For each subimage, three moments are computed: mean, variance, and 
skewness. Thus, a 120-dimensional feature vector is adopted for texture features. 
 
In total, a 238-dimensional feature vector is employed to represent each key frame of video shots. 

3.4 Experimental Results  

In the empirical evaluations, we compare our multimodal and multilevel ranking (MMML) 
solution with other two popular approaches, Nearest Neighbour (NN) search and Support Vector 
Machines (SVM).  In our official submission list, three submissions with different settings of 
MMML solutions were submitted. These approaches adopted some different scale sizes in 
different stages. Specifically, the MMML1 approach is based on N1=10000, N2=4000 and N3=200. 
The MMML2 approach is based on N1=10000, N2=6000 and N3=200. The MMML3 approach is 
based on N1=20000, N2=10000 and N3=200. All combination coefficients of multiple modalities 
were simply fixed to average constants.  

Table 2 shows the official results evaluated by TRECVID. First of all, we see that the MAP 
result of the text baseline is quite low compared with previous results reported in TRECVID. Our 
similar approach applied in TRECVID 2005 achieved much better results. We explain this 
reason is that due to the quality of text transcripts and video story segmentation algorithms. 
Noisy text data is likely to influence the quality of retrieval performance particularly for ill-
defined video data. This may show that TRECVID 2006 data is noisier than the previous years. 



Another important reason is the worse performance of story segmentation algorithm. We adopted 
the segmentation results provided by Columbia University, which employed some clustering 
algorithms on the video story segmentation task. Since the TRECVID 2006 data is not well-
structure, it may importantly influence the segmentation performance.  

Table 2. Experimental Results of Automatic Video Search at TRECVID 2006 
 

Methods MAP TOP5 TOP10 TOP15 TOP20 TOP30 

Text baseline 0.0284 0.1333 0.1708 0.1444 0.1292 0.1153 

Text + NN 0.0377 0.2000 0.2000 0.1972 0.1750 0.1514 

Text + SVM 0.0380 0.1917 0.1875 0.1750 0.1625 0.1486 

MMML1 0.0387 0.1833 0.2042 0.1833 0.1771 0.1611 

MMML2 0.0390 0.1917 0.2083 0.1861 0.1833 0.1667 

MMML3 0.0406 0.2083 0.2042 0.1889 0.1708 0.1583 

 
For a comparison of several solutions in our approaches, we can see that the NN approach of 
combining visual information is significant to improve the text baseline method. This shows that 
the visual features are effective. By examining the SVM performance, we found it slightly 
improve the performance of NN search. This result was not significant and a bit surprising from 
our expectation (much better results are achieved in our test on TRECVID 2005). The main 
reason may be the difference of kernel parameter setting. By examining the MMML solutions 
with NN search and SVM approach, we found that our MMML solutions achieved better results 
in all cases. When the number of examples in the first stage is larger, e.g., MMML3 , the 
improvement is quite significant. This shows that our MMML is effective for improving the 
performance of traditional approaches by combining the unlabeled data in the learning tasks. In 
fact, we also tested other situations with better parameter validation schemes, better results were 
achieved in our empirical tests after the official evaluations.  

Figure 4 and Figure 5 show the results of comparisons of our approaches to others’ results. From 
the results, we can see that our solution achieved similar performance compared with median 
results. In the 178 query topic, the performance is worse than the median result. But in 195and 
196 cases, our approaches were significantly better than the median results.  

3.5 Discussions  
We proposed a novel multimodal and multilevel ranking solution for video search tasks. Our 
solution is better than traditional NN search and SVM approaches, which shows that our method 
is effective. We also found the dataset of TRECVID 2006 is quite different from the TRECVID 
2005. Our text baseline approach did not achieve good results compared with our empirical 
results in TRECVID 2005. We explain the reason may be the ill-defined text data and 
problematic video story segmentation algorithms. In future work, we can improve these 
problems so as to improve the overall performance of our solution. We believe once better text 



retrieval performance is achieved, our MMML solution is able to achieve much better results 
compared with other existing results.  

 

 
Figure 4. Experimental Result of Text Baseline Method in Official Evaluation 

 

Figure 5. Experimental Result of Multimodal and Multilevel Ranking Method in Official Evaluation 

4.   Conclusion 
We summarized our participation experience at TRECVID 2006 on the shot boundary detection 
and automatic video search tasks. For the shot boundary detection, we consider a simple and 
efficient approach based on adaptive threshoding methods. While our approach achieved good 
results in TRECVID 2005, the approach produce median results in the TRECVID 2006. In future, 
we can improve the solution by using more effective features and better learning methods. For 
the video search task, we proposed a novel multimodal and multilevel ranking solution for video 
search tasks. Different from traditional supervised learning methods in video ranking problems, 
our semi-supervised ranking method is effective to exploit both labeled and unlabeled data in the 
ranking task. The empirical results showed that our method is better than traditional nearest 
neighbor search and support vector machines methods. We also addressed some reasons of 
explaining the factors impacting the performance of our overall solution and indicate the 
directions to improve our work in future. 
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