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Abstract

In compressive sensing, we want to recover a k-sparse signal x ∈ Rn from linear measurements
of the form y = Φx, where Φ ∈ Rm×n describes the measurement process. Standard results
in compressive sensing show that it is possible to exactly recover the signal x from only m =
O(k log n

k
) measurements for certain types of matrices. Model-based compressive sensing

reduces the number of measurements even further by limiting the supports of x to a subset
of the

(
n
k

)
possible supports. Such a family of supports is called a structured sparsity model.

In this thesis, we introduce a structured sparsity model for two-dimensional signals that
have similar support in neighboring columns. We quantify the change in support between
neighboring columns with the Earth Mover’s Distance (EMD), which measures both how
many elements of the support change and how far the supported elements move. We prove
that for a reasonable limit on the EMD between adjacent columns, we can recover signals in
our model from only O(k log log k

w
) measurements, where w is the width of the signal. This

is an asymptotic improvement over the O(k log n
k
) bound in standard compressive sensing.

While developing the algorithmic tools for our proposed structured sparsity model, we
also extend the model-based compressed sensing framework. In order to use a structured
sparsity model in compressive sensing, we need a model projection algorithm that, given an
arbitrary signal x, returns the best approximation in the model. We relax this constraint and
develop a variant of IHT, an existing sparse recovery algorithm, that works with approximate
model projection algorithms.

Thesis Supervisor: Piotr Indyk
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

Sensing signals is a cornerstone of many modern technologies such as digital photography,

medical imaging, wireless networks and radar. While some settings allow the efficient ac-

quisition of large signals (e.g. CCDs for visible light), physical constraints make individual

measurements in other settings much more expensive (e.g. nuclear magnetic resonance in

MRI). Moreover, after acquiring a signal, it is often possible to significantly reduce its size

by utilizing known structure in the signal. Compressive sensing combines these two insights

and offers a framework for acquiring structured signals with few measurements. In com-

pressive sensing, the number of measurements depends almost exclusively on the inherent

complexity of the signal and not on its size.

Model-based compressive sensing extends this core idea of compressive sensing by utilizing

more knowledge of the signal – a so called “model” – in order to reconstruct the signal from

even fewer measurements. In this thesis, we introduce a particular signal model inspired by

seismic processing and develop the necessary algorithms for using our model in compressive

sensing. In the process, we extend the model-based compressive sensing framework to a

wider range of recovery algorithms.
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1.1 Compressive sensing

A traditional signal processing system often proceeds in two basic steps. First, the system

senses the signal by taking coordinate-wise measurements in one or multiple dimensions.

Second, the signal is compressed by utilizing known structure in the signal. Compressive

sensing [8, 4] combines these two steps in order to reduce the number of measurements.

The idea is to take few measurements that capture information about the entire signal in

a compressive way. Afterwards, the signal can be reconstructed from the measurements by

utilizing its known structure.

More formally, let x ∈ Rn be the n-dimensional signal vector. We represent the known

structure in x with the constraint that x is k-sparse, i.e. only k components of x are non-zero.

A linear measurement process can be described by a measurement matrix Φ ∈ Rm×n. Each

row of the matrix Φ corresponds to one linear measurement of the signal vector x. The result

of the measurement process is the measurement vector y ∈ Rm:

y = Φx . (1.1)

We want to find a measurement matrix Φ with a small number of rows that still allows

efficient reconstruction of the signal x from the measurements y. A useful property for

measurement matrices is the restricted isometry property (RIP) [5]. A measurement matrix

Φ satisfies the (δ, k)-RIP if the following two inequalities hold for all k-sparse vectors x:

(1− δ)‖x‖2
2 ≤ ‖Φx‖ ≤ (1 + δ)‖x‖2

2, (1.2)

where ‖x‖p denotes the `p-norm. Matrices with i.i.d. Gaussian or Rademacher (±1) entries

satisfy the RIP with only Θ(k log(n/k)) rows [6].

Given a measurement vector y and a measurement matrix Φ satisfying the RIP, we can

reconstruct the original k-sparse signal x by solving the following optimization problem:

arg min
x
‖x‖1 subject to Φx = y (1.3)

12



This problem is known as basis pursuit and can be solved efficiently by converting it to a

linear program [5]. If there is a k-sparse x satisfying Φx = y, the problem (1.3) is guaranteed

to recover such an x.

This short introduction only scratches the surface of compressive sensing. The theory

extends to settings with measurement noise and to approximately sparse signals [3]. Much

more is known about measurement matrices (e.g. partial Fourier matrices [6] and sparse

matrices [9]) and there are numerous sparse recovery algorithms [15]. Since the formulation

as a sparse linear inverse problem is very general, compressive sensing has spread to a wide

range of areas beyond the simple signal processing model outlined above.

1.2 Model-based compressive sensing

Standard compressive sensing requires that the signal vector x is sparse. In some applications,

we know more about the structure of the signal. One example is the wavelet decomposition

of a natural image, where the large coefficients form a tree-like structure. Model-based

compressive sensing [1] introduces more sophisticated sparsity models to compressive sensing.

The goal of this approach is to reduce the number of measurements necessary for successful

reconstruction of the signal.

Note that the set of k-sparse signals can be defined as the union of k-dimensional sub-

spaces. Model-based compressive sensing adds more structure to signals by restricting the

set of such subspaces. More formally, we define a structured sparsity model Mk, given by

mk k-dimensional subspaces, as follows:

Mk =

mk⋃
i=1

{x | supp(x) ⊆ Ωi}, (1.4)

where Ωi ⊆ {1, . . . , n} is the index set of non-zero components in the subspace i and |Ωi| ≤ k

for all i. The support of a vector x, supp(x), is the index set of non-zero components.

It can be shown that standard measurement matrices (e.g. i.i.d. Gaussian) satisfy the

counterpart of the restricted isometry property in model-based compressive sensing. For
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reconstruction, we can modify CoSaMP [12] and IHT [2], two popular sparse recovery algo-

rithms, to work with structured sparsity models. These modified algorithms use projection

oracles P(x, k) that find the best approximation of an arbitrary signal x in the modelMk:

P(x, k) = arg min
x′∈Mk

‖x− x′‖2. (1.5)

The algorithm used for implementing the projection oracle depends on the specific model

Mk.

1.3 Seismic processing

Seismology is the study of waves propagating through the earth. The sources of seismic waves

can be natural events like earthquakes or controlled man-made devices, e.g. trucks shaking

the ground. Since the propagation of seismic waves depends on the subsurface, seismology

allows us to learn about the interior structure of the earth. The investigated scales can range

from a few hundred meters to the entire earth.

In reflection seismology, we have a controlled source and record the reflections of the seis-

mic wave with an array of receivers (geophones) at the surface. Since the seismic waves are

reflected at boundaries between different types of rocks, we can infer properties of the subsur-

face from the recorded data. Reflection seismology is the primary tool used in hydrocarbon

exploration. Figure 1-1 illustrates a simple seismic experiment.

A seismic experiment with a single source is called a shot and the result of such an

experiment is a shot record. A shot record contains the amplitudes recorded at each receiver

during the experiment. Typical sampling rates are between 1 ms and 10 ms, with a total

duration of several seconds. In order to gather more information about the subsurface, this

process is usually repeated several times with different source locations. Figure 1-2 shows a

simple subsurface model with two corresponding shot records.

Due to the underlying physical mechanisms, shot records typically exhibit more structure

than mere sparsity. In particular, the signals received by neighboring sensors are similar.

14



Source Receivers
Surface

Reflector

Figure (1-1): A simple seismic experiment. The source causes a seismic wave
to travel through the subsurface. The wave is reflected and the receivers
record its amplitude at the surface. The two arrows indicate the paths along
which the wave travels from the source to the two receivers.

(a) Velocity model (b) Left shot record (c) Center shot record

Figure (1-2): Part (a) shows the subsurface velocity model used in this
example (the surface is at the top). The colors indicate the propagation
velocities at each point in the subsurface. Figures (b) and (c) show two
shot records obtained from a simulation on the velocity model. The source
locations are on the very left and in the center of the surface, respectively.
Each column in a shot record corresponds to the signal recorded by a single
receiver. The y-axis of the shot records is the time axis (origin at the top).

Figure 1-3 illustrates this phenomenon. We use this observation in the design of our signal

model.

The signal vector x ∈ Rn can be interpreted as a matrix with h rows and w columns, where

h is the number of time steps and w is the number of receivers (hw = n). We then require
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that each column is k-sparse, which represents the fact that there is only a small number

of large reflections from the subsurface. Moreover, the support sets of adjacent columns

should be similar. We formalize this notion with the Earth Mover’s Distance (EMD) [13]

and require that the support sets of neighboring columns have a small total EMD.

Figure (1-3): Section of a shot record from the Sigsbee2A data set. Note
the parabola-like shapes in the signal. The large coefficients in neighboring
columns appear at similar indices.
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Chapter 2

Preliminaries

We now formally introduce our notation and the relevant background.

2.1 Notation

We generally use lower case letters like to denote vectors and scalars and capital letters for

matrices and sets. We use [n] as a shorthand for the set {1, 2, . . . , n}.

Support of vectors For a vector x ∈ Rn, the support of x is the set of indices with

nonzero components: supp(x) = {i ∈ [n] |xi 6= 0}. Given a set of indices Ω ⊆ [n], we define

the vector xΩ to agree with x on all coordinates in Ω and to be 0 outside Ω, i.e. (xΩ)i = xi

for i ∈ Ω and (xΩ)i = 0 for i /∈ Ω. A vector x is k-sparse if it has k nonzero components.

Then |supp(x)| = k.

Vector norms We denote the `p-norm (p ≥ 1) of a vector x ∈ Rn with ‖x‖p. We have

‖x‖p = (
∑n

i=1 x
p
i )

1/p. The `0-“norm” is ‖x‖0 = |{i |xi 6= 0}| = supp(x). We sometimes omit

the subscript of the `2-norm for succinctness, i.e. ‖x‖ = ‖x‖2.

