
Fast recovery from a union of subspaces

Chinmay Hegde
Iowa State University

Piotr Indyk
MIT

Ludwig Schmidt
MIT

Abstract

We address the problem of recovering a high-dimensional but structured vector from linear
observations in a general setting where the vector can come from an arbitrary union of subspaces.
This setup includes well-studied problems such as compressive sensing and low-rank matrix
recovery. We show how to design more efficient algorithms for the union-of-subspace recovery
problem by using approximate projections. Instantiating our general framework for the low-
rank matrix recovery problem gives the fastest provable running time for an algorithm with
optimal sample complexity. Moreover, we give fast approximate projections for 2D histograms,
another well-studied low-dimensional model of data. We complement our theoretical results
with experiments demonstrating that our framework also leads to improved time and sample
complexity empirically.

1 Introduction

Over the past decade, exploiting low-dimensional structure in high-dimensional problems has become
a highly active area of research in machine learning, signal processing, and statistics. In a nutshell,
the general approach is to utilize a low-dimensional model of relevant data in order to achieve
better prediction, compression, or estimation compared to a “black box” treatment of the ambient
high-dimensional space. For instance, the seminal work on compressive sensing and sparse linear
regression has shown how to estimate a sparse, high-dimensional vector from a small number of
linear observations that essentially depends only on the small sparsity of the vector, as opposed to its
large ambient dimension. Further examples of low-dimensional models are low-rank matrices, group-
structured sparsity, and general union-of-subspaces models, all of which have found applications in
problems such as matrix completion, principal component analysis, compression, and clustering.

These low-dimensional models have a common reason for their success: they capture important
structure present in real world data with a formal concept that is suitable for a rigorous mathematical
analysis. This combination has led to statistical performance improvements in several applications
where the ambient high-dimensional space is too large for accurate estimation from a limited number
of samples. However, exploiting the low-dimensional structure also comes at a cost: incorporating
the structural constraints into the statistical estimation procedure often results in a more challenging
algorithmic problems. Given the growing size of modern data sets, even problems that are solvable
in polynomial time can quickly become infeasible. This leads to the following important question:
Can we design efficient algorithms that combine (near)-optimal statistical efficiency with good
computational complexity?

In this paper, we make progress on this question in the context of recovering a low-dimensional
vector from noisy linear observations, which is the fundamental problem underlying both low-rank
matrix recovery and compressive sensing / sparse linear regression. While there is a wide range of

1

algorithms for these problems, two approaches for incorporating structure tend to be most common:
(i) convex relaxations of the low-dimensional constraint such as the `1- or the nuclear norm [19], and
(ii) iterative methods based on projected gradient descent, e.g., the IHT (Iterative Hard Thresholding)
or SVP (Singular Value Projection) algorithms [5, 15]. Since the convex relaxations are often also
solved with first order methods (e.g., FISTA or SVT [6]), the low-dimensional constraint enters both
approaches through a structure-specific projection or proximal operator. However, this projection /
proximal operator is often computationally expensive and dominates the overall time complexity
(e.g., it requires a singular value decomposition for the low-rank matrix recovery problem).

In this work, we show how to reduce the computational bottleneck of the projection step by
using approximate projections. Instead of solving the structure-specific projection exactly, our
framework allows us to employ techniques from approximation algorithms without increasing the
sample complexity of the recovery algorithm. While approximate projections have been used in prior
work, our framework is the first to yield provable algorithms for general union-of-subspaces models
(such as low-rank matrices) that combine better running time with no loss in sample complexity
compared to their counterparts utilizing exact projections. Overall, we make three contributions:

1. We introduce an algorithmic framework for recovering vectors from linear observations given
an arbitrary union-of-subspaces model. Our framework only requires approximate projections,
which leads to recovery algorithms with significantly better time complexity.

2. We instantiate our framework for the well-studied low-rank matrix recovery problem, which
yields a provable algorithm combining the optimal sample complexity with the best known
time complexity for this problem.

3. We also instantiate our framework for the problem of recovering 2D-histograms (i.e., piecewise
constant matrices) from linear observations, which leads to a better empirical sample complexity
than the standard approach based on Haar wavelets.

Our algorithmic framework generalizes recent results for structured sparse recovery [12, 13] and
shows that approximate projections can be employed in a wider context. We believe that these
notions of approximate projections are useful in further constrained estimation settings and have
already obtained preliminary results for structured sparse PCA. For conciseness, we focus on the
union-of-subspaces recovery problem in this paper.

Outline of the paper. In Section 2, we formally introduce the union-of-subspaces recovery
problem and state our main results. Section 3 then explains our algorithmic framework in more
detail and Section 4 instantiates the framework for low-rank matrix recovery. Section 5 concludes
with experimental results. Due to space constraints, we address our results for 2D histograms mainly
in Appendix C of the supplementary material.

2 Our contributions

We begin by defining our problem of interest. Our goal is to recover an unknown, structured vector
θ∗ ∈ Rd from linear observations of the form

y = Xθ∗ + e , (1)

2

where the vector y ∈ Rn contains the linear observations / measurements, the matrix X ∈ Rn×d is
the design / measurement matrix, and the vector e ∈ Rn is an arbitrary noise vector. The formal goal
is to find an estimate θ̂ ∈ Rd such that ‖θ̂ − θ∗‖2 ≤ C · ‖e‖2, where C is a fixed, universal constant
and ‖·‖2 is the standard `2-norm (for notational simplicity, we omit the subscript on the `2-norm in
the rest of the paper). The structure we assume is that the vector θ∗ belongs to a subspace model :

Definition 1 (Subspace model). A subspace model U is a set of linear subspaces. The set of vectors
associated with the subspace model U isM(U) = {θ | θ ∈ U for some U ∈ U}.

A subspace model is a natural framework generalizing many of the low-dimensional data models
mentioned above. For example, the set of sparse vectors with s nonzeros can be represented with(
d
s

)
subspaces corresponding to the

(
d
s

)
possible sparse support sets. The resulting problem of

recovering θ∗ from observations of the form (1) then is the standard compressive sensing / sparse
linear regression problem. Structured sparsity is a direct extension of this formulation in which we
only include a smaller set of allowed supports, e.g., supports corresponding to group structures.

Our framework also includes the case where the union of subspaces is taken over an infinite
set: we can encode the low-rank matrix recovery problem by letting U be the set of rank-r matrix
subspaces, i.e., each subspace is given by a set of r orthogonal rank-one matrices. By considering
the singular value decomposition, it is easy to see that every rank-r matrix can be written as the
linear combination of r orthogonal rank-one matrices.

Next, we introduce related notation. For a linear subspace U of Rd, let PU ∈ Rd×d be the
orthogonal projection onto U . We denote the orthogonal complement of the subspace U with U⊥

so that θ = PUθ + PU⊥θ. We extend the notion of adding subspaces (i.e., U + V = {u + v |u ∈
U and v ∈ V }) to subspace models: the sum of two subspace models U and V is U⊕V = {U+V |U ∈
U and V ∈ V}. We denote the k-wise sum of a subspace model with ⊕k U = U⊕ U⊕ . . .⊕ U.

Finally, we introduce a variant of the well-known restricted isometry property (RIP) for subspace
models. The RIP is a common regularity assumption for the design matrix X that is often used in
compressive sensing and low-rank matrix recovery in order to decouple the analysis of algorithms
from concrete sampling bounds.1 Formally, we have:

Definition 2 (Subspace RIP). Let X ∈ Rn×d, let U be a subspace model, and let δ ≥ 0. Then X
satisfies the (U, δ)-subspace RIP if for all θ ∈M(U) we have (1− δ)‖θ‖2 ≤ ‖Xθ‖2 ≤ (1 + δ)‖θ‖2.

2.1 A framework for recovery algorithms with approximate projections

Considering the problem (1) and the goal of estimating under the `2-norm, a natural algorithm is
projected gradient descent with the constraint setM(U). This corresponds to iterations of the form

θ̂i+1 ← PU(θ̂i − η ·XT (Xθ̂i − y)) (2)

where η ∈ R is the step size and we have extended our notation so that PU denotes a projection onto
the setM(U). Hence we require an oracle that projects an arbitrary vector b ∈ Rd into a subspace
model U, which corresponds to finding a subspace U ∈ U so that ‖b− PUb‖ is minimized. Recovery
algorithms of the form (2) have been proposed for various instances of the union-of-subspaces recovery

1Note that exact recovery from arbitrary linear observations is already an NP-hard problem in the noiseless case,
and hence regularity conditions on the design matrix X are necessary for efficient algorithms. While there are more
general regularity conditions such as the restricted eigenvalue property, we state our results here under the RIP
assumption in order to simplify the presentation of our algorithmic framework.

3

problem and are known as Iterative Hard Thresholding (IHT) [5], model-IHT [1], and Singular Value
Projection (SVP) [15]. Under regularity conditions on the design matrix X such as the RIP, these
algorithms find accurate estimates θ̂ from an asymptotically optimal number of samples. However,
for structures more complicated than plain sparsity (e.g., group sparsity or a low-rank constraint),
the projection oracle is often the computational bottleneck.

