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ABSTRACT

Speaker identification is one of the main tasks in speech process-
ing. In addition to identification accuracy, large-scale applications
of speaker identification give rise to another challenge: fast search
in the database of speakers. In this paper, we propose a system based
on i-vectors, a current approach for speaker identification, and local-
ity sensitive hashing, an algorithm for fast nearest neighbor search
in high dimensions. The connection between the two techniques is
the cosine distance: on the one hand, we use the cosine distance to
compare i-vectors, on the other hand, locality sensitive hashing al-
lows us to quickly approximate the cosine distance in our retrieval
procedure. We evaluate our approach on a realistic data set from
YouTube with about 1,000 speakers. The results show that our al-
gorithm is approximately one to two orders of magnitude faster than
a linear search while maintaining the identification accuracy of an
i-vector-based system.

Index Terms— speaker identification, i-vectors, locality sensi-
tive hashing, kd-tree, indexing

1. INTRODUCTION

Speaker identification is one of the core problems in speech pro-
cessing and acoustic modeling. Applications of speaker identifica-
tion include authentication in security-critical systems, personalized
speech recognition and searching for speakers in large corpora [1].
Due to the increasing amount of data – especially in web-scale appli-
cations – fast processing of speech data is becoming increasingly im-
portant. While the audio corpus can usually be pre-processed offline
and in parallel, the retrieval procedure directly impacts user latency
and needs to be executed as quickly as possible. In this paper, we
study the problem of fast, text-independent speaker identification in
large corpora. Our focus is on maintaining good identification per-
formance while significantly increasing the speed of retrieval. In
order to achieve this goal, we combine an i-vector-based speaker
identification system with locality sensitive hashing (LSH) [2, 3], a
powerful tool for approximate nearest neighbor search in high di-
mensions.

In this work, we are particularly interested in searching YouTube
videos for a given speaker. YouTube is a prime example for the
challenges of fast retrieval from a large data set: per day, about 16
years of video are currently being uploaded to YouTube [4]. Even
if only a small fraction is human speech, the amount of data to be
processed for a single query is still tremendous.

We show that our LSH-based retrieval approach is around 30×
faster than a standard linear search on a realistic data set from
YouTube with around 1,000 speakers. At the same time, the identifi-
cation accuracy is still within 95% of the more expensive algorithm.
Since we use LSH to approximate the cosine distance of i-vectors,
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our approach also has provable performance guarantees. Further-
more, there are implementations of LSH-based similarity search for
data sets with more than one billion items [5]. Hence our approach
promises excellent scalability for large-scale data.

2. BACKGROUND

2.1. Speaker identification with i-vectors

Robustly recognizing a speaker in spite of large inter-session vari-
ability, such as background noise or different communication chan-
nels, is one of the main limitations for speaker identification sys-
tems. In recent years, this challenge has been addressed with the
Factor Analysis (FA) paradigm, which aims to express the main “fac-
tors” contributing to the observed variability in a compact way. Ini-
tial studies in this direction led to the Join Factor Analysis (JFA)
formulation [6], where the acoustic space is divided into different
subspaces. These subspaces independently model factors associ-
ated with the session variability and factors contributing to the inter-
speaker variability, i.e., a speaker corresponds to a vector in a low-
dimensional subspace.

The JFA model evolved into the Total Variability Model (TVM)
[7], where all sources of variability (both speaker and session) are
modeled together in a single low-dimensional space. In the TVM
approach, the low-dimensional vector of latent factors for a given
utterance is called the i-vector, and i-vectors are considered suffi-
cient to represent the differences between various utterances. Now,
speaker information and undesirable session effects are separated en-
tirely in the i-vector domain. This separation step is typically carried
out via classical Linear Discriminant Analysis (LDA) and / or Within
Class Covariance Normalization (WCCN) [8]. The cosine distance
is typically used for the final comparison of a speaker reference i-
vector with an utterance i-vector [7]. Hereafter, we refer to the Total
Variability system followed by the classical LDA and WCCN simply
as Total Variability or TVM.

More recently, Probabilistic Linear Discriminant Analysis
(PLDA) [9] has been proposed to independently model the speaker
and session factors in the i-vector space with a probabilistic frame-
work. However, this method performs a more complicated hypothe-
sis test for i-vector matching, which impedes its use with LSH.