Matrices We denote the individual columns of a matrix X ∈ Rm×n with X∗,i ∈ Rm for

i ∈ [n]. For a set of indices Ω ⊆ [n], we define the matrix XΩ to agree with X on all

17



columns with index in Ω and to be 0 everywhere else. Formally, for any j ∈ [m], we have

(XΩ)i,j = Xi,j for i ∈ Ω and (XΩ)i,j = 0 for i /∈ Ω. Column restriction has precedence over

the transpose operator, so XT
Ω = (XΩ)T . Note that

(
XTy

)
Ω

= XT
Ωy.

2.2 Model-based compressive sensing

The key ingredient in model-based compressive sensing [1] is the idea of a structured sparsity

model, which is a union of subspaces corresponding to a set of permissible support sets. In

standard compressive sensing, we allow all
(
n
k

)
of the k-sparse subspaces for an n-dimensional

vector. By requiring some structure in the permissible support sets, model-based compressive

sensing allows us to reduce this number of subspaces. Hence a smaller number of rows is

necessary for a measurement matrix to have the RIP for our set of allowed signals, which leads

to a smaller number of measurements. This way, model-based compressive utilizes a priori

information about the signal in order to recover it from a smaller number of measurements.

2.2.1 Basic definitions

We now formally define the notion of a structured sparsity model. Since structured sparsity

models usually depend on more parameters than merely the sparsity k, we introduce the con-

cept of a model parameter p ∈ P . Together with the ambient dimension of the signal vector,

the model parameter p contains all information necessary for enumerating all permissible

supports sets in the model.

Definition 1 (Structured sparsity model (definition 2 in [1])). The structured sparsity model

Ap ⊆ Rn is the set of vectors

Ap = {x ∈ Rn | supp(x) ∈ Ap} , (2.1)

where Ap = {Ω1, . . . ,Ωap} is the set of allowed, structured supports with Ωi ⊆ [n]. We call

ap = |Ap| the size of the structured sparsity model Ap.

18



Later in this thesis we look at the vectors of the form x + y with x ∈ Ap and y ∈ Aq.

Hence we define the addition on model parameters.

Definition 2 (Addition of model parameters (similar to definition 8 in [1])). Let x ∈ Ap
and y ∈ Aq. Then we define Ap⊕ q as the structured sparsity model

Ap⊕ q = {x+ y |x ∈ Ap and y ∈ Aq} . (2.2)

Hence Ap⊕ q = {Ω ∪ Γ |Ω ∈ Ap and Γ ∈ Aq}.

For many natural models, p ⊕ q corresponds to simple operations on the model parame-

ters. For example, in a model that enforces only sparsity, the model parameter is the sparsity

and we have Ap⊕ q = Ap+q.

Based on the definition of a structured sparsity model, we can define a variant of the RIP

that applies only to vectors in the model Ap.

Definition 3 (Model-RIP (definition 3 in [1])). The matrix Φ ∈ Rm×n has the (δ, p)-model-

RIP if the following inequalities hold for all x ∈ Ap:

(1− δ)‖x‖2
2 ≤ ‖Φx‖

2
2 ≤ (1 + δ)‖x‖2

2 . (2.3)

The following result connects the size of a model with the model-RIP.

Fact 4 (Theorem 1 in [1]). Let Ap be a structured sparsity model and let k be the size of

the largest support in the model, i.e. k = maxΩ∈Ap|Ω|. Let Φ ∈ Rm×n be a matrix with i.i.d.

Gaussian entries. Then there is a constant c such that for fixed δ, any t > 0 and

m ≥ c (k + log ap) , (2.4)

Φ has the (δ, p)-model-RIP with probability at least 1− e−t.

Note that for a sparsity model that only enforces k-sparsity, we recover the standard com-

pressive sensing bound for Gaussian matrices: we have ak =
(
n
k

)
and hence m = O(log

(
n
k

)
) =

19



O(k log n
k
). Moreover, the additive term k is information-theoretically necessary because we

can recover the k nonzero components of x from our m compressive samples.

2.2.2 Structured sparse recovery

The authors of [1] modify CoSaMP [12] and IHT [2], two popular sparse recovery algorithms,

to work for model-based compressive sensing. Informally, the modified algorithms solve the

problem of recovering x ∈ Ap from compressive samples y = Φx, where Φ has the model-RIP.

An important subroutine in the structured sparse recovery algorithms is a model projection

algorithm. Given an arbitrary x ∈ Rn, such an algorithm returns the best approximation to

x in the model Ap. The modified versions of CoSaMP and IHT use the model approximation

algorithm to recover x ∈ Ap from the compressive samples. Since the model approximation

algorithm is used many times, its running time is very important for the overall sparse

recovery procedure.

We now formally define the guarantee required for a model approximation algorithm.

Definition 5 (Model projection oracle (section 3.2 in [1])). A model projection oracle is a

function M : Rn × P → Rn such that the following two properties hold for all x ∈ Rn and

p ∈ P:

Output model sparsity: M(x, p) ∈ Ap.

Optimal model projection: ‖x−M(x, p)‖2 = minx′∈Ap‖x− x′‖2.

We usually write Mp(x) instead of M(x, p) for clarity of presentation.

Using a model projection oracle, we can now define a variant of IHT. The algorithm

uses the same updates as IHT but uses a model projection algorithm instead of the hard

thresholding operator. The input to the algorithm are following four parameters:

• The measurements y ∈ Rm.

• The measurement matrix Φ ∈ Rm×n.

• The model parameter p ∈ P .

20



• The number of iterations t ∈ N. A larger number of iterations gives a better approxi-

mation guarantee but also leads to a longer running time.

Algorithm 1 contains the description of Model-IHT.

Algorithm 1 Model-IHT (algorithm 2 in [1])
function MIHT(y,Φ,p,t)

x1 ← 0

for i← 1, . . . , t do

xi+1 ←Mp(x
i + ΦT (y − Φxi))

return xt+1

It is possible to prove the following recovery guarantee for Model-IHT.

Fact 6 (Appendix C in [1]). Let x ∈ Ap and let y = Φx+e where Φ has (0.1, 3p)-model-RIP.

Then

‖x−MIHT(y,Φ, p, t)‖ ≤ 2−t‖x‖+ 4‖e‖ . (2.5)

2.3 Consequences of the RIP

A matrix with the RIP behaves like a near-isometry when restricted to a small set of columns

and / or rows. The following properties are a direct result of the RIP.

Fact 7 (from section 3 in [12]). Let Φ ∈ Rm×n be a matrix with (δ, p)-model-RIP. Let Ω be

a support in the model, i.e. Ω ∈ Ap. Then the following properties hold for all x ∈ Rn.

∥∥ΦT
Ωx
∥∥

2
≤
√

1 + δ ‖x‖2 (2.6)∥∥ΦT
ΩΦΩx

∥∥ ≤ (1 + δ)‖x‖2 (2.7)∥∥(I − ΦT
ΩΦΩ

)
x
∥∥

2
≤ δ‖x‖2 (2.8)

Due to this near-isometry, a matrix with RIP is also “almost orthogonal” when restricted

to a small set of columns and / or rows. The following property is therefore known as
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approximate orthogonality.

Fact 8 (from section 3 in [12]). Let Φ ∈ Rm×n be a matrix with (δ, p)-model-RIP. Let Ω and

Γ be two disjoint supports with their union in the model, i.e. Ω∪Γ ∈ Ap. Then the following

property holds for all x ∈ Rn: ∥∥ΦT
ΩΦΓx

∥∥
2
≤ δ‖x‖2 . (2.9)

2.4 Related work1

There has been prior research on reconstructing time sequences of spatially sparse signals

(e.g., [16]). Such approaches assume that the support of the signal (or even the signal itself)

does not change much between two consecutive time steps. However, the variation between

two columns a and b was defined as the number of changes in the support from one column

to the next, i.e. |(supp(a) ∪ supp(b)) \ (supp(a) ∩ supp(b))|. In contrast, we measure the

difference in the support of a and b with the Earth Mover’s Distance (EMD). As a result,

our model not only quantifies in how many places the support changes but also how far the

supported elements move. Hence our model easily handles signals such as those in figure 7-1,

where the supports of any two consecutive columns can potentially even be disjoint, yet differ

very little according to the EMD.

Another related paper is [10], whose authors propose the use of the EMD to measure

the approximation error of the recovered signal in compressive sensing. In contrast, we are

using the EMD to constrain the support set of the signals.

1This section is mostly taken from an earlier paper [14].
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Chapter 3

The EMD model

We now define the EMD model, one of the main contributions of this thesis.

3.1 Earth Mover’s Distance

A key ingredient in our proposed signal model is the Earth Mover’s Distance (EMD). Orig-

inally, the EMD was defined as a metric between probability distributions and successfully

applied in image retrieval problems [13]. The EMD is also known as Wasserstein metric or

Wallows distance [11]. Here, we define the EMD for two sets of natural numbers.

Definition 9 (EMD). The EMD of two finite sets A,B ⊂ N with |A| = |B| is

EMD(A,B) = min
π:A→B

∑
a∈A

|a− π(a)| (3.1)

where π ranges over all one-to-one mappings from A to B.

Note that EMD(A,B) is the cost of a min-cost matching between A and B.

We are particularly interested in the EMD between two sets of supported indices. In this

case, the EMD not only measures how many indices change, but also how far the supported

indices move. Hence we define a variant of the EMD which we use in our signal model.
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X∗,1 X∗,2

2

1

0

sEMD = 3

X∗,3
0

1

1

sEMD = 2

Figure (3-1): The support EMD for a matrix with three columns and eight
rows. The circles stand for supported elements in the columns. The lines in-
dicate the matching between the supported elements and the corresponding
EMD cost. The total support EMD is sEMD(X) = 2 + 3 = 5.