To overcome this barrier, we propose two complementary notions of approximate subspace
projections. Note that for an exact projection, we have that ‖b‖2 = ‖b− PUb‖2 + ‖PUb‖2. Hence
minimizing the “tail” error ‖b− PUb‖ is equivalent to maximizing the “head” quantity ‖PUb‖. Instead
of minimizing / maximizing these quantities exactly, the following definitions allow a constant factor
approximation:

Definition 3 (Approximate tail projection). Let U and UT be subspace models and let cT ≥ 0.
Then T : Rd → UT is a (cT ,U,UT)-approximate tail projection if the following guarantee holds for
all b ∈ Rd: The returned subspace U = T (b) satisfies ‖b− PUb‖ ≤ cT ‖b− PUb‖.

Definition 4 (Approximate head projection). Let U and UH be subspace models and let cH > 0.
Then H : Rd → UH is a (cH,U,UH)-approximate head projection if the following guarantee holds for
all b ∈ Rd: The returned subspace U = H(b) satisfies ‖PUb‖ ≥ cH‖PUb‖.

It is important to note that the two definitions are distinct in the sense that a constant-factor
head approximation does not imply a constant-factor tail approximation, or vice versa (to see
this, consider a vector with a very large or very small tail error, respectively). Another feature
of these definitions is that the approximate projections are allowed to choose subspaces from a
potentially larger subspace model, i.e., we can have U (UH (or UT). This is a useful property when
designing approximate head and tail projection algorithms as it allows for bicriterion approximation
guarantees.

We now state the main result for our new recovery algorithm. In a nutshell, we show that
using both notions of approximate projections achieves the same statistical efficiency as using exact
projections. As we will see in later sections, the weaker approximate projection guarantees allow us
to design algorithms with a significantly better time complexity than their exact counterparts. To
simplify the following statement, we defer the precise trade-off between the approximation ratios to
Section 3.

Theorem 5 (informal). Let H and T be approximate head and tail projections with constant
approximation ratios, and let the matrix X satisfy the (⊕cU, δ)-subspace RIP for a sufficiently large
constant c and a sufficiently small constant δ. Then there is an algorithm AS-IHT that returns an
estimate θ̂ such that ‖θ̂− θ∗‖ ≤ C‖e‖. The algorithm requires O(log‖θ‖/‖e‖) multiplications with X
and XT , and O(log‖θ‖/‖e‖) invocations of H and T .

Up to constant factors, the requirements on the RIP of X in Theorem 5 are the same as for
exact projections. As a result, our sample complexity is only affected by a constant factor through
the use of approximate projections, and our experiments in Section 5 show that the empirical loss
in sample complexity is negligible. Similarly, the number of iterations O(log‖θ‖/‖e‖) is also only
affected by a constant factor compared to the use of exact projections [5, 15]. Finally, it is worth
mentioning that using two notions of approximate projections is crucial: prior work in the special
case of structured sparsity has already shown that only one type of approximate projection is not
sufficient for strong recovery guarantees [13].

4

2.2 Low-rank matrix recovery

We now instantiate our new algorithmic framework for the low-rank matrix recovery problem.
Variants of this problem are widely studied in machine learning, signal processing, and statistics, and
are known under different names such as matrix completion, matrix sensing, and matrix regression.
As mentioned above, we can incorporate the low-rank matrix structure into our general union-of-
subspaces model by considering the union of all low-rank matrix subspaces. For simplicity, we state
the following bounds for the case of square matrices, but all our results also apply to rectangular
matrices. Formally, we assume that θ∗ ∈ Rd is the vectorized form of a rank-r matrix Θ∗ ∈ Rd1×d1
where d = d2

1 and typically r � d1. Seminal results have shown that it is possible to achieve
the subspace-RIP for low-rank matrices with only n = O(r · d1) linear observations, which can be
much smaller than the total dimensionality of the matrix d2

1. However, the bottleneck in recovery
algorithms is often the singular value decomposition (SVD), which is necessary for both exact
projections and soft thresholding operators and has a time complexity of O(d3

1).
Our new algorithmic framework for approximate projections allows us to leverage recent results

on approximate SVDs. We show that it is possible to compute both head an tail projections for
low-rank matrices in Õ(r · d2

1) time, which is significantly faster than the O(d3
1) time for an exact

SVD in the relevant regime where r � d1. Overall, we get the following result.

Theorem 6. Let X ∈ Rn×d be a matrix with subspace-RIP for low-rank matrices, and let TX denote
the time to multiply a d-dimensional vector with X or XT . Then there is an algorithm that recovers
an estimate θ̂ such that ‖θ̂ − θ∗‖ ≤ C‖e‖. Moreover, the algorithm runs in time Õ(TX + r · d2

1).

In the regime where multiplication with the matrix X is fast, the time complexity of the projection
dominates the time complexity of the recovery algorithms. For instance, structured observations
such as a subsampled Fourier matrix achieve TX = Õ(d2

1); see Appendix D for details. Here, our
algorithm runs in time Õ(r · d2

1), which is the first provable running time faster than the O(d3
1)

bottleneck given by a single exact SVD. While prior work has suggested the use of approximate SVDs
in low-rank matrix recovery [9], our results are the first that give a provably better time complexity
for this combination of projected gradient descent and approximate SVDs. Hence Theorem 6 can be
seen as a theoretical justification for the heuristic use of approximate SVDs.

Finally, we remark that Theorem 6 does not directly cover the low-rank matrix completion
case because the subsampling operator does not satisfy the low-rank RIP [9]. To clarify our use of
approximate SVDs, we focus on the RIP setting in our proofs, similar to recent work on low-rank
matrix recovery [7, 22]. We believe that similar results as for SVP [15] also hold for our algorithm,
and our experiments in Section 5 show that our algorithm works well for low-rank matrix completion.

2.3 2D-histogram recovery

Next, we instantiate our new framework for 2D-histograms, another natural low-dimensional model.
As before, we think of the vector θ∗ ∈ Rd as a matrix Θ ∈ Rd1×d1 and assume the square case for
simplicity (again, our results also apply to rectangular matrices). We say that Θ is a k-histogram if the
coefficients of Θ can be described as k axis-aligned rectangles on which Θ is constant. This definition
is a generalization of 1D-histograms to the two-dimensional setting and has found applications in
several areas such as databases and density estimation. Moreover, the theoretical computer science
community has studied sketching and streaming algorithms for histograms, which is essentially the
problem of recovering a histogram from linear observations. While the wavelet tree model with Haar

5

wavelets give the correct sample complexity of n = O(k log d) for 1D-histograms, the wavelet tree
approach incurs a suboptimal sample complexity of O(k log2 d) for 2D-histograms. It is possible to
achieve the optimal sample complexity O(k log d) also for 2D-histograms, but the corresponding
exact projection requires a complicated dynamic program (DP) with time complexity O(d5

1k
2), which

is impractical for all but very small problem dimensions [18].
We design significantly faster approximate projection algorithms for 2D histograms. Our approach

is based on an approximate DP [18] that we combine with a Lagrangian relaxation of the k-rectangle
constraint. Both algorithms have parameters for controlling the trade-off between the size of
the output histogram, the approximation ratio, and the running time. As mentioned above, the
bicriterion nature of our approximate head and tail guarantees becomes useful here. In the following
two theorems, we let Uk be the subspace model of 2D histograms consisting of k-rectangles.

Theorem 7. Let ζ > 0 and ε > 0 be arbitrary. Then there is an (1 + ε,Uk,Uc·k)-approximate tail
projection for 2D histograms where c = O(1/ζ2ε). Moreover, the algorithm runs in time Õ(d1+ζ).

Theorem 8. Let ζ > 0 and ε > 0 be arbitrary. Then there is an (1− ε,Uk,Uc·k)-approximate head
projection for 2D histograms where c = O(1/ζ2ε). Moreover, the algorithm runs in time Õ(d1+ζ).

Note that both algorithms offer a running time that is almost linear, and the small polynomial
gap to a linear running time can be controlled as a trade-off between computational and statistical
efficiency (a larger output histogram requires more samples to recover). While we provide rigorous
proofs for the approximation algorithms as stated above, we remark that we do not establish an
overall recovery result similar to Theorem 6. The reason is that the approximate head projection
is competitive with respect to k-histograms, but not with the space Uk ⊕ Uk, i.e., the sum of two
k-histogram subspaces. The details are somewhat technical and we give a more detailed discussion in
Appendix C.3. However, under a natural structural conjecture about sums of k-histogram subspaces,
we obtain a similar result as Theorem 6. Moreover, we experimentally demonstrate that the sample
complexity of our algorithms already improves over wavelets for k-histograms of size 32× 32.

Finally, we note that our DP approach also generalizes to γ-dimensional histograms for any
constant γ ≥ 2. As the dimension of the histogram structure increases, the gap in sample complexity
between our algorithm and the prior wavelet-based approach becomes increasingly wide and scales
as O(k log d) vs O(k logγ d). For simplicity, we limit our attention to the 2D case described above.