2.2. Locality sensitive hashing

The nearest neighbor problem is a core element in many search tasks:
given a set of a points {x1, . . . , xn} ⊆ X , a query point q ∈ X and
a distance function d : X × X → R+, find the point xi minimiz-
ing d(xi, q). While efficient data structures for the exact problem in
low-dimensional spaces are known, they have an exponential depen-
dence on the dimension ofX (“curse of dimensionality”). In order to
circumvent this issue, LSH offers a trade-off between accuracy and
running time. Instead of finding the exact nearest neighbor, the algo-
rithm can return an approximate nearest neighbor, with the retrieval



time depending on the quality of the approximation. An approxima-
tion guarantee is still useful because the distance function d is often
only an approximation of the ground truth. A particular strength
of LSH is its provably sublinear running time, which also holds in
practice and has led to many applications of the algorithm [3].

In order to use LSH with a given distance function d, the al-
gorithm relies on a family of locality sensitive hash functions. In-
tuitively, a hash function is locality sensitive if two elements that
are close under d are more likely to collide. There is a large body
of research on locality sensitive hash functions for a wide range of
distance metrics, including the Euclidean distance [10], Jaccard in-
dex [11] and the cosine distance [12].

Given a family of locality sensitive hash functions, the LSH al-
gorithm builds a set of hash tables and hashes all points xi into each
hash table. For each hash table, we concatenate several locality sen-
sitive hash functions to avoid unnecessary collisions (boosting pre-
cision). We maintain several hash tables to increase the probability
of finding a close neighbor (boosting recall). Given a query point q,
we look through all hash tables to find the xi colliding with q and
then return the best match.

2.3. Related work

There is a large body of work on using LSH for audio data. A com-
mon use case is efficiently finding remixed songs or near-duplicates
in a large corpus [13, 14, 15, 16, 17, 18]. These systems are based
on low-level acoustic features such as MFCCs and then use a vari-
ety of LSH-related techniques, e.g. shingles and min-hashing. While
this approach works well for finding near-duplicate audio data, we
are interested in text-independent speaker identification and hence
require a more sophisticated acoustic model.

A recent paper [19] uses LSH for speaker identification with
privacy guarantees. The authors mention efficiency gains due to
LSH but use cryptographic hash functions and focus on the secu-
rity aspects of their work. The speaker identification step is based on
Gaussian mixture model (GMM) super-vectors without factor anal-
ysis while our work uses i-vectors. Moreover, the authors study the
performance of their system on the YOHO data set [20], which con-
sists of 138 speakers and is primarily intended for text-dependent
speaker authentication.

The most closely related work is [21]. While the authors also
employ factor analysis in their acoustic modeling step, their utter-
ance comparison model [22] is different from i-vectors. Importantly,
the authors use kernelized-LSH [23] in order to implement the dis-
tance function implied by their model. In contrast, we use the cosine
distance, which is known to give good performance for i-vectors [7]
and also provides provable guarantees in conjunction with LSH [12].
Furthermore, the authors of [21] explicitly state that the objective
of their paper is to investigate the performance of their method on
close-talk microphone recordings with matched conditions, leaving
a more robust variant that is resistant to noise for further study. In
our evaluation, we use a set of videos from YouTube that was not
recorded for speaker identification. In particular, the channel effects
in some videos are significantly different and noise is present in most
recordings.

3. LOCALITY SENSITIVE HASHING FOR SPEAKER
IDENTIFICATION

For clarity, we describe our proposed system as two separate com-
ponents: the generation of i-vectors and the fast retrieval of similar
i-vectors using LSH.

3.1. Generation of i-vectors

Given an utterance for which we want to generate an i-vector, we
first represent the utterance in terms of a large GMM, the so-called
Universal Background Model (UBM), which we parametrize with
λ. Formally, let Θ = (o1, . . . , oa) with oi ∈ RD be a sequence of
spectral observations extracted from the utterance. Then we compute
the accumulated and centered first-order Baum-Welch statistics

Nm =
∑
t

P (m|ot, λ)

Fm =
∑
t

P (m|ot, λ)(ot − µm) ,

where µm is the mean vector of mixture component m, m =
1, ..., C ranges over the mixture components of the UBM and
P (m|o, λ) is the Gaussian occupation probability for mixture m
and observation o. Hereafter, we refer to F ∈ RCD as the vector
containing the stacked statistics F = (FT

1 , . . . , F
T
C )T .