Definition 10 (support-EMD for two vectors). The support-EMD (sEMD) of two k-sparse

vectors x, y ∈ Rn is

sEMD(a, b) = EMD(supp(a), supp(b)). (3.2)

Since we want to quantify the change in support for more than two vectors, we extend

the definition of the support-EMD to an entire matrix by summing the support-EMD of

adjacent columns. Figure 3-1 illustrates this definition.

Definition 11 (support-EMD for a matrix). The support-EMD (sEMD) of a matrix X ∈

Rh×w is

sEMD(X) =
w−1∑
i=1

sEMD(X∗,i, X∗,i+1) . (3.3)

3.2 EMD model

For the definition of our EMD model, we interpret the signal x ∈ Rn as a matrix X ∈ Rh×w

with n = hw. For given dimensions of the signal X, the EMD model has two parameters:
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• k, the total sparsity of the signal. For simplicity, we assume here and in the rest of

this thesis that k is divisible by w. Then the sparsity of each column X∗,i is s = k/w.

• B, the support EMD of X. We call this parameter the EMD budget.

Hence the set of model parameters for the EMD model is P = N× N.

Definition 12 (EMD model). The EMD model is the set of signals

Ak,B = {X ∈ Rh×w : ‖X∗,i‖0 = s for i ∈ [w],

sEMD(X) ≤ B} .
(3.4)

The parameter B controls how much the support can vary from one column to the next.

Setting B = 0 forces the support to remain constant across all columns, which corresponds

to block sparsity (the blocks are the rows of X). A value of B ≥ kh effectively removes the

EMD constraint because each supported element is allowed to move across the full height

of the signal. In this case, the model demands only s-sparsity in each column. Choosing

an EMD-budget B between these two extremes allows the support to vary but still gives

improved sampling bounds over simple k-sparsity (see section 3.3).

It is important to note that we only constrain the EMD of the column supports in the

signal, not the actual amplitudes. Figure 3-2 illustrates the EMD model with an example.

Moreover, we can show that the sum of two signals in the EMD model is again in the EMD

model (with reasonably adjusted parameters). This property is important for model our

algorithm in recovery algorithms.

Theorem 13. Let X, Y ∈ Rh×w. Moreover, assume that X ∈ Ak1,B1 and Y ∈ Ak2,B2. Then

X + Y ∈ Ak1+k2,B1+B2 . (3.5)

Proof. Each column of X+Y is k1+k2
w

sparse. Moreover, we can use the matchings in X and

Y to construct a matching for X + Y with support-EMD at most B1 +B2.

This also means that for our model, Ap1⊕ p2 ⊆ Ap1+p2 .
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Figure (3-2): A signal X and its best approximation X∗ in the EMD model
A3,1. A sparsity constraint of 3 with 3 columns implies that each column
has to be 1-sparse. Moreover, the total support-EMD between neighboring
columns in X∗ is 1. The lines in X∗ indicate the support-EMD.

3.3 Sampling bound

In order to establish a sampling bound for our EMD model Ak,B, we need to bound the

number of subspaces ak,B. Using fact 4, the number of required samples then is m =

O(log ak,B + k).

For simplicity, we assume here and in the rest of this thesis that w = Ω(log h), i.e. the

following bounds apply for all signals X besides very thin and tall matrices X.

Theorem 14.

log ak,B = O

(
k log

B

k

)
(3.6)

Proof. For given h, w, B and k, the support is fixed by the following three decisions:

• The choice of the supported elements in the first column of X. There are
(
h
s

)
possible

choices.

• The distribution of the EMD budget B over the k supported elements. This corre-

sponds to distributing B balls into k bins and hence there are
(
B+k−1

k

)
possible choices.

• For each supported element, the direction (up or down) to the matching element in

the next column to the right. There are 2k possible choices.
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Multiplying the choices above gives an upper bound on the number of supports. Using

the inequality
(
a
b

)
≤
(
a e
b

)b, we get

log ak,B ≤ log

((
h

s

)(
B + k − 1

k

)
2k
)

(3.7)

≤ s log
h

s
+ k log

B + k

k
+ k +O(s+ k) (3.8)

= O

(
k log

B

k

)
. (3.9)

If we allow each supported element to move a constant amount from one column to

the next, we get B = O(k) and hence m = O(k). As mentioned above, this bound is

information-theoretically optimal. Furthermore, for B = kh (i.e. allowing every supported

element to move anywhere in the next column) we getm = O(k log n), which almost matches

the standard compressive sensing bound of O(k log n
k
). Again, choosing an EMD-budget B

between these two extremes controls how many measurements we need to take in order

to reconstruct x. Hence the EMD model gives us a smooth trade-off between the allowed

support variability and the number of measurements necessary for reconstruction.
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Chapter 4

Approximate model-IHT

In order to use our EMD model in the model-based compressive sensing framework of [1],

we need to implement a model projection oracle that finds the best approximation of any

given signal with a signal in the model. While our projection algorithms for the EMD model

give provably good approximations, they are not necessarily optimal. Hence we extend the

model-based compressive sensing framework to work with approximate projection oracles.

This extension enables us to use model-based compressive sensing in cases where optimal

model projections are beyond our reach but approximate projections are still efficiently

computable. Since this extension might be of independent interest, we present the results in

this section in a more general setting than the EMD model.

Our sparse recovery algorithm with approximate projection oracles is based on Iterative

Hard Thresholding (IHT) [2], an iterative sparse recovery algorithm for standard compressive

sensing. IHT iterates updates of the following form until a convergence criterion is reached:

xi+1 ← Hk(x
i + ΦT (y − Φxi)) , (4.1)

where Hk(x) returns a vector containing only the k largest components of x (hard threshold-

ing). IHT has already been modified to work for model-based compressive sensing [1] and

we extend this variant of IHT here.
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4.1 Approximate projection oracles

We now give a formal definition of the approximate projection oracles that work in conjunc-

tion with our model-based sparse recovery algorithm.

Definition 15 (Head approximation oracle). A (c, f)-head approximation oracle is a func-

tion H : Rn × P → Rn such that the following two properties hold for all x ∈ Rn and

p ∈ P:

Output model sparsity: H(x, p) = xΩ for some Ω ∈ Af(p).

Head approximation: ‖H(x, p)‖2 ≥ c‖xΩ‖2 for all Ω ∈ Ap.

We usually write Hp(x) instead of H(x, p) for clarity of presentation.

Definition 16 (Tail approximation oracle). A (c, f)-tail approximation oracle is a function

T : Rn × P → Rn such that the following two properties hold for any x ∈ Rn and p ∈ P:

Output model sparsity: T (x, p) = xΩ for some Ω ∈ Af(p).

Tail approximation: ‖x− T (x, k)‖2 ≤ c‖x− x′‖2 for all x′ ∈ Ap.

We usually write Tp(x) instead of T (x, p) for clarity of presentation.

We have two different notions of approximate projections because the corresponding

oracles fulfill different roles in iterative sparse recovery algorithms. A head approximation

oracle allows us to find a support containing a large amount of mass compared to all other

possible supports. Used on a residual proxy of the form ΦTΦr, such a support identifies a

large part of the relevant update. However, even for input signals that are in the model,

a head approximation oracle does not necessarily return a signal with zero approximation

error.

In contrast, a tail approximation oracle returns a signal with an approximation error

not much larger than that of the best signal approximation in the model. This notion of

approximation is the guarantee we want to achieve for the overall sparse recovery algorithm.

It is worth noting that combining IHT with only a tail approximation oracle instead of the

optimal projection does not give a useful recovery guarantee (see appendix B).
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Another important feature of the above definitions is that they not only allow head

and tail approximations but also projections into larger models. While a projection into

a significantly larger model incurs a penalty in the number of measurements necessary for

recovery, this relaxation allows a much wider range of approximation algorithms.

4.2 Algorithm

We now define Approximate Model IHT (AMIHT), our sparse recovery algorithm for model-

based compressive sensing with approximate projection oracles. In the algorithm, we use a

(cH , fH)-head approximation oracle H and a (cT , fT )-tail approximation oracle T .

AMIHT requires the following four parameters:

• The measurements y ∈ Rm.

• The measurement matrix Φ ∈ Rm×n.

• The model parameter p ∈ P .

• The number of iterations t ∈ N. A larger number of iterations gives a better approxi-

mation guarantee but also leads to a longer running time.

Besides the placement of the head and tail approximation oracles, AMIHT follows the

form of IHT.

Algorithm 2 Approximate model-IHT
function AMIHT(y,Φ,p,t)

x1 ← 0

for i← 1, . . . , t do

xi+1 ← Tp(x
i +Hp⊕ fT (p)(Φ

T (y − Φxi)))

return xt+1

31



4.3 Analysis

We now prove the main result about AMIHT: geometric convergence to the original signal

x. We make the following assumptions in the analysis of AMIHT:

• x ∈ Rn and x ∈ Ap.

• y = Φx+ e for an arbitrary e ∈ Rm (the measurement noise).

• Φ has (δ, t)-model-RIP for t = fH(p ⊕ fT (p)) ⊕ p ⊕ fT (p).

Moreover, we define the following quantities as shorthands:

• ri = x− xi .

• ai = xi +Hp⊕ fT (p)(Φ
T (y − Φxi)) .

• bi = ΦT (y − Φxi) .

• Ω = supp(ri) .

• Γ = supp(Hp⊕ fT (p)(b
i)) .

In the first lemma, we show that we can use the RIP of Φ on relevant vectors.

Lemma 17. For all x ∈ Rn with supp(x) ∈ Ω ∪ Γ we have

(1− δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2 . (4.2)

Proof. By the definition of T , we have supp(xi) ∈ AfT (p). Since supp(x) ∈ Ap, we have

supp(x−xi) ∈ Ap⊕ fT (p) and hence Γ ∈ Ap⊕ fT (p). Moreover, supp(Hp⊕ fT (p)(b
i)) ∈ AfH(p⊕ fT (p))

by the definition of H. Therefore Ω ∪ Γ ∈ AfH(p⊕ fT (p))⊕ p⊕ fT (p), which allows us to use the

model-RIP of Φ on x with supp(x) ∈ Ω ∪ Γ.