2.4 Related work

Recently, there have been several results on approximate projections in the context of recovering
low-dimensional structured vectors. (see [12, 13] for an overview). While these approaches also work
with approximate projections, they only apply to less general models such as dictionary sparsity [12]
or structured sparsity [13] and do not extend to the low-rank matrix recovery problem we address.
Among recovery frameworks for general union-of-subspaces models, the work closest to ours is [4],
which also gives a generalization of the IHT algorithm. It is important to note that [4] addresses
approximate projections, but requires additive error approximation guarantees instead of the weaker
relative error approximation guarantees required by our framework. Similar to the structured sparsity
case in [13], we are not aware of any algorithms for low-rank or histogram projections that offer
additive error guarantees faster than an exact projection. Overall, our recovery framework can be
seen as a generalization of the approaches in [13] and [4].

6

Low-rank recovery has received a tremendous amount of attention over the past few years, so we
refer the reader to the recent survey [9] for an overview. When referring to prior work on low-rank
recovery, it is important to note that the fastest known running time for an exact low-rank SVD
(even for rank 1) of a d1 × d2 matrix is O(d1d2 min(d1, d2)). Several papers provide rigorous proofs
for low-rank recovery using exact SVDs and then refer to Lanczos methods such as PROPACK
[16] while accounting a time complexity of O(d1d2r) for a rank-r SVD. While Lanczos methods can
be faster than exact SVDs in the presence of singular value gaps, it is important to note that all
rigorous results for Lanczos SVDs either have a polynomial dependence on the approximation ratio
or singular value gaps [20, 17]. No prior work on low-rank recovery establishes such singular value
gaps for the inputs to the SVD subroutines (and such gaps would be necessary for all iterates in the
recovery algorithm). In contrast, we utilize recent work on gap-independent approximate SVDs [17],
which enables us to give rigorous guarantees for the entire recovery algorithm. Our results can be
seen as justification for the heuristic use of Lanczos methods in prior work.

The paper [2] contains an analysis of an approximate SVD in combination with an iterative
recovery algorithm. However, [2] only uses an approximate tail projection, and as a result the
approximation ratio cT must be very close to 1 in order to achieve a good sample complexity. Overall,
this leads to a time complexity that does not provide an asymptotic improvement over using exact
SVDs.

Recently, several papers have analyzed a non-convex approach to low-rank matrix recovery via
factorized gradient descent [3, 7, 23, 24, 22]. While these algorithms avoid SVDs in the iterations of
the gradient method, the overall recovery proofs still require an exact SVD in the initialization step.
In order to match the sample complexity of our algorithm or SVP, the factorized gradient methods
require multiple SVDs for this initialization [7, 22]. As a result, our algorithm offers a better provable
time complexity. We remark that [7, 22] use SVP for their initialization, so combining our faster
version of SVP with factorized gradient descent might give the best overall performance.

As mentioned earlier, 1D and 2D histograms have been studied extensively in several areas such
as databases [14, 8] and density estimation. They are typically used to summarize “count vectors”,
with each coordinate of the vector θ corresponding the number of items with a given value in some
data set. Computing linear sketches of such vectors, as well as efficient methods for recovering
histogram approximations from those sketches, became key tools for designing space efficient dynamic
streaming algorithms [11, 10, 21]. For 1D histograms it is known how to achieve the optimal sketch
length bound of n = O(k log d): it can be obtained by representing k-histograms using a tree of
O(k log d) wavelet coefficients as in [10] and then using the structured sparse recovery algorithm of [1].
However, applying this approach to 2D histograms leads to a sub-optimal bound of O(k log2 d).

3 An algorithm for recovery with approximate projections

We now introduce our algorithm for recovery from general subspace models using only approximate
projections. The pseudo code is formally stated in Algorithm 1 and can be seen as a generalization
of IHT [5]. Similar to IHT, we give a version without step size parameter here in order to simplify
the presentation (it is easy to introduce a step size parameter in order to fine-tune constant factors).
To clarify the connection with projected gradient descent as stated in Equation (2), we use H(b) (or
T (b)) as a function from Rd to Rd here. This function is then understood to be b 7→ PH(b)b, i.e., the
orthogonal projection of b onto the subspace identified by H(b).

The main difference to “standard” projected gradient descent is that we apply a projection to

7

Algorithm 1 Approximate Subspace-IHT
1: function AS-IHT(y,X, t)
2: θ̂0 ← 0
3: for i← 0, . . . , t do
4: bi ← XT (y −Xθ̂i)
5: θ̂i+1 ← T (θ̂i +H(bi))

6: return θ̂ ← θ̂t+1

both the gradient step and the new iterate. Intuitively, the head projection ensures two points: (i)
The result of the head projection on bi still contains a constant fraction of the residual θ∗ − θ̂i (see
Lemma 13 in Appendix A). (ii) The input to the tail approximation is close enough to the constraint
set U so that the tail approximation does not prevent the overall convergence. In a nutshell, the head
projection “denoises” the gradient so that we can then safely apply an approximate tail projection
(as pointed out in [13], only applying an approximate tail projection fails precisely because of “noisy”
updates). Formally, we obtain the following theorem for each iteration of AS-IHT (see Appendix
A.1 for the corresponding proof):

Theorem 9. Let θ̂i be the estimate computed by AS-IHT in iteration i and let ri+1 = θ∗ − θ̂i+1 be
the corresponding residual. Moreover, let U be an arbitrary subspace model. We also assume:
• y = Xθ∗ + e as in Equation (1) with θ∗ ∈M(U).
• T is a (cT ,U,UT)-approximate tail projection.
• H is a (cH,U⊕ UT ,UH)-approximate head projection.
• The matrix X satisfies the (U⊕ UT ⊕ UH, δ)-subspace RIP.

Then the residual error of the next iterate, i.e., ri+1 = θ∗ − θ̂i+1 satisfies∥∥ri+1
∥∥ ≤ η

∥∥ri∥∥+ ρ‖e‖ ,

where η = (1 + cT)

(
δ +

√
1− η2

0

)
, ρ = (1 + cT)

(
η0ρ0√
1− η2

0

+
√

1 + δ

)
,

η0 = cH(1− δ)− δ , and ρ0 = (1 + cH)
√

1 + δ .

The important conclusion of Theorem 9 is that AS-IHT still achieves linear convergence when
the approximation ratios cT , cH are sufficiently close to 1 and the RIP-constant δ is sufficiently small.
For instance, our approximation algorithms for both low-rank matrices offer such approximation
guarantees. We can also achieve a sufficiently small value of δ by using a larger number of linear
observations in order to strengthen the RIP guarantee (see Appendix D). Hence the use of approximate
projections only affects the theoretical sample complexity bounds by constant factors. Moreover,
our experiments show that approximate projections achieve essentially the same empirical sample
complexity as exact projections (see Section 5).

Given sufficiently small / large constants cT , cH, and δ, it is easy to see that the linear convergence
implied by Theorem 9 directly gives the recovery guarantee and bound on the number of iterations
stated in Theorem 5 (see Appendix A.1). However, in some cases it might not be possible to design
approximation algorithms with constants cT and cH sufficiently close to 1 (in constrast, increasing
the sample complexity by a constant factor in order to improve δ is usually a direct consequence

8

of the RIP guarantee or similar statistical regularity assumptions). In order to address this issue,
we show how to “boost” an approximate head projection so that the new approximation ratio is
arbitrarily close to 1. While this also increases the size of the resulting subspace model, this increase
usually affects the sample complexity only by constant factors as before. Note that for any fixed
cT , setting cH sufficiently close to 1 and δ sufficiently small leads to a convergence rate η < 1 (c.f.
Theorem 9). Hence head boosting enables a linear convergence result for any initial combinations of
cT and cH while only increasing the sample complexity by a constant factor (see Appendix A.3).
Formally, we have the following theorem for head boosting, the proof of which we defer to Appendix
A.2.

Theorem 10. Let H be a (cH,U,UH)-approximate head projection running in time O(T), and let
ε > 0. Then there is a constant c = cε,cH that depends only on ε and cH such that we can construct
a (1− ε,U,⊕cUH)-approximate head projection running in time O(c(T + T ′1 + T ′2)) where T ′1 is the
time needed to apply a projection onto a subspace in ⊕cUH, and T ′2 is the time needed to find an
orthogonal projector for the sum of two subspaces in ⊕cUH.

We note that the idea of head boosting has already appeared in the context of structured sparse
recovery [13]. However, the proof of Theorem 10 is more involved because the subspace in a general
subspace model can have arbitrary angles (for structured sparsity, the subspaces are either parallel
or orthogonal in each coordinate).

4 Low-rank matrix recovery

We now instantiate our framework for recovery from a subspace model to the low-rank matrix
recovery problem. Since we already have proposed the top-level recovery algorithm in the previous
section, we only have to provide the problem-specific head and tail approximation algorithms here.
We use the following result from prior work on approximate SVDs.