We now denote the i-vector associated with the sequence Θ as
x ∈ Rd. According to the TVM model, the vector F is related to
x via the rectangular low-rank matrix T ∈ RCD×d, known as the
TVM subspace:

N−1F = Tx ,

where N ∈ RCD×CD is a diagonal matrix with C blocks of size
D × D along the diagonal. Block m = 1, .., C is the matrix
NmI(D×D).

The constraints imposed on the distributions of P (x) and
P (F |x) lead to a closed-form solution for P (x|F ). The i-vector is
the maximum a posteriori (MAP) point estimate of this distribution
and is given by

x = (I + TT Σ−1NT )−1TT Σ−1F ,

where Σ ∈ RCD×CD is the covariance matrix of F .
Therefore, our i-vector extraction procedure depends on the ut-

terance data and the TVM model parameters λ, T and Σ. We refer
to [24] for a more detailed explanation of how to obtain these param-
eters using the EM algorithm.

If the true speaker labels for each training i-vector are known,
the final speaker i-vector is normally obtained by averaging all i-
vectors belonging to the same speaker. Since we are interested in an
unsupervised setting such as YouTube where speaker labels are not
available for most of the utterances, we do not perform this i-vector
averaging step in our system and instead keep the i-vectors of all
utterances.

3.2. Locality sensitive hashing with i-vectors

As noted in the introduction, the main goal of our work is enabling
fast retrieval of speakers. In the context of i-vector-based speaker
identification, this means the following: for a given query i-vector,
we efficiently want to find the best match in our previously com-
puted set of i-vectors. Since this task is an instance of the nearest
neighbor problem introduced above, we use LSH in order to enable
fast retrieval.

A crucial point when using LSH is the right choice of distance
function d. For i-vectors, it has been shown that the cosine distance
d(x, y) = x·y

‖x‖ ‖y‖ gives very competitive performance for speaker
identification [7]. Since the cosine distance can also be approxi-
mated well with locality sensitive hash functions [12], we use the
cosine distance in our LSH algorithm. In particular, we use hash
functions of the form

hr(x) =

{
1 if x · r ≥ 0

0 if x · r < 0
,



where we choose r as a random Gaussian vector. Geometrically, this
hash function can be seen as hashing with a random hyperplane: r
is perpendicular to the hyperplane and the result of the hash function
indicates on which side of the hyperplane x lies. Since r has an
isotropic distribution, we have P [hr(x) = hr(y)] = 1− θ(x, y)/π,
where θ(x, y) is the angle between vectors x and y.

Our data structure has two main parameters: l, the number of
hash tables, and k, the number of hyperplanes per hash table. Let
H1, . . . , Hl be the hash tables in our data structure. We use the con-
struction from [25] in order to reduce the number of hash function
evaluations: we maintain m ≈

√
l hash functions of length k

2
and

use the
(
m
2

)
≈ l combinations as hash functions for the l hash tables.

Formally, let ui(x) = (hi
1(x), hi

2(x), . . . , hi
k/2) for i ∈ {1, . . . ,m}

and hi
j sampled as described above. Then the final hash functions for

the l hash tables are hi(x) = (ua(x), ub(x)) for all choices of a, b
such that 1 ≤ a < b ≤ m. Hence each hi hashes an i-vector x to a
string of k bits. Note that we do not need to store a full array with 2k

entries for each hash table but can instead resort to standard hashing
for large k.

For a given database of i-vectors {x1, . . . , xn} ⊂ Rd, we ini-
tialize our LSH data structure as follows: each i-vector xi is hashed
with each hash function hj and then inserted at position hj(xi) in
hash table Hj . The overall time complexity of the initialization step
is O(ndk

√
l + nl).