As a result of lemma 17, we can use the standard consequences of the RIP such as

approximate orthogonality (see section 2.3).
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Just as in IHT, we use the residual proxy ΦT (y − Φxi) as update in each iteration. We

now show that H preserves the relevant part of the residual proxy.

Lemma 18.

∥∥ΦT
Γ\ΩΦri

∥∥ ≤ √1− c2
H (1 + δ) + δ

cH

∥∥ri∥∥+
√

1 + δ

(√
1− c2

H + 1

cH
+ 1

)
‖e‖. (4.3)

Proof. The head approximation guarantee of H gives us

∥∥biΓ∥∥2 ≥ c2
H

∥∥biΩ∥∥2 (4.4)

∥∥biΓ∩Ω

∥∥2
+
∥∥biΓ\Ω∥∥2 ≥ c2

H

∥∥biΓ∩Ω

∥∥2
+ c2

H

∥∥biΩ\Γ∥∥2 (4.5)

(1− c2
H)‖biΓ∩Ω‖

2
+
∥∥∥biΓ\Ω∥∥∥2

c2
H

≥
∥∥biΩ\Γ∥∥2 (4.6)

‖
√

1− c2
H b

i
Γ∩Ω + biΓ\Ω‖
cH

≥
∥∥biΩ\Γ∥∥ . (4.7)

We now expand bi and apply consequences of the RIP several times:

1

cH
‖
√

1− c2
H ΦT

Γ∩ΩΦri +
√

1− c2
H ΦT

Γ∩Ωe+ ΦT
Γ\ΩΦri + ΦT

Γ\Ωe‖

≥
∥∥ΦT

Ω\ΓΦri + ΦT
Ω\Γe

∥∥ (4.8)

√
1− c2

H

cH

∥∥ΦT
Γ∩ΩΦri

∥∥+

√
1− c2

H

cH

∥∥ΦT
Γ∩Ωe

∥∥+
1

cH
‖ΦT

Γ\ΩΦri‖+
1

cH

∥∥ΦT
Γ\Ωe

∥∥
≥
∥∥ΦT

Ω\ΓΦri
∥∥− ∥∥ΦT

Ω\Γe
∥∥ (4.9)

√
1− c2

H (1 + δ)

cH

∥∥ri∥∥+

√
1− c2

H

√
1 + δ

cH
‖e‖+

δ

cH

∥∥ri∥∥+

√
1 + δ

cH
‖e‖

≥
∥∥ΦT

Ω\ΓΦri
∥∥− √1 + δ ‖e‖ .

(4.10)
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Rearranging and grouping terms gives the statement of the lemma:

∥∥ΦT
Γ\ΩΦri

∥∥ ≤ √1− c2
H (1 + δ) + δ

cH

∥∥ri∥∥+
√

1 + δ

(√
1− c2

H + 1

cH
+ 1

)
‖e‖ . (4.11)

We now prove the main theorem: geometric convergence for approximate model-IHT.

Theorem 19.

∥∥ri+1
∥∥ ≤ (1 + cT )

(√
1− c2

H (1 + δ) + δ

cH
+ 2δ

)∥∥ri∥∥+

(1 + cT )
√

1 + δ

(√
1− c2

H + 1

cH
+ 4

)
‖e‖ .

(4.12)

Proof. The triangle inequality gives us

∥∥ri+1
∥∥ =

∥∥x− xi+1
∥∥ (4.13)

≤
∥∥x− ai∥∥+

∥∥xi+1 − ai
∥∥ (4.14)

≤ (1 + cT )
∥∥x− ai∥∥ , (4.15)

where the last line follows because T is a (cT , fT )-tail approximation oracle.

We now bound ‖x− ai‖:

∥∥x− ai∥∥ =
∥∥x− xi −Hp⊕ fT (p)(b

i)
∥∥ (4.16)

=
∥∥ri −Hp⊕ fT (p)(b

i)
∥∥ (4.17)

≤
∥∥ri − biΩ∥∥+

∥∥Hp⊕ fT (p)(b
i) + biΩ

∥∥ . (4.18)
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Looking at each term individually:

∥∥ri − biΩ∥∥ =
∥∥ri − ΦT

ΩΦri + ΦT
Ωe
∥∥ (4.19)

≤
∥∥(I − ΦT

ΩΦΩ

)
ri
∥∥+

∥∥ΦT
Ωe
∥∥ (4.20)

≤ δ
∥∥ri∥∥+

√
1 + δ ‖e‖. (4.21)

And

∥∥Hp⊕ fT (p)(b
i)− biΩ

∥∥ =
∥∥biΓ − biΩ∥∥ (4.22)

=
∥∥ΦT

ΓΦri − ΦT
Γe− ΦT

ΩΦri − ΦT
Ωe
∥∥ (4.23)

≤
∥∥ΦT

ΓΦri − ΦT
ΩΦri

∥∥+ 2
√

1 + δ ‖e‖ (4.24)

=
∥∥ΦT

Γ\ΩΦri − ΦT
Ω\ΓΦri

∥∥+ 2
√

1 + δ ‖e‖ (4.25)

≤
∥∥ΦT

Γ\ΩΦri
∥∥+

∥∥ΦT
Ω\ΓΦri

∥∥+ 2
√

1 + δ ‖e‖ (4.26)

≤ δ
∥∥ri∥∥+

∥∥ΦT
Ω\ΓΦri

∥∥+ 2
√

1 + δ ‖e‖ . (4.27)

Using lemma 18 gives

‖Hp⊕ fT (p)(b
i)− biΩ‖

≤

(√
1− c2

H (1 + δ) + δ

cH
+ δ

)∥∥ri∥∥+
√

1 + δ

(√
1− c2

H + 1

cH
+ 3

)
‖e‖ .

(4.28)

Combining the inequalities above:

∥∥ri+1
∥∥ ≤ (1 + cT )

(√
1− c2

H (1 + δ) + δ

cH
+ 2δ

)∥∥ri∥∥+

(1 + cT )
√

1 + δ

(√
1− c2

H + 1

cH
+ 4

)
‖e‖ .

(4.29)
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Corollary 20. For δ = 0.01, cT = 1.5 and cH = 0.95 we get

∥∥ri+1
∥∥ ≤ 0.91

∥∥ri∥∥+ 13.53‖e‖ . (4.30)

Corollary 21. For δ = 0.01, cT = 1.5 and cH = 0.95 we get

‖x−AMIHT(y,Φ, p, t)‖ ≤ 0.91t‖x‖+ 150.34‖e‖ . (4.31)

Proof. We iterate corollary 20 and use

13.53
∞∑
i=0

0.91i ≤ 150.34 . (4.32)

These results shows that we get an overall recovery guarantee that is comparable to

that of model-based compressive sensing with optimal projections, in spite of using only

approximate projections.
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Chapter 5

Head approximation algorithm

We now study the problem of finding a good head approximation for the EMDmodel. Ideally,

we could find an algorithm H mapping arbitrary signals to signals in Ak,B with the following

guarantee:

‖Hk,B(x)‖ = max
Ω∈Ak,B

‖xΩ‖ . (5.1)

Instead of finding the best projection in the model, we propose an efficient approximation

algorithm satisfying the guarantees of a head approximation oracle (definition 15). Although

we only have an approximate oracle, our sparse recovery algorithm still gives us a recovery

guarantee comparable to that of model-based compressive sensing with optimal projections

(see chapter 4).

Therefore, we develop an algorithm for the following problem. Given an arbitrary signal

x and an approximation ratio c, find a support Ω ∈ AO(k),O(B log k) such that

‖xΩ‖ ≥ c max
Γ∈Ak,B

‖xΓ‖ . (5.2)

As before, we interpret our signal x as a matrix X ∈ Rh×w. Because of the structure of

the EMD-constraint, each support for x can be seen as a set of s paths from the leftmost to

the rightmost column in X (recall that s is the per-column sparsity parameter, i.e. s = k/w).

Hence the goal of our algorithm is to find a set of s such paths that cover a large amount of
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amplitudes in the signal. We describe an algorithm that allows us to get a constant fraction

of the optimal amplitude sum and then repeat this algorithm several times in order to boost

the approximation ratio (while increasing the sparsity and EMD budget of the result only

moderately).

For simplicity, we now look at the closely related problem where Xi,j ≥ 0 for all i, j and

we are interested in the `1-guarantee

‖xΩ‖1 ≥ c max
Ω∈Ak,B

‖xΩ‖1 . (5.3)

This modification allows us to add amplitudes along paths in the analysis of the head ap-

proximation algorithm. We can easily convert the input signal x into a matrix satisfying

these constraints by squaring each amplitude.

In the rest of this chapter, we use OPT to denote the largest amplitude sum achievable

with a support in Ak,B, so

OPT = max
Ω∈Ak,B

‖xΩ‖1 . (5.4)

Moreover, we set ΩOPT ∈ Ak,B to be a support with ‖xΩ‖1 = OPT .

5.1 Basic algorithm

We first make the notion of paths in the input matrix X more formal.

Definition 22 (Path in a matrix). Given a matrix X ∈ Rh×w, a path p ⊆ [h]× [w] is a set

of w locations in X with one location per column, i.e. |p| = w and
⋃

(i,j)∈p i = [w].

Definition 23 (Weight of a path). Given a matrix X ∈ Rh×w and a path p in X, the weight

of p is the sum of amplitudes on p:

wX(p) =
∑

(i,j)∈p

Xi,j . (5.5)
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Definition 24 (EMD of a path). Given a matrix X ∈ Rh×w and a path p in X, the EMD

of p is the sum of the EMDs between locations in neighboring columns. Let j1, . . . , jw be the

locations of p in columns 1 to w. Then

EMD(p) =
w−1∑
i=1

|ji − ji+1| . (5.6)

Note that the a path p in X is a support with wX(p) = ‖Xp‖1 and EMD(p) = sEMD(Xp).