Fact 11 ([17]). There is an algorithm ApproxSVD with the following guarantee. Let A ∈ Rd1×d2
be an arbitrary matrix, let r ∈ N be the target rank, and let ε > 0 be the desired accuracy. Then with
probability 1− ψ, ApproxSVD(A, r, ε) returns an orthonormal set of vectors z1, . . . , zr ∈ Rd1 such
that for all i ∈ [r], we have ∣∣zTi AAT zi − σ2

i

∣∣ ≤ εσ2
r+1 , (3)

where σi is the i-th largest singular value of A. Furthermore, let Z ∈ Rd1×r be the matrix with
columns zi. Then we also have∥∥A− ZZTA∥∥

F
≤ (1 + ε)‖A−Ar‖F , (4)

where Ar is the best rank-r Frobenius-norm approximation of A. Finally, the algorithm runs in time
O
(
d1d2r log(d2/ψ)√

ε
+ d1r2 log2(d2/ψ)

ε + r3 log3(d2/ψ)

ε3/2

)
.

It is important to note that the above results hold for any input matrix and do not require
singular value gaps. The guarantee (4) directly gives a tail approximation guarantee for the
subspace corresponding to the matrix ZZTA. Moreover, we can convert the guarantee (3) to a head
approximation guarantee (see Theorem 18 in Appendix B for details). Since the approximation ε
only enters the running time in the approximate SVD, we can directly combine these approximate

9

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Oversampling ratio n/r(d1 + d2)

P
ro

ba
bi

lit
y

of
re

co
ve

ry

Matrix recovery

Exact SVD
PROPACK
Krylov (1 iters)
Krylov (8 iters)

5 6 7 8 9 10
0

50

100

150

200

Oversampling ratio n/rd1

R
un

ni
ng

ti
m

e
(s

ec
)

Matrix completion

PROPACK
LinearTimeSVD
Krylov (2 iters)

Figure 1: Left: Results for a low-rank matrix recovery experiment using subsampled Fourier
measurements. SVP / IHT with one iteration of a block Krylov SVD achieves the same phase
transition as SVP with an exact SVD. Right: Results for a low-rank matrix completion problem.
SVP / IHT with a block Krylov SVD achieves the best running time and is about 4 – 8 times faster
than PROPACK.

projections with Theorem 9, which then yields Theorem 6 (see Appendix B.1 for details).2 Empirically,
we show in the next section that a very small number of iterations in ApproxSVD already suffices
for accurate recovery.

5 Experiments

We now investigate the empirical performance of our proposed algorithms. We refer the reader to
Appendix E for more details about the experiments and results for 2D histograms.

Considering our theoretical results on approximate projections for low-rank recovery, one impor-
tant empirical question is how the use of approximate SVDs such as [17] affects the sample complexity
of low-rank matrix recovery. For this, we perform a standard experiment and use several algorithms
to recover an image of the MIT logo from subsampled Fourier measurements (c.f. Appendix D). The
MIT logo has also been used in prior work [19, 15]; we use an image with dimensions 200× 133 and
rank 6 (see Appendix E). We limit our attention here to variants of SVP because the algorithm
has good empirical performance and has been used as baseline in other works on low-rank recovery.
Figure 1 shows that SVP / IHT combined with a single iteration of a block Krylov SVD [17] achieves
the same phase transition as SVP with exact SVDs. This indicates that the use of approximate
projections for low-rank recovery is not only theoretically sound but can also lead to practical
algorithms. In Appendix E we also show corresponding running time results demonstrating that the
block Krylov SVD also leads to the fastest recovery algorithm.

We also study the performance of approximate SVDs for the matrix completion problem. We
generate a symmetric matrix of size 2048× 2048 with rank r = 50 and observe a varying number
of entries of the matrix. The approximation errors of the various algorithms are again comparable
and reported in Appendix E. Figure 1 shows the resulting running times for several sampling ratios.
Again, SVP combined with a block Krylov SVD [17] achieves the best running time. Depending on

2We remark that our definitions require head and tail projections to be deterministic, while the approximate SVD
is randomized. However, the running time of ApproxSVD depends only logarithmically on the failure probability,
and it is straightforward to apply a union bound over all iterations of AS-IHT. Hence we ignore these details here to
simplify the presentation.

10

the oversampling ratio, the block Krylov approach (now with two iterations) is 4 to 8 times faster
than SVP with PROPACK.

Acknowledgements

We would like to thank Michael Cohen, Cameron Musco, Christopher Musco, and Stephen Tu for
helfpul discussions. Part of this research was conducted while Ludwig Schmidt was visiting the
EECS department at UC Berkeley.

References

[1] Richard G. Baraniuk, Volkan Cevher, Marco F. Duarte, and Chinmay Hegde. Model-based
compressive sensing. IEEE Transactions on Information Theory, 56(4):1982–2001, 2010.

[2] Stephen Becker, Volkan Cevher, and Anastasios Kyrillidis. Randomized low-memory singular
value projection. In SampTA (Conference on Sampling Theory and Applications), 2013.

[3] Srinadh Bhojanapalli, Anastasios Kyrillidis, and Sujay Sanghavi. Dropping convexity for faster
semi-definite optimization. arXiv preprint 1509.03917, 2015.

[4] Thomas Blumensath. Sampling and reconstructing signals from a union of linear subspaces.
IEEE Transactions on Information Theory, 57(7):4660–4671, 2011.

[5] Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for compressive sensing.
Applied and Computational Harmonic Analysis, 27(3):265–274, 2009.

[6] Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding algorithm
for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

[7] Yudong Chen and Martin J. Wainwright. Fast low-rank estimation by projected gradient descent:
General statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025, 2015.

[8] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. Synopses for massive
data: Samples, histograms, wavelets, sketches. Foundations and Trends in Databases, 4(1–3):1–
294, 2012.

[9] Mark Davenport and Justin Romberg. An overview of low-rank matrix recovery from incomplete
observations. arXiv preprint 1601.06422, 2016.

[10] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and Martin J.
Strauss. Fast, small-space algorithms for approximate histogram maintenance. In STOC, 2002.

[11] Anna C. Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin J. Strauss. Surfing wavelets on
streams: One-pass summaries for approximate aggregate queries. In VLDB, volume 1, pages
79–88, 2001.

[12] Raja Giryes and Deanna Needell. Greedy signal space methods for incoherence and beyond.
Applied and Computational Harmonic Analysis, 39(1):1 – 20, 2015.

11

[13] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. Approximation algorithms for model-based
compressive sensing. IEEE Transactions on Information Theory, 61(9):5129–5147, 2015.

[14] Yannis Ioannidis. The history of histograms (abridged). In Proceedings of the 29th international
conference on Very large data bases-Volume 29, pages 19–30. VLDB Endowment, 2003.

[15] Prateek Jain, Raghu Meka, and Inderjit S. Dhillon. Guaranteed rank minimization via singular
value projection. In NIPS, 2010.

[16] Rasmus M. Larsen. Propack. http://sun.stanford.edu/~rmunk/PROPACK/.

[17] Cameron Musco and Christopher Musco. Randomized block Krylov methods for stronger and
faster approximate singular value decomposition. In NIPS, 2015.

[18] S. Muthukrishnan, Viswanath Poosala, and Torsten Suel. On rectangular partitionings in two
dimensions: Algorithms, complexity and applications. In ICDT, pages 236–256, 1999.

[19] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

[20] Yousef Saad. On the rates of convergence of the Lanczos and the block-Lanczos methods. SIAM
Journal on Numerical Analysis, 17(5):687–706, 1980.

[21] Nitin Thaper, Sudipto Guha, Piotr Indyk, and Nick Koudas. Dynamic multidimensional
histograms. In SIGMOD, 2002.

[22] Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Benjamin Recht. Low-
rank solutions of linear matrix equations via Procrustes Flow. In ICML, 2016.

[23] Tuo Zhao, Zhaoran Wang, and Han Liu. Nonconvex low rank matrix factorization via inexact
first order oracle. https://www.princeton.edu/~zhaoran/papers/LRMF.pdf.

[24] Qinqing Zheng and John Lafferty. A convergent gradient descent algorithm for rank minimization
and semidefinite programming from random linear measurements. In NIPS. 2015.

A Proofs for our recovery framework using approximate projec-
tions

In this appendix, we provide the convergence proof of our recovery algorithm AS-IHT and related
results. Before we begin with the analysis of AS-IHT, we first establish useful consequences of the
subspace RIP. For convenience, we recall the definition of the subspace RIP:

Definition 2 (Subspace RIP). Let X ∈ Rn×d, let U be a subspace model, and let δ ≥ 0. Then X
satisfies the (U, δ)-subspace RIP if for all θ ∈M(U) we have (1− δ)‖θ‖2 ≤ ‖Xθ‖2 ≤ (1 + δ)‖θ‖2.

Note that the above definition implies that ‖XPU‖ ≤
√

1 + δ for all U ∈ U, where ‖XPU‖
denotes the spectral norm of XPU . The following lemma summarizes further consequences of the
subspace RIP.

