
Introduction
Reverse time migration (RTM) is a popular seismic imaging technique. Unfortunately, the computational
cost of RTM scales linearly with the number of shots used in the survey. This poses a considerable
challenge for modern large-scale surveys where the number of shots can run into hundreds of thousands.
One approach to mitigate this challenge is to first compute a smaller number of linear combinations (or
encodings) of shot records, and then to perform RTM on the blended shot records. There are numerous
ways to choose the shot encoding operator; see for example Romero et al. (2000); Godwin and Sava
(2011); Schmidt et al. (2013). Although the shot-encoding approach can reduce RTM’s cost significantly,
the final image inevitably contains some level of cross-talk that is introduced by the encoding process.

Alternatively, decimation of the shots avoids this cross-talk issue. Indeed, Godwin and Sava (2011)
shows that simple decimation can be an effective method for reducing the number of shots while still
obtaining an acceptable quality image. However, one could easily conceive of scenarios where uniform
decimation is not the best strategy. For instance, consider a velocity model where most of the “interest-
ing” subsurface features are localized in a small region in the domain of interest. In this scenario, only a
small subset of shot location choices result in proper illumination of the interesting features, and a naïve
decimation could potentially miss this set of important shot locations.

In this paper, we introduce two adaptive, data-driven strategies for shot selection in RTM. Informally,
given a budget parameter B, our high-level goal is to deduce the optimal subset of at most B shot lo-
cations that will produce an acceptable image of a given (user-specified) region in the subsurface. This
problem is combinatorial and computationally intractable, and hence we propose two tractable heuristics
based on greedy optimization techniques. We report the results of several numerical simulations on the
SEG-EAGE Salt Model and demonstrate improvement over conventional decimation in terms of image
quality, while incurring only a small overhead in terms of computation. Therefore, our method can be
beneficial for a host of shot-based subsurface imaging techniques, e.g. full waveform inversion.

Theory and Methods
At a high level, a single RTM experiment involves three steps: (i) simulate a forward wave propagation
to obtain the source wavefield; (ii) use seismic data and simulate a backward wave propagation to obtain
the receiver wavefield; and (iii) apply an imaging condition (e.g., by correlating source and receiver
wavefields), and stack across time-steps to obtain an image. The final image is estimated by averaging
across multiple RTM experiments corresponding to different shots. Formally, denote the ith source and
receiver wavefields as WS(x,y,z, t, i) and WR(x,y,z, t, i). Then, the standard RTM imaging condition
(Kaelin and Guitton (2006)) is

A(x,y,z) =
S

∑
i=1

T

∑
t=1

WS(x,y,z, t, i)WR(x,y,z, t, i) . (1)

The above computational process can become expensive for large subsurface models with many shots,
so we desire to obtain an image of comparable quality with fewer shots. Suppose that we are given
a budget B of shot migrations that we are allowed to perform. As discussed above, budget-constrained
imaging approaches include shot encoding and uniform/random decimation. However, these approaches
are oblivious to the input velocity model. In contrast, we propose two new approaches for data-adaptive
shot selection: (i) embedding with coverage maximization, and (ii) subsampling with sparse recovery.

Embedding approach
Our first approach is inspired by the subsurface embedding idea discussed in Bear et al. (2000); Liu et al.
(2005). Overall, this approach can be described as a three-stage procedure.

1. Embedded shot migration: In the first stage, we identify an “interesting” region Ω in the velocity
model, embed a small number of virtual shots, j = 1, . . . ,J (where J is a small fixed number)
distributed within the region Ω, and run a forward modeling with these embedded shots to obtain
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corresponding virtual wavefields W̃S(x,y,z, t, j). Using these virtual wavefields, we calculate the
surface energy profile (similar to illumination maps) f : X → R+:

f (x,y) =
J

∑
j=1

T

∑
t=1

W̃(x,y,0, t, j)2 .

2. Shot selection via submodular optimization: The surface energy profile is an indication of the
distribution of energy observed at the surface that would emanate from the region of interest.
Therefore, it makes sense to focus on the shots on the surface which correspond to the peaks of
the surface energy profile. The naïve approach is to select the locations of the B largest coefficients
in f (x,y). However, this may not be the best choice; typically, for small values of B this provides
a set of B shot locations that are spatially coherent. However, each shot possesses a certain range
of “coverage” and there is not much benefit from selecting multiple shots with similar coverage.
Instead, our goal is to impose some amount of diversity in our shot selection.
To achieve this goal, we model the selection problem as a submodular coverage maximization
problem. Let w denote the coverage parameter (i.e., higher w denotes a larger area of coverage.)
We define the coverage profile g : X → R+ and its extension to sets of shot locations as follows:

g(x,y) = ∑
‖(x′,y′)−(x,y)‖2≤w

f (x′,y′) . g(S ) = ∑
‖(x′,y′)−(x,y)‖2≤w
for some (x,y)∈S

f (x′,y′) .

The goal is to maximize g(S ), subject to the budget constraint |S | ≤ B. The problem is known to
be NP-hard, i.e. theoretical intractable, but a greedy algorithm that iteratively picks the next-best
shot achieves an (essentially tight) approximation ratio of 1−1/e.

3. Migration: Once we have picked the set of B shot locations, we perform normal RTM using the
set of chosen locations S and obtain the final stacked image using Equation 1.

Subsampling approach
Our second approach is based on the idea of sparse recovery, and also follows three stages.