Algorithm 1 describes the fast retrieval procedure. The eval-
uation of the m hash functions ui in lines 2 and 3 can be effi-
ciently implemented with a vector-matrix multiplication as follows:
we stack the normal vectors of the hyperplanes as rows into a ma-
trix U ∈ Rmk/2×d. The bits used in the hash functions are then
given by sgn(Ux)+1

2
. The running time of the retrieval procedure is

O(dk
√
l+ l+M), where M is the total number of matches found.

M is typically small if the parameters k and l are properly chosen.

Algorithm 1 I-vector retrieval with LSH
1: function RETRIEVEIVECTOR(q)
2: for i← 1, . . . ,m do
3: Evaluate ui(q)

4: C ← {} . Set of candidates
5: for i← 1, . . . , l do
6: C ← C ∪Hi[hi(q)] . Add candidates
7: return arg minx∈C

x·q
‖x‖ ‖q‖ . Return best candidate

4. EXPERIMENTS

For our experiments, we focus on the main application outlined in
the introduction: searching for speakers on YouTube.

4.1. Data set

We built a data set from the Google Tech Talk channel on YouTube
[26], which contains about 1,803 videos of talks given at Google.
Many of the videos have speaker labels and contain one main
speaker. We decided on this data set because we wanted to use
YouTube data with good ground truth information while avoiding
manual labeling and speaker diarization issues.

After removing short videos and videos with more than one
speaker, our data set contains 1,111 videos with 998 distinct speak-
ers, with each video containing at least 30 minutes of the correspond-
ing talk. 74 speakers appear in at least two videos. The recording
quality of the videos varies with respect to audience noise, equip-
ment, room acoustics and the distance from the speaker to the micro-
phone. The list of videos with a unique ID for each speaker is avail-

able online at http://people.csail.mit.edu/ludwigs/
data/youtube_speakers_2013.txt.

4.2. Results

We conducted two types of experiments. For each type of exper-
iment, we studied the performance of our algorithm for utterances
of length 10, 20 and 60 seconds. The utterances were selected ran-
domly from the videos and correspond directly to segments of the
talk. Hence, the duration of speech per utterance can be less than its
nominal duration.
10tests In this setup, we divide each video into utterances of length
t and then select 10 random utterances from each video to form the
query set. The remaining utterances are used for i-vector training
and as the retrieval database.

holdout10 For each speaker with at least two videos, we select one
video randomly as the source of query i-vectors. All remaining
videos are used for i-vector training and as the retrieval database.
We then extract 10 random utterances of length t from the query
videos and use the corresponding i-vectors as query points.

The second experiment setup is significantly more challenging
as the speaker identification system has to ignore the channel mis-
match between different videos. We include results for the first type
of experiments to study the performance of our LSH data structure
under matched conditions.

Since the goal of our work is fast retrieval, we focus on the
trade-off between identification accuracy and computational effi-
ciency. We use a linear search as comparison baseline and measure
the following quantities:
Identification accuracy We count a query as identified correctly if

the speaker corresponding to the query i-vector is the same as the
speaker corresponding to the i-vector returned by the retrieval al-
gorithm. We only consider the single top-scored speaker returned
by the retrieval algorithm. The identification accuracy is then the
empirical probablity of correct identification.

Retrieval time We measure the time the retrieval algorithm takes
to return a candidate i-vector for a given query i-vector. Note that
we exclude the time for converting a query utterance to a query
i-vector. Since the time complexity of the conversion step is inde-
pendent of the size of the database, the i-vector retrieval step will
dominate the overall computational cost for large data sets.

Table 1 shows the key details of our experiments. In all experi-
ments, we used 200-dimensional i-vectors. Figures 1 and 2 illustrate
the trade-off between accuracy and performance we can achieve by
varying the parameters of our LSH data structure. All experiments
were conducted on a 3.2GHz CPU and each data point was averaged
over all query points, with 10 trials per query point.

The results show that we can achieve speedups by one to two
orders of magnitude while sacrificing only a small fraction of the
identification accuracy. For an utterance length of 20s, our retrieval
algorithm is roughly 150 times faster than the baseline on the 10tests
experiments and about 35 times faster on the holdout experiments. In
both cases, the relative accuracy is about 95% (we define relative ac-
curacy as the ratio (LSH accuracy)/(baseline accuracy)). Moreover,
we can achieve a wide range of trade-offs by varying the parameters
of our LSH data structure.