We use this fact to iteratively build a support Ω by finding s paths inX. Algorithm 3 contains

the description of HeadApproxBasic.

Algorithm 3 Basic head approximation algorithm
function HeadApproxBasic(X, k,B)

X(1) ← X

for i← 1, . . . , s do

Find the path qi from column 1 to column w in X(i) that maximizes w(i)(qi)

and uses at most EMD-budget
⌊
B
i

⌋
.

X(i+1) ← X(i)

for (u, v) ∈ qi do
X

(i+1)
u,v ← 0

return
⋃s
i=1 qi

We now show that HeadApproxBasic finds a constant fraction of the amplitude sum

of the best support while only moderately increasing the size of the model. For simplicity,

we introduce the following shorthands:

• w(p) = wX(p).

• w(i)(p) = wX(i)(p).

Theorem 25. Let Ω be the support returned by HeadApproxBasic. Let B′ = dHseB,

where Hs is the s-th harmonic number. Then Ω ∈ Ak,B′ and ‖XΩ‖1 ≥
1
4
OPT .
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Proof. We can decompose ΩOPT into s disjoint paths in A. Let p1, . . . , ps be such a decompo-

sition with EMD(p1) ≥ EMD(p2) ≥ . . . ≥ EMD(ps). Note that EMD(pi) ≤
⌊
B
i

⌋
: otherwise∑i

j=1 EMD(pi) > B and since EMD(ΩOPT ) ≤ B this would be a contradiction.

Since Ω is the union of s paths in A, Ω has column-sparsity s. Moreover, we have

EMD(Ω) =
s∑
i=1

EMD(qi) ≤
s∑
i=1

⌊
B

i

⌋
≤ dHseB. (5.7)

So Ω ∈ Ak,B′ .

When finding path qi in X(i), there are two cases:

1. w(i)(pi) ≤ 1
2
w(pi), i.e. the paths q1, . . . , qi−1 have already covered more than half of the

amplitude sum of pi in X.

2. w(i)(pi) >
1
2
w(pi), i.e. there is still more than half of the amplitude sum of pi remaining

in X(i). Since EMD(pi) ≤
⌊
B
i

⌋
, the path pi is a candidate when searching for the

optimal qi and hence we find a path qi with w(i)(qi) >
1
2
w(pi).

Let C = {i ∈ [s] | case 1 holds for qi} and D = {i ∈ [s] | case 2 holds for qi} (note that

C = [s] \D). Then we have

‖AΩ‖1 =
s∑
i=1

w(i)(qi) (5.8)

=
∑
i∈C

w(i)(qi) +
∑
i∈D

w(i)(qi) (5.9)

≥
∑
i∈D

w(i)(qi) (5.10)

≥ 1

2

∑
i∈D

w(pi). (5.11)

For each pi with i ∈ C, let Ei = pi ∩
⋃
j<i qj, i.e. the locations of pi already covered by
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some pj when searching for pi. Then we have

∑
(x,y)∈Ei

Xu,v = w(pi)− w(i)(pi) ≥
1

2
w(pi) (5.12)

and ∑
i∈C

∑
(u,v)∈Ei

Xu,v ≥
1

2

∑
i∈C

w(pi). (5.13)

Since the pi are pairwise disjoint, so are the Ei. Moreover, for every i ∈ C we have Ei ⊆⋃s
j=1 qj. Hence

‖XΩ‖1 =
s∑
i=1

w(i)(qi) (5.14)

≥
∑
i∈C

∑
(u,v)∈Ei

Xu,v (5.15)

≥ 1

2

∑
i∈C

w(pi). (5.16)

Combining equations 5.11 and 5.16 gives

2‖XΩ‖1 ≥
1

2

∑
i∈C

w(pi) +
1

2

∑
i∈D

w(pi) =
1

2
OPT . (5.17)

So ‖XΩ‖1 ≥ 1
4
OPT .

We now analyze the running time of HeadApproxBasic. The most expensive part of

HeadApproxBasic is finding the paths with largest weight for a given EMD budget.

Theorem 26. HeadApproxBasic runs in O(s nB h) time.

Proof. We can find a largest-weight path inX by dynamic programming over the graph given

by whB = nB states. We have one state for each combination of location in X and amount

of EMD budget currently used. At each state, we store the largest weight achieved by a path

ending at the corresponding location in X and using the corresponding amount of EMD
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budget. Moreover, each state has h outgoing edges to the states in the next column (given

the current location, the decision on the next location also fixes the new EMD amount).

Hence the time complexity of finding one largest-weight path is O(nBh). Since we repeat

this procedure s times, the overall time complexity is O(snBh).

Note that the EMD model is mainly interesting in cases where B = O(n) (especially

B = O(sw). Hence HeadApproxBasic has a strongly polynomial running time for our

purposes.

5.2 Better approximation ratio

We now use HeadApproxBasic to get a head approximation guarantee

‖xΩ‖1 ≥ c max
Ω∈Ak,B

‖xΩ‖1 (5.18)

for arbitrary c < 1. We achieve this by running HeadApproxBasic several times to get

a larger support that contains a larger fraction of OPT . We call the resulting algorithm

HeadApprox (see algorithm 4).

Algorithm 4 Head approximation algorithm
function HeadApprox(X, k,B, c)

d←
⌈

4c
1−c

⌉
X(1) ← A

for i← 1, . . . , d do

Ωi ← HeadApproxBasic(X(i), k, B)

X(i+1) ← X(i)

X
(i+1)
Ωi

← 0

return
⋃d
i=1 Ωi

We now show that HeadApprox solves the head approximation problem for arbitrary

c. We use d =
⌈

4c
1−c

⌉
as a shorthand throughout the analysis.
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Theorem 27. Let Ω be the support returned by HeadApproxBasic. Let k′ = dk and

B′ = ddHseB. Then Ω ∈ Ak′,B′ and ‖AΩ‖1 ≥ cOPT .

Proof. From theorem 25 we know that for each i, Ωi ∈ Ak,dHseB. Since Ω =
⋃d
i=1 Ωi, we have

Ω ∈ Ak′,B′ .

Before each call to HeadApproxBasic, at least one of the following two cases holds:

Case 1: ‖X(i)
ΩOPT
‖1 < (1 − c)OPT . So the supports Ωj found in previous iterations already

cover amplitudes with a sum of at least cOPT .

Case 2: ‖X(i)
ΩOPT
‖1 ≥ (1 − c)OPT . Since ΩOPT is a candidate solution with parameters k

and B in X(i), we have that ‖X(i)
Ωi
‖1 ≥ 1−c

4
OPT .

After d iterations of the for-loop in HeadApprox, one of the following two cases holds:

Case A: Case 1 holds for at least one iteration. Hence ‖XΩ‖1 ≥ cOPT .

Case B: Case 2 holds in all d iterations. Since we set X(i+1)
Ωi

← 0 in each iteration, we

have
∥∥∥X(i)

Ωj

∥∥∥ = 0 for all j < i. In particular, this means that
∥∥∥X(i)

Ωi

∥∥∥
1

+
∥∥∥X(i+1)

Ωi+1

∥∥∥
1

=∥∥∥X(i)
Ωi∪Ωi+1

∥∥∥
1
and hence

‖XΩ‖1 =
d∑
i=1

∥∥∥X(i)
Ωi

∥∥∥
1

(5.19)

≥
⌈

4c

1− c

⌉
1− c

4
OPT (5.20)

≥ cOPT . (5.21)

So in both cases A and B, at the end of the algorithm we have ‖XΩ‖1 ≥ cOPT .

The running time of HeadApprox follows directly from the running time of HeadAp-

proxBasic (see theorem 26).

Theorem 28. HeadApprox runs in O(d s nB h) time.
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We can now conclude that HeadApprox satisfies the definition of a head-approximation

algorithm (see definition 15).

Corollary 29. HeadApprox is a
(
c,
(⌈

4c2

1−c2

⌉
k,
⌈

4c2

1−c2

⌉
dHseB

))
-head approximation algo-

rithm. Moreover, HeadApprox runs in O(s nB h) time for fixed c.

Proof. Let X ′ ∈ Rh×w with X ′i,j = X2
i,j. We run HeadApprox with parameters X ′, k, B

and c2.

Let Ω be the support returned by HeadApprox. Let k′ =
⌈

4c2

1−c2

⌉
k andB′ =

⌈
4c2

1−c2

⌉
dHseB.

Then according to theorem 27 we have Ω ∈ Ak′,B′ .

Moreover, we get the following `1-guarantee:

‖x′Ω‖1 ≥ c2 max
Ω∈Ak,B

‖x′Ω‖1 , (5.22)

which directly implies

‖xΩ‖2
2 ≥ c2 max

Ω∈Ak,B

‖xΩ‖2
2 . (5.23)

And hence

‖xΩ‖ ≥ c max
Ω∈Ak,B

‖xΩ‖ . (5.24)

The running time bound follows directly from theorem 28.
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Chapter 6

Tail approximation algorithm

In addition to the head approximation algorithm introduced in the previous chapter, we also

need a tail approximation algorithm in order to use our EMD model in compressive sensing.

Ideally, we could give an algorithm Tk,B with the following guarantee (an optimal projection

algorithm of this form would actually make the head approximation algorithm unnecessary):

‖x− Tk,B(x)‖ = min
x′∈Ak,B

‖x− x′‖ . (6.1)

Instead, we develop an algorithm with an approximate tail guarantee. As before, we

interpret our signal x as a matrix X ∈ Rh×w. Since we also establish a connection between

paths in the matrix X and support sets for X, we study the `1-version of the tail approxi-

mation problem: given an arbitrary signal x and an approximation ratio c, find a support

Ω ∈ Ak,O(B) such that

‖x− xΩ‖1 ≤ c min
Γ∈Ak,B

‖x− xΓ‖1 . (6.2)

Note that we allow a constant factor increase in the EMD budget of the result.
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6.1 EMD flow networks

For the tail-approximation algorithm, we use a graph-based notion of paths in order to find

good supports for X. Extending the connection between the EMD and min-cost matching,

we convert the tail approximation problem into a min-cost flow problem. The min-cost flow

problem with a single cost function is a Lagrangian relaxation of the original problem with

two separate objectives (signal approximation and EMD constraint). A core element of the

algorithm is the corresponding flow network, which we now define.