1. Low-resolution RTM: We generate a low-resolution version of the velocity model by downsam-
pling the spatial and temporal dimensions by a factor of α . Then, we run a low-resolution migra-
tion to obtain coarse versions of the source and receiver wavefields Wlo

S (x,y,z, t, j),Wlo
R (x,y,z, t, j).

We then correlate the wavefields to obtain a low-resolution image corresponding to each shot
j = 1,2, . . . ,S, and stack these images to obtain a final low-resolution reflectivity estimate:

Alo
i (x,y,z) =

T

∑
t=1

Wlo
S (x,y,z, t, j)Wlo

R (x,y,z, t, j) , Alo(x,y,z) =
S

∑
i=1

Alo
i (x,y,z) .

Computing these low-resolution estimates can be performed in a fraction α3 (for 2D with equal
subsampling factor per temporal and spatial dimension) of the time taken to perform normal RTM.
Therefore, for small values of α (say, 0.25) this can be a significant speedup.

2. Shot selection via sparse recovery: For a given spatial region of interest Ω and a budget B, our
aim is to identify the B shots that best approximate AΩ, the final high-resolution image restricted
to the region Ω. However, we do not have access to the final image, and therefore we use the
low-resolution version as a proxy instead. Let vec denote the vectorization operator. Let y :=
vec(Alo(x,y,z)) where (x,y,z)∈Ω and let A= [a1, . . . ,aS] where ai = vec(Alo

i (x,y,z)) and (x,y,z)∈
Ω. Then our problem reduces to finding the best linear combination of at most B columns of A
that is closest to y. This can be posed as a sparse recovery problem:

min‖y−Ab‖2 subject to ‖b‖0 ≤ B . (2)

This problem is again NP-hard in general. However, there are numerous heuristics to solve this
problem very efficiently. One popular approach is to perform L1-relaxation, followed by a stan-
dard convex optimization method, e.g., the algorithm of van den Berg and Friedlander (2007).
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Another approach is to use a greedy algorithm such as Orthogonal Matching Pursuit (OMP), dis-
cussed in Pati et al. (1993). We report results using both of these approaches. Finally, we obtain a
sparse vector b̄ whose B nonzeros correspond to the locations of the most informative shots.

3. Migration: Once we pick the set of B shot locations l1, l2, . . . , lB, we perform normal (full resolu-
tion) RTM using the set of chosen locations and obtain the final stacked image.

Examples
We perform several simulation experiments using the 2D SEG-EAGE salt model (of size 201× 676),
displayed in Figure 1(a). Our goal is to reliably image the rectangular region around the feature marked
with J = 6 red dots (the dot locations can be interactively selected by the user and are used in the
embedding approach only). Figure 1(b) shows the image formed by running RTM with a shot placed at
every surface pixel location. This serves at the baseline image for numerical error calculation purposes.
Figure 1(c) displays the image formed by running decimated RTM with B= 12 equispaced surface shots.

We now report simulation results using our proposed embedding approach. Figure 1(d) shows the re-
sulting image for B = 12. The computational cost of this method includes J forward modelings and B
migrations. We repeat the simulation experiment on the left sloping feature using the subsampling ap-
proach. Figure 1(e) shows the resulting image with B = 12 where the shot locations have been picked by
solving Equation 2 using L1-minimization and picking the B largest coefficient locations. On the other
hand, Figure 1(f) shows the resulting image for B = 12 where the shot locations have been selected
using OMP. In all cases, our methods are able to reliably identify the features using only a small number
of selected shots. Both the subsampled-L1 and subsampled-OMP costs are on the order of B+α4 · S
migrations, where α is the subsampling factor and S is the total number of shots. In this case we have
α = 1/4 and S = 676, which gives a total cost of roughly 15 full-resolution migrations.

We provide quantitative comparisons of the different methods in Figure 2. Here, we plot the normalized
mean square error (measured over the area of interest) with respect to the baseline RTM image using the
different methods for a varying shot budget B. Our experiments suggests that data-driven migration can
be an appealing alternative to (oblivious) decimation.

Conclusions
RTM, and by extension other shot-based techniques, is a very costly method that will become even
more expensive with the introduction of complex physics, e.g. Orthorhombic media. Mitigation of the
computational cost is a key endeavour for this community. In this work, we introduced three approaches
that achieved such a goal without hampering the geophysical quality of the results. In fact, the results in
the examples section show that our approach can recover the image with good accuracy while migrating
only half (or even less) the number of shots needed by the decimation approach.
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(a) Velocity model (b) Baseline RTM Image

(c) Decimation, B = 12 (d) Embedded, B = 12

(e) Subsampled-L1, B = 12 (f) Subsampled-OMP, B = 12

Figure 1 Example results. Subfigures (c) to (f) show the results of the four shot selection methods on the
velocity model in subfigure (a). Subfigure (b) is the “ground truth” image obtained by running RTM with
a large number of shots (S = 676). The red dots in subfigure (a) indicate the location of the subsurface
shots used for the embedding approach. The red rectangles show the region of interest Ω which defines
the objective function in the optimization procedures Subsampled-L1 and Subsampled-OMP.
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Figure 2 Approximation errors for varying shot
budgets. The approximation errors are computed
on the region of interest (red rectangle in Figure
1) only. Our proposed methods (Subsampled-L1,
Subsampled-OMP, and Embedded) give more ac-
curate results for all values of the shot budget B.
Subsampled-OMP and Embedded perform best,
with Subsampled-OMP demonstrating somewhat
more robust behavior. In order to match the per-
formance of Subsampled-OMP, Decimated needs
two to three times as many shots.
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