12

http://sun.stanford.edu/~rmunk/PROPACK/
https://www.princeton.edu/~zhaoran/papers/LRMF.pdf

Lemma 12 (Needell, Tropp 2008). Let X ∈ Rn×d be a matrix satisfying the (U, δ)-subspace RIP.
Moreover, let U ∈ U be a subspace in the model. Then the following properties hold for all θ ∈ Rd
and y ∈ Rn: ∥∥PUXT y

∥∥ ≤ √1 + δ ‖y‖ , (5)∥∥PUXTXPUθ
∥∥ ≤ (1 + δ)‖θ‖ , (6)∥∥(I − PUXTXPU)θ
∥∥ ≤ δ‖θ‖ . (7)

Proof. Equations (5) and (6) follow directly from the bound on the spectral norm of XPU (which
has the same spectral norm as PUXT).

For Equation (7), consider the eigendecomposition of the symmetric matrix PUXTXPU . All
eigenvalues are in the interval [1− δ, 1 + δ]. Hence forming I −PUXTXPU shifts all eigenvalues into
the interval [−δ, δ], which implies the spectral norm bound in Equation (7).

A.1 Convergence of AS-IHT

We first prove an important lemma for the convergence proof of our algorithm AS-IHT. In a nutshell,
the lemma shows that the approximate head projection captures a significant fraction of the residual
vector.

Lemma 13. Let U, UT , and UH be subspace models, and let θ∗ ∈ U and θ̂i ∈ UT be vectors such that
y = Xθ∗ + e as in Equation (1) and θ̂i is arbitrary. We also assume that the matrix X satisfies the
(U⊕UT ⊕UH, δ)-subspace RIP. Furthermore, let H be a (cH,U⊕UT ,UH)-approximate head projection.
Finally, we define the residual ri = θ∗ − θ̂i, the update vector bi = XT (y −Xθ̂i) = XTXri +XT e,
and the subspace U = H(bi). Then we have∥∥PU⊥ri∥∥ ≤ √

1− η2
0

∥∥ri∥∥+
η0ρ0√
1− η2

0

‖e‖ , (8)

where
η0 = cH(1− δ)− δ and ρ0 = (1 + cH)

√
1 + δ .

We assume that cH and δ are such that η0 < 1.

Proof. We first give a lower bound on the part of the residual ‖PUr‖ that is “captured” by the
approximate head projection. We establish this lower bound via the norm of the update vector∥∥PUbi∥∥. Let V ∈ U⊕ UT be a subspace such that ri ∈ V (note that this is always possible because
θ ∈M(U) and θ̂i ∈M(UT)). Using the approximate head projection property of H, we get∥∥PUbi∥∥ ≥ cH

∥∥PV bi∥∥
= cH

∥∥PVXTXri + PVX
T e
∥∥

≥ cH
∥∥PVXTXPV r

i
∥∥− cH∥∥PVXT e

∥∥ (9)

≥ cH(1− δ)
∥∥ri∥∥− cH√1 + δ ‖e‖ . (10)

Equation (9) follows from the triangle inequality and the definition of V , which implies PV ri = ri.
Equation (10) uses Lemma 12 twice.

13

We now establish an upper bound on
∥∥PUbi∥∥:∥∥PUbi∥∥ =

∥∥PUXTXri + PUX
T e
∥∥

=
∥∥PUXTXri − PUri + PUr

i + PUX
T e
∥∥

≤
∥∥PU (XTXri − ri)

∥∥+
∥∥PUri∥∥+

∥∥PUXT e
∥∥

≤
∥∥PU+V (XTXri − ri)

∥∥+
∥∥PUri∥∥+

√
1 + δ ‖e‖ (11)

=
∥∥PU+VX

TXPU+V r
i − ri

∥∥+
∥∥PUri∥∥+

√
1 + δ ‖e‖ (12)

≤ δ
∥∥ri∥∥+

∥∥PUri∥∥+
√

1 + δ ‖e‖ . (13)

Equation (11) uses Lemma 12 and U ⊆ U + V , which implies that projecting onto the subspace
U + V instead of U cannot decrease the norm. Equation (12) follows from the definition of V , which
implies ri ∈ V and hence PU+V r

i = ri. Equation (13) uses Lemma 12 again.
Combining Equations (10) and (13) gives∥∥PUri∥∥ ≥ η0

∥∥ri∥∥− ρ0‖e‖ ,

where η0 and ρ0 are as defined in the statement of the lemma. Since we also have
∥∥PU⊥ri∥∥2

=∥∥ri∥∥2 −
∥∥PUri∥∥2, we can now establish the desired upper bound. To simplify notation, we complete

our proof with the following claim.

Claim 14. Let w, x, y, z ∈ R be such that x ≥ η0z − w and y2 = z2 − x2. Then

y ≤
√

1− η2
0 z +

η0w√
1− η2

0

.

Instantiating Lemma 14 with w = ρ0‖e‖, x =
∥∥PUri∥∥, y =

∥∥ri∥∥, and z =
∥∥PU⊥ri∥∥ then directly

implies Equation (8). So it only remains to prove Claim 14, which we accomplish by completing the
square:

y2 = z2 − x2

≤ z2 − (η0z − w)2

= (1− η2
0)z2 + 2η0zw − w2

= (1− η2
0)z2 + 2η0zw +

η2
0w

2

1− η2
0

− η2
0w

2

1− η2
0

− w2

=

(√
1− η2

0 z +
η0w√
1− η2

0

)2

− η2
0w

2

1− η2
0

− w2 .

Since η0 < 1, this proves Claim 14.

Next, we prove that the iterates θ̂i of AS-IHT converge linearly.

Theorem 9. Let θ̂i be the estimate computed by AS-IHT in iteration i and let ri+1 = θ∗ − θ̂i+1 be
the corresponding residual. Moreover, let U be an arbitrary subspace model. We also assume:
• y = Xθ∗ + e as in Equation (1) with θ∗ ∈M(U).
• T is a (cT ,U,UT)-approximate tail projection.

14

• H is a (cH,U⊕ UT ,UH)-approximate head projection.
• The matrix X satisfies the (U⊕ UT ⊕ UH, δ)-subspace RIP.

Then the residual error of the next iterate, i.e., ri+1 = θ∗ − θ̂i+1 satisfies∥∥ri+1
∥∥ ≤ η

∥∥ri∥∥+ ρ‖e‖ ,

where η = (1 + cT)

(
δ +

√
1− η2

0

)
, ρ = (1 + cT)

(
η0ρ0√
1− η2

0

+
√

1 + δ

)
,

η0 = cH(1− δ)− δ , and ρ0 = (1 + cH)
√

1 + δ .

Proof. We start by applying the tail projection property of T on the input vector a = θ̂i +H(bi):∥∥ri+1
∥∥ =

∥∥∥θ∗ − θ̂i+1
∥∥∥ = ‖θ∗ − T (a)‖

≤ ‖θ∗ − a‖+ ‖a− T (a)‖
≤ (1 + cT)‖θ∗ − a‖
= (1 + cT)

∥∥ri −H(XTXri +XT e)
∥∥ . (14)

Intuitively, the quantity on the right hand side of (14) is small for two reasons: first, the matrix
XTX behaves close to an isometry on the vector ri because ri is in the subspace model U ⊕ UT .
Second, as we have shown in Lemma 13, the subspace identified by the approximate head projection
H captures a good fraction of the residual ri, and hence ri −H(bi) is small.

More formally, let the subspaces U and V be defined as before in Lemma 13, i.e., U = H(bi) and
V ∈ U⊕ UT is such that ri ∈ V . Then we get∥∥ri −H(XTXri +XT e)

∥∥ =
∥∥PUri + PU⊥r

i − PUXTXri − PUXT e
∥∥

≤
∥∥PU (XTXri − ri)

∥∥+
∥∥PU⊥ri∥∥+

∥∥PUXT e
∥∥

≤
∥∥PU+V (XTXri − ri)

∥∥+
∥∥PU⊥ri∥∥+

∥∥PUXT e
∥∥

=
∥∥PU+VX

TXPU+V r
i − ri

∥∥+
∥∥PU⊥ri∥∥+

∥∥PUXT e
∥∥ (15)

≤ δ
∥∥ri∥∥+

∥∥PU⊥ri∥∥+
√

1 + δ ‖e‖ . (16)

Equation (15) uses that ri ∈ V , and in Equation (16) we invoke consequences of the RIP (see Lemma
12). Combining Equations (14), (16), and Lemma 13 then gives

∥∥ri+1
∥∥ ≤ (1 + cT)

(
δ
∥∥ri∥∥+

√
1− η2

0

∥∥ri∥∥+
η0ρ0√
1− η2

0

‖e‖+
√

1 + δ ‖e‖

)
.

Rearranging this inequality yields the statement of the theorem.

While Theorem 9 only gives a guarantee from one iteration of AS-IHT to the next, it is
straightforward to extend this to a guarantee for the entire algorithm.

Corollary 15. We adopt the setting of Theorem 9, i.e.,
• y = Xθ∗ + e as in Equation (1) with θ∗ ∈M(U).
• T is a (cT ,U,UT)-approximate tail projection.