Definition 30 (EMD flow network). For a given signal X, sparsity k and trade-off parameter

λ, the flow network GX,k,λ consists of the following elements:

• The nodes are a source, a sink and a node vi,j for i ∈ [h], j ∈ [w], i.e. one node per

entry in X (besides source and sink).

• G has an edge from every vi,j to every vk,j+1 for i, k ∈ [h], j ∈ [w−1]. Moreover, there

is an edge from the source to every vi,1 and from every vi,w to the sink for i ∈ [h].

• The capacity on every edge and node is 1.

• The cost of each node vi,j is −|Xi,j|. The cost of an edge from vi,j to vk,j+1 is λ|i− k|.

The cost of the source, the sink and all edges incident to the source or sink is 0.

• The supply at the source is s and the demand at the sink is s.

Figure 6-1 illustrates this definition with an example. An important property of a EMD

flow network GX,k,λ is the correspondence between flows in GX,k,λ and supports in X. As

before, recall that s is the per-column sparsity in the EMD-model, i.e. s = k/w. We first

formally define the support induced by a set of paths.

Definition 31 (Support of a set of paths). Let X ∈ Rh×w be a signal matrix, k be a sparsity

parameter and λ ≥ 0. Let P = {p1, . . . , ps} be a set of disjoint paths from source to sink in

GX,k,λ such that no two paths in P intersect vertically (i.e. if the pi are sorted vertically and
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Figure (6-1): A signal X with the corresponding flow network GX,k,λ. The
node costs are the negative absolute values of the corresponding signal com-
ponents. The numbers on edges indicate the edge costs (most edge costs
are omitted for clarity). All capacities in the flow network are 1. The edge
costs are the vertical distances between the start and end nodes.

i ≤ j, then (u, v) ∈ pi and (w, v) ∈ pj implies u < w). Then the paths in P define a support

ΩP = {(u, v) | (u, v) ∈ pi for some i ∈ [s]} . (6.3)

Now, we introduce the property connecting paths and supports.

Theorem 32. Let X ∈ Rh×w be a signal matrix, k be a sparsity parameter and λ ≥ 0. Let

P = {p1, . . . , ps} be a set of disjoint paths from source to sink in GX,k,λ such that no two

paths in P intersect vertically. Finally, let fP be the flow induced in GX,k,λ by sending a

single unit of flow along each path in P and let c(fP ) be the cost of fP . Then

c(fP ) = −‖XΩP
‖1 + λ sEMD(XΩP

) . (6.4)

Proof. The theorem follows directly from the definition of GX,k,λ and ΩP . The node costs of

P result in the term −‖XΩP
‖1. Since the paths in P do not intersect vertically, they are a

min-cost matching for the elements in ΩP . Hence the cost of edges between columns of X

sums up to λ sEMD(XΩP
).

So finding a min-cost flow in GX,k,λ allows us to find the best support for a given trade-off
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between signal approximation and support EMD. In the next section, we use this connection

to find a support set with a tail approximation guarantee.

6.2 Algorithm

We first formalize the connection between min-cost flows in GX,k,λ and good supports in X.

Lemma 33. Let GX,k,λ be an EMD flow network and let f be a min-cost flow in GX,k,λ.

Then f can be decomposed into s disjoint paths P = {p1, . . . , ps} which do not intersect

vertically. Moreover,

‖X −XΩP
‖1 + λsEMD(XΩP

) = min
Ω∈Ak,B

‖X −XΩ‖1 + λsEMD(XΩ) . (6.5)

Proof. Note that ‖X −XΩ‖1 = ‖X‖1 − ‖XΩ‖1. Since ‖X‖1 does not depend on Ω, mini-

mizing ‖X −XΩ‖1 + λsEMD(XΩ) with respect to Ω is equivalent to minimizing −‖XΩ‖1 +

λsEMD(XΩ). Hence we show

− ‖XΩP
‖1 + λsEMD(XΩP

) = min
Ω∈Ak,B

−‖XΩ‖1 + λsEMD(XΩ) (6.6)

instead of equation 6.5.

All edges and nodes in GX,k,λ have capacity one, so f can be composed into disjoint paths

P . Since GX,k,λ has integer capacities, the flow f is integral and therefore P contains exactly

s paths. Moreover, the paths in P are not intersecting vertically: if pi and pj intersect

vertically, we can relax the intersection to get a set of paths P ′ with smaller support EMD

and hence a flow with smaller cost – a contradiction.

Moreover, each support Ω ∈ Ak,B gives rise to a set of disjoint, not vertically intersecting

paths Q and thus also to a flow fQ with c(fQ) = −‖XΩ‖1 + λsEMD(XΩ). Since f is a

min-cost flow, so c(f) ≤ c(fQ). The statement of the theorem follows.

We can use this connection to probe the set of supports for a given signal X. Each choice

48



0

tail

EMD

−λ

(a) Result of a min-cost flow run.

0

tail

EMDB

(b) Optimal solution

Figure (6-2): Each point corresponds to a support Ω for the matrix X.
The x-coordinate of Ω is sEMD(XΩ) and the y-coordinate is ‖X − XΩ‖1.
Finding min-cost flows in GX,k,λ allows us to find points on the convex hull
of support points.
The dashed line in figure (a) illustrates the result of MinCost-

Flow(GX,k,λ), which is also the slope of the line. The point found is the
first point we hit when we move a line with slope−λ from the origin upwards
(the larger dot in the figure).
For a given EMD budget B, we want to find the support with the smallest
tail. The shaded region in figure (b) indicates the region where supports
with support-EMD at most B lie. We want to find the point in this region
with minimum y-coordinate. Note that this point (the larger dot in the
figure) does not necessarily lie on the convex hull.

of λ defines a trade-off between the size of the tail and the EMD cost. A useful geometric

perspective on this problem is illustrated in figure 6-2. Each support gives rise to a point in

the plane defined by EMD-cost in x-direction and size of the tail in y-direction. A choice

of λ defines a set of lines with slope −λ. The point corresponding to the result returned by

MinCostFlow(GX,k,λ) can be found geometrically as follows: start with a line with slope

−λ through the origin and move the line upwards until it hits the first point p. The support

Ω corresponding to p then minimizes −‖XΩ‖1 + λsEMD(XΩ), which is the same result as

the min-cost flow.
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Therefore, finding min-cost flows allows us to explore the convex hull of possible supports.

While the best support for a given B does not necessarily lie on the convex hull, we still get

a provably good result by finding nearby points on the convex hull. Algorithm 5 describes

the overall tail approximation algorithm implementing this idea. The parameters d and δ

for TailApprox quantify the acceptable tail approximation ratio (see theorem 35). In the

algorithm, we assume that MinCostFlow(GX,k,λ) returns the support corresponding to a

min-cost flow in GX,k,λ.

Algorithm 5 Tail approximation algorithm
function TailApprox(X, k,B, d, δ)

xmin ← min|Xi,j |>0|Xi,j|
ε← xmin

wh2
δ

if X is s-sparse in every column then

λ0 ← xmin

2wh2

Ω←MinCostFlow(GX,k,λ0)

if Ω ∈ Ak,B then

return XΩ

λr ← 0

λl ← ‖X‖1

while λl − λr > ε do

λm ← (λl + λr)/2

Ω←MinCostFlow(GX,k,λm)

if sEMD(XΩ) ≥ B and sEMD(XΩ) ≤ dB then

return XΩ

if sEMD(XΩ) > B then

λr ← λm

else

λl ← λm

Ω←MinCostFlow(GX,k,λl)

return XΩ
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We now prove the main result for TailApprox: a bicriterion approximation guarantee

that allows us to use TailApprox as a tail approximation algorithm. We show that one of

the following two cases occurs:

• We get a solution with tail approximation error at least as good as the best support

with support-EMD B. The support-EMD of our solution is at most a constant times

larger than B.

• We get a solution with bounded tail approximation error and support-EMD at most

B.

Before we prove the main theorem, we show that TailApprox always returns the optimal

result for signals X ∈ Ak,B, i.e. X itself.

Lemma 34. For any X ∈ Ak,B, TailApprox(X, k,B, d, δ) returns X for any d and δ.

Proof. Since X ∈ Ak,B, every column of X is s-sparse. We show that the following call

MinCostFlow(GX,k,λmin
) returns an Ω ∈ Ak,B with supp(X) ⊆ Ω.

First, we prove that MinCostFlow(GX,k,λmin
) returns a support set covering all nonzero

entries in X. As a result, supp(X) ⊆ Ω.

Let Γ be any s-column-sparse support set not covering all entries in X and let ∆ be any s-

column-sparse support set covering all entries in X. So ‖X −XΓ‖ ≥ xmin and ‖X −X∆‖ =

0. Hence

−‖X∆‖1 + λ0sEMD(X∆) = −‖X∆‖+
xmin

2wh2
sEMD(X∆)

< −‖X∆‖1 + xmin

≤ −‖XΓ‖1

≤ −‖XΓ‖1 + λ0sEMD(XΓ) .

So the cost of the flow corresponding to ∆ is always less than the cost of the flow corre-

sponding to Γ.
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Next, we show that among the support sets covering all nonzero entries in X, MinCost-

Flow(GX,k,λmin
) returns a support set with minimum support-EMD.

Since X ∈ Ak,B, there is a Γ ∈ Ak,B with ‖XΓ‖1 = ‖X‖1. Moreover, Ω is the support

returned by MinCostFlow(GX,k,λmin
), so we have ‖XΩ‖1 = ‖X‖1 and

− ‖XΩ‖1 + λ0sEMD(XΩ) ≤ −‖XΓ‖+ λ0sEMD(XΓ) . (6.7)

So sEMD(XΩ) ≤ sEMD(XΓ) ≤ B. Since XΩ is also s-sparse in each column, Ω ∈ Ak,B.