An interesting phenomenon in our results is the performance
gap between the matched and unmatched settings (10tests and hold-
out10, respectively). This discrepancy is probably due to the fact that
the i-vectors are better clustered under well-matched recording con-
ditions and consequently, the approximate guarantees of LSH have
less impact. Therefore, considering only a small number of can-
didates in the hash tables is sufficient to find a correct match. In
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Fig. 1. Speedup vs. accuracy trade-off for the 10tests experiments.
Each point corresponds to a choice of parameters for our LSH data
structure. We vary k (the number of hyperplanes) from 6 to 20 in
steps of 2 and l (the number of hash tables) from 80 to 300 in steps
of 20.

contrast, the search for matches across videos is more challenging
and hence requires iterating over a larger set of candidates.

We also compare our LSH-based retrieval algorithm with kd-
trees, another popular method for nearest neighbor search in high
dimensions [27]. In particular, we use the ANN library [28]. While
kd-trees show superior performance on the simple 10tests data set,
LSH is significantly faster on the more realistic holdout10 data set.
Again, we suppose that this difference is due to the more challenging
geometry of searching across videos.

Note that our results are not directly comparable with the
speedups reported in [21]. In addition to using LSH, the authors
also accelerate the computation of their utterance comparison model
with a kernel function and include the resulting performance im-
provement in their LSH speedup. In particular, the authors report
a speedup of 911× for a linear search using their kernel function,
compared to a full evaluation of their utterance comparison model
as baseline. Expressed in our metrics (i.e., after subtracting the time
spent on computing the vector representation), their LSH scheme
achieves a speedup of about 12× for matched conditions.

5. CONCLUSION

We have proposed a fast retrieval method for speaker identification
in large data sets. Our work is based on combining two powerful
approaches that interact via the cosine distance: locality sensitive
hashing, which enables fast nearest neighbor search, and i-vectors,
which provide good identification accuracy. Results on a realistic,
large data set from YouTube show that we can achieve speedups of
one to two orders of magnitude while sacrificing only a very small
fraction of the identification accuracy. Hence our approach is a very
promising candidate for large-scale speaker identification. More-
over, LSH could also be very useful for other large-scale applications
of i-vectors, such as clustering.
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Fig. 2. Speedup vs. accuracy trade-off for the holdout10 experi-
ments. Each point corresponds to a choice of parameters for our
LSH data structure. We vary k (the number of hyperplanes) from 6
to 20 in steps of 2 and l (the number of hash tables) from 80 to 300
in steps of 20.

Experiment
10tests holdout10

10s 20s 60s 10s 20s 60s
Database
size 44,348 44,394 22,213 51,736 51,803 31,104

Query
i-vectors 1,200 1,200 1,200 740 739 740

Baseline
accuracy 99.0% 99.5% 99.7% 53.4% 64.4% 74.2%

Baseline
time (ms) 6.65 6.66 3.38 7.70 7.76 4.67

LSH accu-
racy 91.0% 95.6% 98.1% 50.1% 60.6% 70.6%

LSH
time (ms) 0.071 0.045 0.023 0.495 0.220 0.132

Relative
accuracy 92.0% 96.1% 98.4% 93.8% 94.0% 95.1%

Relative
speedup 93× 149× 148× 16× 35× 35×

Hyper-
planes (k) 18 18 18 14 16 16

Hash
tables (l) 220 120 80 280 280 280

kd-tree rel.
accuracy 95.2% 96.4% 98.4% 92.9% 93.7% 95.4%

kd-tree rel.
speedup 568× 987× 773× 3.6× 2.7× 3.0×

Table 1. Summary of the data sets and results for the two
types of experiments (10tests, holdout10) and three utterance
lengths (10s, 20s, 60s). The relative accuracy is the ratio
(LSH accuracy)/(baseline accuracy) and the relative speedup is the
ratio (baseline time)/(LSH time). For each experiment, we present
a choice of parameters for our LSH data structure so that we achieve
a relative accuracy of at least 90%. The relative accuracy and
speedup for kd-trees is also reported relative to the baseline.
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