15

• H is a (cH,U⊕ UT ,UH)-approximate head projection.
• The matrix X satisfies the (U⊕ UT ⊕ UH, δ)-subspace RIP.

Furthermore, assume that cT , cH, and δ are such that η < 1. Set the number of iterations to

t =

log ‖θ

∗‖
‖e‖

log 1
η

 .
Then AS-IHT(y,X, t) returns an estimate θ̂ such that

‖θ∗ − θ̂‖ ≤
(

1 +
ρ

1− η

)
‖e‖ . (17)

Proof. Note that
∥∥r0
∥∥ = ‖θ∗‖ due to our initialization θ̂0 = 0. Invoking Theorem 9 and a

straightforward induction then yields

‖θ∗ − θ̂‖ = ‖θ∗ − θ̂t+1‖ =
∥∥rt+1

∥∥ = ηt‖θ∗‖+ ρ‖e‖
t∑
i=0

ηi .

We can bound the first term on the RHS because we have ηt‖θ∗‖ ≤ ‖e‖ for t as defined above. In
the second term on the RHS, we bound the geometric series by 1

1−η . Combining these bounds yields
Equation (17).

Note that Corollary 15 is essentially the formal version of Theorem 5 stated in Section 2. For
completeness, we first repeat Theorem 5:

Theorem 5 (informal). Let H and T be approximate head and tail projections with constant
approximation ratios, and let the matrix X satisfy the (⊕cU, δ)-subspace RIP for a sufficiently large
constant c and a sufficiently small constant δ. Then there is an algorithm AS-IHT that returns an
estimate θ̂ such that ‖θ̂− θ∗‖ ≤ C‖e‖. The algorithm requires O(log‖θ‖/‖e‖) multiplications with X
and XT , and O(log‖θ‖/‖e‖) invocations of H and T .

Let c1 and c2 be fixed constants. When T is a (cT ,U,⊕c1 U)-approximate tail projection and H
is a (cH,⊕c1 U⊕ U,⊕c2 U)-approximate head projection, Theorem 5 is the special case where
• UT = ⊕c1 U
• UH = ⊕c2 U
• c = 1 + c1 + c2.

The iteration bound from Corollary 15 implies the bound on the number of multiplications with X
and XT , and the bound on the number of invocations of H and T .

A.2 Boosting approximate projections

In some cases, it is hard to design efficient approximate projection algorithms that satisfy the
stringent conditions on cT and cH in Theorem 9. To overcome this difficulty, we now show how to
“boost” the approximation ratio of an approximate head projection to be arbitrarily close to 1.

First, we start with a single iteration of boosting.

16

Theorem 16. Let H : Rd → UH be a (cH,U,UH)-approximate head projection running in time
O(T). Then we can construct a (2cH− 2c

3/2
H + c2

H,U,UH⊕UH)-approximate head projection running
in time O(T + T ′1 + T ′2), where T ′1 is the time needed to apply a projection onto a subspace in UH,
and T ′2 is the time needed to find an orthogonal projector for the sum of two subspaces in UH.

Proof. Consider Algorithm 2. The running time bound follows directly from the definition of
BoostedHead1. It is also easy to see that the returned subspace is in UH ⊕ UH. Hence it remains
to show that BoostedHead1 satisfies the desired approximation ratio.

In the following, let OPT = maxU ′∈U‖PU ′b‖2 be the best possible head approximation, and let
U∗ ∈ U be a subspace achieving OPT . Moreover, let c̃H be the head-approximation ratio achieved
by the subspace U , i.e.,

‖PUb‖2 = c̃HOPT .

Let W be the subspace returned by the algorithm. Then we have

‖PW b‖2 = ‖PUPW b‖2 + ‖PU⊥PW b‖
2 . (18)

We can write PU = BTB for an orthogonal basis B of the subspace U , and PW = [BT |DT]
[
B
D

]
,

where D is an orthonormal basis of the orthogonal complement of U in W (it is easy to see that
such a pair of bases always exists, e.g., by following the Gram-Schmidt procedure). Basic linear
algebra then shows that PUPW = PU = PWPU . We can use this fact to bound the first term above:

‖PUPW b‖2 = ‖PUb‖2 = c̃HOPT . (19)

Next, we consider the second term in Equation (18). We have

PU⊥PW = (I − PU)PW = PW − PUPW = PW − PWPU = PW (I − PU) .

Since (I − PU)b = r, this gives

‖PU⊥PW b‖
2 = ‖PW (I − PU)b‖2 = ‖PW r‖2 ≥ ‖PV r‖2 , (20)

where the last equality follows from the fact that the subspace W contains the subspace V .
From the head-approximation guarantee of the oracle H, we know that

‖PV r‖2 ≥ cHmax
U ′∈U
‖PU ′r‖2 ≥ cH‖PU∗r‖2 . (21)

Next, we bound ‖PU∗r‖ (note that we omitted the square).

‖PU∗r‖ = ‖PU∗(I − PU)b‖ = ‖PU∗b− PU∗PUb‖
≥ ‖PU∗b‖ − ‖PU∗PUb‖
≥ ‖PU∗b‖ − ‖PUb‖

=
√
OPT −

√
c̃H
√
OPT

=
(

1−
√
c̃H

)√
OPT .

The second line uses the triangle inequality, the third line uses the fact that PU is an orthogonal
projection, and the fourth line uses the optimality of the subspace U∗ and the approximation
guarantee of the subspace U , respectively. Squaring both sides then yields

‖PU∗r‖2 ≥
(

1−
√
c̃H

)2
OPT . (22)

17

We can now combine Equations (18) to (22) and get

‖PW b‖2 ≥ c̃HOPT + cH

(
1−

√
c̃H

)2
OPT

= (c̃H + cH − 2cH
√
c̃H + cHc̃H)OPT . (23)

We know that cH ≤ c̃H ≤ 1. In order to get a uniform bound, we analyze the factor in front of OPT .
Let x =

√
c̃H , then we can write the approximation ratio as

f(x) = (1 + cH)x2 − 2cHx+ cH .

Computing the derivative and setting it to zero yields

f ′(x) = 2(1 + cH)x− 2cH

x =
cH

1 + cH
.

So the unconstrained minimum is achieved for a value of x ≤ cH, i.e., c̃H ≤ c2
H ≤ cH because

0 ≤ cH ≤ 1. Since the quadratic function f is increasing for x ≥ cH, the constrained minimum is
achieved for c̃H = cH, which gives

‖PW b‖2 ≥ 2cH − 2c
3/2
H + c2

H .

Algorithm 2 Boosted head projection
1: function BoostedHead1(H, b)
2: U ← H(b)
3: r ← b− PUb
4: V ← H(r)
5: return an orthogonal projection onto the subspace U + V

6: function BoostedHead(H, b, t)
7: if t = 1 then
8: return H(b)
9: else

10: return BoostedHead1(BoostedHead(H, ·, t− 1), b)

Next, we extend one iteration of boosting to several rounds. In our final applications of head
approximation boosting, we are mainly interested in boosting a constant head approximation ratio
cH to an improved head approximation ratio c′H that is close to one but still a constant. Hence it
suffices to state a boosting result without explicit dependence between cH and c′H, which simplifies
the argument in the following theorem.

Theorem 10. Let H be a (cH,U,UH)-approximate head projection running in time O(T), and let
ε > 0. Then there is a constant c = cε,cH that depends only on ε and cH such that we can construct
a (1− ε,U,⊕cUH)-approximate head projection running in time O(c(T + T ′1 + T ′2)) where T ′1 is the
time needed to apply a projection onto a subspace in ⊕cUH, and T ′2 is the time needed to find an
orthogonal projector for the sum of two subspaces in ⊕cUH.

18

Proof. Consider the algorithm BoostedHead. If BoostedHead(H, b, t) achieves head approx-
imation ratio cH,t, then BoostedHead(H, b, t + 1) achieves head approximation ratio cH,t+1 =

2cH,t − 2c
3/2
H,t + c2

H,t (see Theorem 16). Hence it suffices to show that the sequence cH,t converges to
1 for any starting value cH,0 = cH.

Consider the function f(x) = 2x − 2x3/2 + x2 and note that cH,t+1 = f(cH,t). An elementary
calculation shows that f(x) > x for 0 < x < 1. Hence the sequence xi+1 = f(xi) converges to 1 for
any 0 < x0 < 1. For a proof by contradiction, let x′ < 1 be the smallest value such that xi ≤ x′ for
all i. Let δ = f(x′) − x′ > 0. Since f is continuous, we can find a point xi∗ close to x′ such that
f(xi∗) > f(x′)− δ and hence f(xi∗) > x′, a contradiction. So for any ε > 0, there is a c = cε,cH such
that cH,c ≥ 1− ε.

A.3 A boosted recovery algorithm

We now combine our convergence result for AS-IHT with the boosting technique to prove a general
result that holds for any constant head an tail approximation ratios.