We now prove the main theorem. In order to simplify the derivation, we introduce the

following shorthands. The intuition for the subscripts l and r is that the corresponding

variables correspond to bounds on the optimal solution from the left and right in the plane

of supports.

• Ωl = MinCostFlow(GX,k,λl)

• Ωr = MinCostFlow(GX,k,λr)

• bl = sEMD(XΩl
)

• br = sEMD(XΩr)

• tl = ‖X −XΩl
‖1

• tr = ‖X −XΩr‖1

Theorem 35. Let Ω be the support returned by TailApprox(X, k,B, d, δ). Let OPT be

the tail approximation error of the best support with EMD-budget at most B, i.e. OPT =

minΓ∈Ak,B
‖X −XΓ‖1. Then at least one of the following two guarantees holds for Ω:

• B ≤ sEMD(XΩ) ≤ dB and ‖X −XΩ‖1 ≤ OPT .

• sEMD(XΩ) ≤ B and ‖X −XΩ‖1 ≤ (1 + δ) d
d−1

OPT .
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Proof. If X ∈ Ak,B, TailApprox returns X, which means both guarantees hold (see

lemma 34). If X /∈ Ak,B but X is s-sparse in each column, the following call MinCost-

Flow(GX,k,λmin
) returns an Ω covering all nonzero entries in X and using the minimum

amount of support-EMD among all supports covering all nonzero entries in X (again, see

lemma 34). However, since X /∈ Ak,B, we have sEMD(XΩ) > B and hence Ω /∈ Ak,B. So

TailApprox does not terminate early for X /∈ Ak,B. In the following, we assume that

X /∈ Ak,B and hence OPT ≥ xmin.

In the binary search, we maintain the invariant that bl ≤ B and br > B. Note that this

is true before the first iteration of the binary search due to our initial choices of λr and λl1.

Moreover, our update rule maintains the invariant.

We now consider the two ways of leaving the binary search. If we find an Ω with

sEMD(XΩ) ≥ B and sEMD(XΩ) ≤ dB, this also means ‖X −XΩ‖1 ≤ OPT due to convexity

of the convex hull of supports. Hence the first guarantee in the theorem is satisfied.

If λl − λr ≤ ε, we return Ω = Ωl and hence the sEMD(XΩ) ≤ B part of the second

guarantee is satisfied. We now prove the bound on ‖X −XΩ‖1 = tl. Figure 6-3 illustrates

the geometry of the following argument.

Let POPT be the point corresponding to a support with tail error OPT and minimum

support-EMD, i.e. the optimal solution. Since the point (br, tr) was the result of the corre-

sponding MinCostFlow(GX,k,λr), POPT has to lie above the line with slope −λr through

(br, tr). Moreover, POPT has to have x-coordinate less than B. We can use these facts to

establish the following bound on OPT :

OPT ≥ tr + λr(br −B) . (6.8)

Let λ be the slope of the line through (tr, br) and (tl, bl), i.e.

λ =
tr − tl
br − bl

. (6.9)

1Intuitively, our initial choices make the support-EMD either very cheap or very expensive compared to
the tail approximation error.
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Then we have λr ≤ −λ ≤ λl. Together with λl − λr ≤ ε this gives

λr ≥
tl − tr
br − bl

− ε . (6.10)

We now use this bound on λr to derive a bound on OPT :

OPT ≥ tr + λr(br −B) (6.11)

≥ tr + (br −B)
tl − tr
br − bl

− ε(br −B) (6.12)

≥ tr + (br −B)
tl − tr
br

− ε(wh2 −B) (6.13)

≥ tl −
B

br
(tl − tr)− ε(wh2 −B) (6.14)

≥ tl −
B

dB
tl −

xmin

wh2
δ(wh2 −B) (6.15)

≥ d− 1

d
tl − xminδ (6.16)

≥ d− 1

d
tl − δOPT . (6.17)

And hence

tl ≤ (1 + δ)
d

d− 1
OPT , (6.18)

which shows that the second guarantee of the theorem is satisfied.

We now analyze the running time of TailApprox. For simplicity, we assume that

h = Ω(logw), i.e. the matrix X is not very wide and low.

Theorem 36. TailApprox runs in O(snh log
‖X‖1n
xminδ

) time.

Proof. We can solve our instances of the min-cost flow problem by finding s augmenting

paths because all edges and nodes have unit capacity. Moreover, GX,k,λ is a directed acyclic

graph, so we can compute the initial node potentials in linear time. Each augmenting path
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(tl, bl)

(tr, br)

B0

tail

EMD

−λr

−λl

OPT ∗

Figure (6-3): The local region of the convex hull during the binary search.
The point (tl, bl) corresponds to MinCostFlow(GX,k,λl) and (tr, br) cor-
responds to MinCostFlow(GX,k,λr). All support points between the two
points have to lie above the dashed lines with slopes −λl and −λr. We also
use the fact that the optimal support has to have a x-coordinate between bl
and B and a y-coordinate below tl. In the proof of theorem 35 we use only
the line corresponding to λr, which leaves the gray area. As a result, OPT ∗

is a lower bound on OPT .
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can then be found with a single run of Dijkstra’s algorithm, which costs O(wh log(wh)+wh2)

time.

The binary search takes at most

log
‖X‖1

ε
= log

‖X‖nh
xminδ

(6.19)

iterations. Using n = wh gives the stated running time.

We can now conclude that TailApprox satisfies the definition of a tail approximation

oracle (see definition 16).

Corollary 37. Let δ ≥ 0 and d = 1 + 1
c2/(1+δ)− 1

. Then TailApprox is a (c, (k, dB))-tail

approximation algorithm.

Proof. Let X ′ ∈ Rh×w with X ′i,j = X2
i,j. We run TailApprox with parameters X ′, k, B, d

and δ. Let Ω be the support returned by TailApprox.

The tail approximation guarantee follows directly from theorem 35. Note that we can

not control which of the two guarantees the algorithm returns. However, in any case we have

sEMD(XΩ) ≤ dB, so Ω ∈ Ak,dB.

Moreover, note that (1 + δ) d
d−1

= c2. So we get the following `1-guarantee:

‖x′ − x′Ω‖1 ≤ c2 min
x∗∈Ak,B

‖x′ − x∗‖1 , (6.20)

which directly implies

‖x− xΩ‖ ≤ c min
x∗∈Ak,B

‖x− x∗‖ . (6.21)
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Chapter 7

Compressive sensing with the EMD

model

We now bring the results from the previous chapters together: we show that our EMD-model

can be used for model-based compressive sensing and that doing so significantly reduces the

number of measurements necessary for recovering signals in our model. The main result

is the theoretical guarantee which builds on AMIHT and the head and tail approximation

algorithms for the EMD model. Moreover, we also present results from experiments which

empirically validate the performance of our model. The algorithms used in the experiment

are from an earlier paper [14] that predates the main theoretical developments for the EMD

model. Therefore, the experiments are based on slightly different algorithms than those

described in the previous chapters.

7.1 Theoretical guarantee

The main theoretical result is the following recovery guarantee.

Theorem 38. Let x ∈ Ak,B be an arbitrary signal in the EMD model with dimension n = wh

and B = O(k). Let Φ ∈ Rm×n be a measurement matrix with i.i.d. Gaussian entries and let

y ∈ Rm be a noisy measurement vector, i.e. y = Φx+ e with arbitrary e ∈ Rm. Then we can
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recover a signal approximation x̂ ∈ Ak,2B satisfying

‖x− x̂‖2 ≤ C‖e‖2 (7.1)

for some constant C from O(k log log k
w

) measurements.

Moreover, the recovery algorithm runs in time O(snh log ‖x‖‖e‖ (B + d log(‖x‖n))) if x, Φ

and e are specified with at most d bits of precision.

Proof. We use AMIHT, TailApprox and HeadApprox. The output x̂ of AMIHT is the

result of TailApprox with parameters k, B and cT . As shown in corollary 21, cT = 1.5

suffices for geometric convergence of AMIHT. With this choice of cT , TailApprox is a

(1.5, (k, 2B))-tail approximation algorithm (corollary 37 and choosing δ = 0.1). Hence x̂ ∈

Ak,2B.

We now show that m = O(k log log k
w

) suffices for Φ to have the (δ, t)-model-RIP for

t = fH(p ⊕ fT (p)) ⊕ p ⊕ fT (p). Note that for the EMD-model, we have p = (k,B) and

Ap⊕ q ⊆ Ap+q (theorem 13), so we are interested in t = fH(p+ fT (p)) + p+ fT (p).

For cH = 0.95 (corollary 21), HeadApprox is a (0.95, (38k, 38dHseB))-head approxi-

mation oracle. So we get t = (k′, B′) with k′ = Θ(k) and B′ = Θ(B log s).

Using the sampling bound from theorem 14 we get

log ak′,B′ = O(k′ log
B′

k′
) (7.2)

= O(k log log s) (7.3)

= O(k log log
k

w
) . (7.4)

Combining this with fact 4 shows that m = O(k log log k
w

) is sufficient for Φ to have the

desired (δ, t)-model-RIP for fixed δ.

Therefore, all assumptions in the analysis of AMIHT are satisfied. Using corollary 21

with a sufficiently large t (e.g. 25 log ‖x‖‖e‖ ) gives the desired approximation error bound with

C = 152.
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The running time bound follows directly from this choice of t, theorem 28 and theorem 36.

Note that this measurement bound m = O(k log log k
w

) is a significant improvement over

the standard compressive sensing measurement bound m = O(k log n
k
).

7.2 Experiments

Before fully developing the theory of the EMD-model, we conducted several experiments

to test the performance of our model. For these experiments, we used algorithms that are

conceptually similar to AMIHT and TailApprox but do not come with recovery guaran-

tees. Due to their similarity, we do not explain the algorithms here in detail. Appendix A

contains the relevant pseudocode. The following results show that the EMD-model enables

recovery from far fewer measurements than standard compressive sensing. Note that the ex-

periments are not an evaluation of the algorithms introduced in previous chapters (AMIHT,

HeadApprox and TailApprox).

The main goal of using model-based compressive sensing (or even compressive sensing

in general) is reducing the number of measurements necessary for successful recovery of

the signal. Hence we demonstrate the advantage of our model by showing that signals

in the EMD model can be recovered from fewer measurements than required by standard

compressive sensing methods. In each experiment, we fix a signal x in our model, generate a

random Gaussian measurement matrix Φ and then feed Φx as input into a range of recovery

algorithms. We compare the popular general sparse recovery algorithms CoSaMP [12] and

IHT [2] with our variants EMD-CoSaMP and EMD-IHT (see appendix A).

Figure 7-1 shows the result of a single experiment with a signal of size w = 10, h = 100.

The column sparsity is s = 2, which gives a total sparsity of k = 20. The support-EMD

of the signal is 18 and we run our algorithms with B = 20. The figure shows the result of

recovering the signal from m = 80 measurements. While standard CoSaMP fails, our variant

recovers the signal perfectly.
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Original CoSaMP EMD−CoSaMP

Figure (7-1): We compare the recovery performance of CoSaMP and EMD-
CoSaMP on the same signal and measurement matrix. (left) Original image
with parameters h = 100, w = 10, k = 2, B = 20, m = 80. (center) Re-
covery result using CoSaMP. (right) Recovery result using EMD-CoSaMP.
CoSaMP fails to recover the signal while our algorithm recovers it perfectly.

We also study the trade-off between the number of measurements and the probability of

successful recovery. Here, we define successful recovery in terms of the relative `2-error. We

declare an experiment as successful if the signal estimate x̂ satisfies ‖x−x̂‖‖x‖ ≤ 0.05. We vary the

number of measurements from 60 to 150 in increments of 10 and run 100 independent trials

for each value of m. For each trial, we use the same signal and a new randomly generated

measurement matrix (so the probability of recovery is with respect to the measurement

matrix). The results in figure 7-2 show that our algorithms recover the signal successfully

from far fewer measurements than the unmodified versions of CoSaMP and IHT.
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Figure (7-2): Comparison of several reconstruction algorithms. The signal
is the same as in Figure 7-1. We declare the signal as recovered successfully
if the signal estimate is within a relative `2-distance of 5% of the original
signal. The probability of recovery is with respect to the measurement
matrix and averaged over 100 trial runs. The recovery algorithms using the
EMD model have a higher probability of recovery than standard algorithms.
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Chapter 8

Conclusion

We have proposed the EMD-model, a structured sparsity model for signals that – when

seen as a matrix – have similar support in neighboring columns. Due to its generality, the

EMD-model is potentially useful in a wide range of settings. Moreover, the EMD-model is a

generalization of existing approaches to measuring how much the support of a set of vectors

changes. The EMD budget parameter gives the model additional flexibility: varying the

EMD budget allows us to interpolate between block sparsity and a simple sparsity constraint

on each column.

In order to use the EMD-model in compressive sensing, we have extended the model-based

compressive sensing framework to approximate projection oracles. This extension allows us

to use model-based compressive sensing in cases where a optimal model projections are

intractable but approximations are still feasible. For the EMD-model, we have introduced

corresponding head and tail approximation algorithms that allow us to recover signals in our

model from noisy compressive measurements. For reasonable values of the EMD budget,

we can show that we need asymptotically fewer measurements than standard compressive

sensing. Our experiments show that this advantage also holds in practice.
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8.1 Future work

We now outline directions for future work based on the EMD-model.

Approximately sparse signals Currently, our recovery guarantees only apply to mea-

surements of the form y = Φx + e where x is in the EMD-model. In practice, signals are

typically not exactly k-sparse but rather compressible, i.e. the signal has a small number of

large components and then decays quickly. This also means that a compressible signal x is

well-approximated by the closest x′ in the model and consequently finding the best approx-

imation in the model can still result in a useful recovery result. Extending the EMD-model

and AMIHT to model-compressible signals is the subject of further work.

Fault detection We have preliminary results indicating that the EMD-model is useful

for pattern recognition tasks such as fault detection in seismic processing. Images of the

subsurface usually consist of horizontal layers that sometimes have shear-like discontinuities,

so-called faults. Since faults often trap hydrocarbons, detecting faults is an important goal

in seismic processing. In our experiments, the tail projection algorithm was able to identify

the horizontal layers as paths through an image, which allows us to detect faults as large

local spikes in the EMD between neighboring columns.

Better head approximation algorithms Currently, our head approximation algorithm

incurs an increase in the EMD budget by a factor of Θ(log s), which leads to the log log k
w

term in the necessary number of measurements O(k log log k
w

). A (c, (O(k), O(B)))-head

approximation algorithm would bring the sample complexity in the B = O(k) regime down

to O(k), which is optimal for a k-sparse signal.
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Appendix A

Experimental algorithms

The algorithms here are used for the experiments in section 7.2. While they do not come

with theoretical guarantees, EMDFlow can be seen as a variant of TailApprox. EMD-

CoSaMP and EMD-IHT are the standard variants of CoSaMP [12] and IHT [2] form

model-based compressive sensing [1]. However, we use them here with an approximate

model projection algorithm instead of an optimal model projection algorithm.

The min-cost flow routine in EMDFlow is implemented with the LEMON library [7].
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Algorithm 6 Approximate model projection algorithm
function EMDFlow(X, k,B)

for all (i, j) ∈ [h]× [w] do

X ′i,j ← X2
i,j

λl ← 0

λh ← 1

repeat

λh ← 2λh

Ω←MinCostFlow(GX′,k,λh)

until sEMD(X ′Ω) ≤ B

repeat

λm ← λh+λl
2

Ω←MinCostFlow(GX′,k,λm)

if sEMD(X ′Ω) > B then

λl ← λm

else

λh ← λm

until λh − λl ≤ ελ

Ω←MinCostFlow(GX′,k,λh)

return XΩ
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Algorithm 7 EMD-model version of CoSaMP
function EMD-CoSaMP(Φ, y, k, B)

x0 ← 0

r ← y

i← 0

while not converged do

i← i+ 1

e← ΦT r

Ω← supp(EMDFlow(e, 2k, 2B))

Γ← Ω ∪ supp(xi−1)

zΓ ← Φ†Γy

zΓC ← 0

xi ← EMDFlow(z, k, B)

r ← y − Φxi

return xi

Algorithm 8 EMD-model version of IHT
function EMD-IHT(Φ, y, k, B)

x0 ← 0

i← 0

while not converged do

xi+1 ← EMDFlow(xi + ΦT (y − Φxi), k, B)

i← i+ 1

return xi
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Appendix B

Counterexample for IHT with tail

approximation oracles

In order to present a simple explanation, we look at the standard k-sparse compressive

sensing setting1. Let a ∈ Rn and let T ′k(x) be a tail approximation oracle with the following

guarantee:

‖a− T ′k(a)‖ ≤ c‖a− Tk(a)‖ (B.1)

where c is an arbitrary constant and Tk is an optimal projection oracle, i.e. returns a k-

sparse vector with the k largest components of a. We now show that an “adversarial” tail

approximation oracle with T ′k(a) = 0 satisfies this definition for inputs a occurring in the

first iteration of IHT with high probability. This shows that IHT cannot make progress and

consequently we cannot recover the signal.

Recall that IHT with tail approximation oracle T ′ iterates

xi+1 ← T ′k(x
i + ΦT (y − Φxi)) , (B.2)

which in the first iteration gives

x1 ← T ′k(Φ
Ty) . (B.3)

1This counterexample is taken from a question on the problem set for the class 6.893 (Spring 2013),
which in turn was derived from research that lead to this thesis.
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We now look at the case that the signal x is 1-sparse with x1 = 1 and xi = 0 for i 6= 1,

i.e. x = e1. Given a measurement matrix Φ with (δ, O(1))-RIP for small δ, IHT needs

to perfectly recover x from Φx. Matrices Φ ∈ Rm×n with Φi,j = ±
√
m i.i.d. uniformly

at random are known to have this RIP for m = O(log n) with high probability (so called

Rademacher matrices). We prove that our adversarial tail approximation oracle satisfies

the tail approximation guarantee for its input a = ΦTΦe1 with high probability. Hence

x1 = x0 = 0 and IHT cannot make progress. Intuitively, in spite of the RIP, the tail of a

contains so much “noise” that the adversarial tail approximation oracle does not have to find

a good sparse support for a and can get away with simply returning 0.

Consider the components of the vector a ∈ Rn: ai is the inner product of the first column

of Φ with the i-th column of Φ. We have a1 = 1 and −1 ≤ ai ≤ 1 for i 6= 1. Hence Tk(a) = e1

is an optimal projection and so ‖a− Tk(a)‖2 = ‖a‖2− 1 We want to show that ‖a‖2 ≥ c2

c2−1
.

This statement is equivalent to

‖a‖2 ≤ c2(‖a‖2 − 1) , (B.4)

which then implies that T ′ satisfies the desired guarantee

‖a− T ′k(a)‖2 ≤ c2‖a− Tk(a)‖2 . (B.5)

Note that ‖a‖2 = 1 +
∑n

i=2 a
2
i , where the ai are independent. For i 6= 1, each ai is the

sum of m independent ± 1
m

random variables (p = 1/2). We have E[a2
i ] = 1

m
. We can use

Hoeffding’s inequality to show that
∑n

i=2 a
2
i does not deviate from its mean n−1

m
by more

than O(
√
n log n ) with high probability. Since m = O(log n), this shows that

‖a‖2 = 1 +
n∑
i=2

a2
i ≥

c2

c2 − 1
(B.6)

with high probability for sufficiently large n.
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