Theorem 17. We make the following assumptions:
• y = Xθ∗ + e as in Equation (1) with θ∗ ∈M(U).
• T is a (cT ,U,UT)-approximate tail projection.
• H is a (cH,U⊕ UT ,UH)-approximate head projection.
• The matrix X satisfies the (⊕c (U⊕ UT ⊕ UH), δ)-subspace RIP for c sufficiently large and δ
sufficiently small, where c and δ depend only on cT and cH.

Then there is an algorithm Boosted-AS-IHT that returns an estimate θ̂ such that

‖θ∗ − θ̂‖ ≤ C‖e‖ ,

where C depends only on δ, cT , and cH. Moreover, the algorithm requires O(log‖θ‖/‖e‖) iterations.

Proof. The algorithm Boosted-AS-IHT is AS-IHT (Algorithm 1) with BoostedHead (Algorithm
2) in place of the approximate head projection.

In order to invoke Corollary 15, we need to show that

η = (1 + cT)

(
δ +

√
1− η2

0

)
is less than 1, where η0 is given by (c.f. Theorem 9)

η0 = cH(1− δ)− δ .

Note that by making δ sufficiently small and cH sufficiently close to 1, we can achieve η0 arbitrarily
close to 1 and hence η arbitrarily small for any fixed tail approximation ratio cT .

While the assumption in the current theorem allows for small δ as long as δ only depends on
cH and cT , we need to handle arbitrarily small, fixed cH. In order to do so, we invoke Theorem 10,
which allows us to get a boosted head approximation with approximation ratio c′H arbitrarily close
to 1. The invocation of BoostedHead leads to a larger output set ⊕cUH. As a result, we require
the subspace-RIP over the set U⊕UT ⊕⊕cUH. The current theorem provides this subspace-RIP by
assumption.

19

B Proofs for low-rank matrix recovery

We now formally show how to convert the approximate SVD guarantees of [17] to approximate head
and tail projections for low-rank matrices. For convenience, we first repeat the main result of [17].

Fact 11 ([17]). There is an algorithm ApproxSVD with the following guarantee. Let A ∈ Rd1×d2
be an arbitrary matrix, let r ∈ N be the target rank, and let ε > 0 be the desired accuracy. Then with
probability 1− ψ, ApproxSVD(A, r, ε) returns an orthonormal set of vectors z1, . . . , zr ∈ Rd1 such
that for all i ∈ [r], we have ∣∣zTi AAT zi − σ2

i

∣∣ ≤ εσ2
r+1 , (3)

where σi is the i-th largest singular value of A. Furthermore, let Z ∈ Rd1×r be the matrix with
columns zi. Then we also have∥∥A− ZZTA∥∥

F
≤ (1 + ε)‖A−Ar‖F , (4)

where Ar is the best rank-r Frobenius-norm approximation of A. Finally, the algorithm runs in time
O
(
d1d2r log(d2/ψ)√

ε
+ d1r2 log2(d2/ψ)

ε + r3 log3(d2/ψ)

ε3/2

)
.

As mentioned before, Equation (4) directly gives a tail approximation. We now show how to
convert Equation (3) to a head approximation guarantee. In the following, we let Ur be the subspace
model of rank-r matrices.

Theorem 18. There is an algorithm ApproxLowRank with the following property. For an
arbitrary input matrix A ∈ Rd1×d2 and a target rank r, ApproxLowRank produces a subspace of
rank-r matrices U and a matrix Y = PUA, the projection of A onto U . With probability 99/100, the
output satisfies both an (1− ε,Ur,Ur)-approximate head projection guarantee and an (1 + ε,Ur,Ur)-
approximate tail projection guarantee. Moreover, ApproxLowRank runs in time

O

(
d1d2r log d2√

ε
+
d1r

2 log2 d2

ε
+
r3 log3 d2

ε3/2

)
.

Proof. Let z1, . . . , zr be the vectors returned by ApproxLowRank(A, r, ε). Then ApproxLowRank
returns the matrix Y = ZZTA and and the subspace U spanned by the vectors zi and zTi A (it is
easy to see that Y is indeed the projection of A onto U). Both operations can be performed in time
O(d1d2r). Hence the overall running time is dominated by the invocation of ApproxSVD, which
leads to the running time stated in the theorem.

It remains to prove the desired head and tail approximation ratios. The tail approximation
guarantee follows directly from Equation (4). For the head approximation, first note that Equation
(3) implies

zTi AA
T zi ≥ (1− ε)σ2

i .

20

We now apply this inequality by rewriting the head quantity
∥∥ZZTA∥∥2

F
as follows:∥∥ZZTA∥∥2

F
= tr(ATZZTZZTA)

= tr(ATZZTA)

= tr

(
AT

(
r∑
i=1

ziz
T
i

)
A

)

= tr

(
r∑
i=1

AT ziz
T
i A

)

=
r∑
i=1

tr(AT zizTi A)

=
r∑
i=1

tr(zTi AA
T zi)

=
r∑
i=1

zTi AA
T zi

≥ (1− ε)
r∑
i=1

σ2
i

= (1− ε)‖Ar‖2F

where the matrix Ar is the best rank-r approximation of the matrix A. This proves the desired head
approximation guarantee.

B.1 The final recovery algorithm

We now prove our overall result for low-rank matrix recovery.

Theorem 6. Let X ∈ Rn×d be a matrix with subspace-RIP for low-rank matrices, and let TX denote
the time to multiply a d-dimensional vector with X or XT . Then there is an algorithm that recovers
an estimate θ̂ such that ‖θ̂ − θ∗‖ ≤ C‖e‖. Moreover, the algorithm runs in time Õ(TX + r · d2

1).

Proof. We assume that X satisfies the low-rank RIP for matrices of rank 4r and RIP constant
δ ≤ 0.1. We remark that it is possible to fine-tune these constants, but our focus here is on the
scaling with the problem dimensions.

Instantiating Theorem 18 gives us approximate head and tail projections with the following
guarantees:
• T is a (1.1,Ur,Ur)-approximate tail projection.
• H is a (0.9,U2r,U2r)-approximate tail projection.

Note that Ur⊕Ur ⊆ U2r, so T and H satisfy the conditions of Theorem 9. Moreover, U⊕UT ⊕UH ⊆
U4r, and therefore the matrix X also satisfies the RIP condition of Theorem 9. Substituting cT = 1.1,
cH = 0.9, and δ = 0.1 into Theorem 9 then yields η < 0.9, so we can invoke Corollary 15.

Corollary 15 direct implies the desired recovery guarantee ‖θ∗ − θ̂‖ ≤ C‖e‖. Moreover, the
corresponding bound on the number of iterations is O(log‖θ∗‖/‖e‖). This has two consequences: (i)
The total number of multiplications with X or XT is Õ(1). (ii) The total number of invocations

21

of the approximate head and tail projections is Õ(1). Recall that each matrix multiplication with
X takes TX time, and that the time complexity of the approximate projections is Õ(r · d2

1), where
we again assume the square case for simplicity. Combining these results gives the stated time
complexity.

We remark that for fast design matrices (e.g., structured observations such as a subsampled
Fourier matrix), we have TX = Õ(d2

1) and the total running time becomes Õ(r · d2
1). See Appendix

D for such a construction.

C Approximation algorithms for 2D histograms

We now describe our approximate head and tail projections for histograms. One key ingredient
in our algorithms are hierarchical histograms. Overall, our goal is to approximate arbitrary 2D
histograms, i.e., arbitrary partitions of a

√
d ×
√
d matrix with k non-overlapping rectangles (for

simplicity, we limit our attention to the case of square matrices). Such histograms are also known as
tiling histograms. However, tiling histograms are hard to work with algorithmically because they do
not allow a clean decomposition for a dynamic program. Instead, work in histogram approximation
has utilized hierarchical histograms, which are also partitions of a matrix into k non-overlapping
rectangles. The additional restriction is that the partition can be represented as a tree in which each
rectangle arises through a vertical or horizontal split of the parent rectangle. We refer the reader to
[18] for a more detailed description of different histogram types.

An important result is that every tiling histogram consisting of k rectangles can be simulated with
a hierarchical histogram consisting of at most 4k rectangles (d’Amore and Franciosa, 1992). Since
Theorems 7 and 8 provide bicriterion guarantees for the output space, i.e., projections into a space
of histograms consisting of O(k) rectangles, we focus our attention on approximation algorithms for
hierarchical histograms in the following. These results can then easily be converted into statements
for tiling histograms by increasing the number of histogram tiles by 4.

Next, we introduce some histogram-specific notation. For a histogram subspace U , we denote the
number of histogram pieces in U with γ(U). We denote the set of hierarchical histograms subspaces
with Hh. When we have an upper bound on the number of histogram pieces, we write Hh,k for the
set of hierarchical histogram subspaces U with γ(U) ≤ k.

An important subroutine in our approximate projections is the following notion of a hierachical
histogram oracle.

Definition 19. An (α, ζ)-hierarchical histogram oracle is an algorithm with the following guarantee:
given any b ∈ R

√
d×
√
d and λ ∈ R as input, the algorithm returns a hierarchical histogram subspace

U such that
‖PUb‖2 −

λ

α
γ(U) ≥ max

U ′∈Hh
‖PU ′b‖2 − λγ(U ′) . (24)

Moreover, the algorithm runs in time O(d1+ζ).

An algorithm with the following guarantee directly follows from the hierarchical dynamic
programming techniques introduced in [18]. In particular, Theorem 3 of [18] implies a dependence of
α = O(1/ζ2).

Equation (24) has the flavor of a head approximation (a max-quantified guarantee). As a direct
consequence of Equation (24), we also get the following “tail approximation” variant.

22

Algorithm 3 Tail projection for hierarchical histograms
1: function HistogramTail(b, k, ν, ξ)
2: ∆← min

{∣∣bi,j − bi′,j′∣∣ ∣∣ bi,j − bi′,j′ 6= 0
}

3: εmin ← ∆2

d2

4: λ0 ← εmin
2k

5: U0 ← HistogramOracle(b, λ0)
6: if ‖b− PU0‖ = 0 and γ(U0) ≤ αk then
7: return U0

8: λl ← 0
9: λr ← 2α‖b‖

10: ε← εminξ
k

11: while λr − λl ≥ ε do
12: λm ← λl+λr

2
13: Um ← HistogramOracle(b, λm)
14: if γ(Um) ≥ αk and γ(Um) ≤ ναk then
15: return Um
16: if γ(Um) ≥ ναk then
17: λl ← λm
18: else
19: λr ← λm
20: return HistogramOracle(b, λr)

Lemma 20. The solution U returned by an (α, ζ)-hierarchical histogram oracle also satisfies

‖b− PUb‖2 +
λ

α
γ(U) ≤ min

U ′∈Hh
‖b− PU ′b‖2 + λγ(U ′) . (25)

Proof. Multiplying both sides of Equation (24) with −1 and pulling the negative sign into the max
gives

−‖PUb‖2 +
λ

α
γ(H) ≤ min

U ′∈Hh
−‖PU ′b‖2 + λγ(U ′) .

Adding ‖b‖2 to both sides and using that PU and PU ′ are orthogonal projections then gives Equation
(25) via the Pythagorean Theorem.

However, note that neither Equation (24) nor (25) give direct control over the number of histogram
pieces k. In the following, we give algorithms that convert these guarantees into approximate
projections. In a nutshell, we show that carefully choosing the trade-off parameter λ, combined with
a postprocessing step of the corresponding solution, yields head an tail approximations.

C.1 Approximate tail projection

We now show how to construct an approximate tail projection from a hierarchical histogram oracle.
In the following, we assume that HistogramOracle(b, λ) is an (α, ζ)-hierarchical histogram oracle.

First, we establish a lower bound on the approximation error ‖b− PU‖2 if b is not in the histogram
subspace U .

23

Lemma 21. Let b ∈ Rd and U be a histogram subspace. If b /∈ U , then we have ‖b− PU‖2 ≥ εmin

where εmin is as defined in Algorithm 3.

Proof. If b /∈ U , there is a histogram piece in U on which b is not constant. Let R be the set of
indices in this piece. We now give a lower bound on the projection error based on the histogram
piece R (recall that the projection of b onto U averages b in each histogram piece):

‖b− PU‖2 ≥
∑

(i,j)∈R

(bi,j − b̄R)2 where b̄R =
1

|R|
∑

(i,j)∈R

bi,j .

Let (i∗, j∗) be the index of the largest coefficient in the histogram piece R (ties broken arbitrarily).
Then we bound the sum on the right hand side above with the term corresponding to (i∗, j∗):

‖b− PU‖2 ≥

bi∗,j∗ − 1

|R|
∑

(i,j)∈R

bi,j

2

.

Let ∆R be the smallest non-zero difference between coefficients in R. Note that ∆R > 0 because b is
not constant on R. Moreover, we have ∆R ≤ max(i,j)∈R bi∗,j∗ − bi,j . Hence we getbi∗,j∗ − 1

|R|
∑

(i,j)∈R

bi,j

2

≥
(
bi∗,j∗ −

|R| − 1

|R|
bi∗,j∗ −

1

|R|
(bi∗,j∗ −∆R)

)2

because bi∗,j∗ is one of the largest coefficients in R and at least one coefficient is smaller than bi∗,j∗
by at least ∆R. Combining the inequalities above and simplifying then yields

‖b− PU‖2 ≥
∆2
R

|R|2
≥ ∆2

d2
= εmin .

Next, we prove that the histogram oracle returns roughly a k-histogram if the input is a
k-histogram and we set the parameter λ correctly.

Lemma 22. Let εmin and λ0 be defined as in Algorithm 3. If b is a hierarchical k-histogram,
then HistogramOracle(b, λ0) returns a hierarchical histogram subspace U0 such that b ∈ U0 and
γ(U0) ≤ αk.

Proof. First, we show that b ∈ U0, i.e., that ‖b− PU0‖ = 0. Since b ∈ Hh,k, we know that there
is a hierarchical histogram subspace U ′ such that ‖b− PU ′‖ = 0 and γ(U ′) ≤ k. Substituting this
histogram subspace U ′ and λ0 into Equation (25) gives

‖b− PU0‖
2 ≤ λ0γ(U ′) ≤ ε2

min

2

where we also used that λ0
α γ(U0) ≥ 0. Since εmin > 0, the contrapositive of Lemma 21 shows that

b ∈ U0.
Next, we prove that γ(U0) ≤ αk. Substituting into Equation (25) again and using ‖b− PU0‖ = 0

now gives the desired bound on the number of histogram pieces:

λ0

α
γ(U0) ≤ λ0k .

24

With these preliminaries in place, we now show the main result for our tail approximation
algorithm.

Theorem 23. Let b ∈ Rd, k ∈ N, ν > 1, and ξ > 0. Then HistogramTail(b, k, ν, ξ) returns a
histogram subspace U such that γ(U) ≤ ναk and

‖b− PUb‖2 ≤
(

1 +
1

ν − 1
+ ξ

)
min

U ′∈Hh,k
‖b− PU ′b‖2 .

Moreover, the algorithm runs in time

O

(
n1+ζ log

(
αd‖b‖
ξ∆

))
where ∆ is as defined in Algorithm 3.

Proof. We analyze the three cases in which HistogramTail returns separately. First, consider Line
7. In this case, U0 clearly satisfies the conditions of the theorem. So in the following, we condition
on the algorithm not returning in Line 7. By the contrapositive of Lemma 22, this implies that
b /∈M(Hh,k).

Next, consider the case that HistogramTail returns in Line 15. This directly implies that
γ(Um) ≤ ναk. Moreover, substituting into Equation 25 and restricting the right hand side to
histogram subspaces with at most k pieces gives

‖b− PUm‖
2 +

λm
α
γ(Um) ≤ min

U ′∈Hh,k
‖b− PU ′b‖2 + λmγ(U ′)

‖b− PUm‖
2 ≤ min

U ′∈Hh,k
‖b− PU ′b‖2 + λmγ(U ′)− λmk

‖b− PUm‖
2 ≤ min

U ′∈Hh,k
‖b− PU ′b‖2

where we used that γ(Um) ≥ αk and γ(U ′) ≤ k.
For the remaining case (Line 20), we use the following shorthands in order to simplify notation:

Let Ul and Ur be the histogram subspaces returned by HistogramOracle with parameters λl and
λr, respectively. We denote the corresponding tail errors with tl = ‖b− PUl

‖2 and tr = ‖b− PUr‖
2.

Moreover, we denote the optimal tail error with t∗ = minU ′∈Hh,k‖b− PU ′b‖
2. Finally, let γl = γ(Ul)

and γr = γ(Ur) be the number of histogram pieces in the respective histogram subspaces. Rewriting
Equation 25 in terms of the new notation gives

tl +
λl
α
γl ≤ t∗ + λlk (26)

tr +
λr
α
γr ≤ t∗ + λrk (27)

We will use Equation 26 in order to bound our tail projection error tl. For this, we establish an
upper bound on λr. Note that λr ≤ λl + ε when the algorithm reaches Line 20. Moreover, the binary
search over λ is initialized so that we always have γl > ναk and γr < αk. Combining these facts

25

with Equation (27) leads to an upper bound on λl:

tl +
λl
α
γl ≤ t∗ + λlk

λl
α
ναk ≤ t∗ + λlk

λl ≤
t∗

(ν − 1)k
.

We use these facts in order to establish an upper bound on tr. Substituting into Equation (27) gives

tr ≤ t∗ + (λl + ε)k

tr ≤ t∗ +
t∗

ν − 1
+
εminξ

k
k

tr ≤
(

1 +
1

ν − 1
+ ξ

)
t∗

where we used that t∗ ≥ εmin because b is not a hierarchical k-histogram if the algorithm reaches
Line 20 (see Lemma 21). Combined with the fact that γr ≤ αk, this proves the statement of the
theorem.

Finally, we consider the running time bound. It is straightforward to see that the overall running
time is dominated by the invocations of HistogramOracle, each of which takes O(dζ) time. The
number of iterations of the binary search is bounded by the initial gap between λl and λr and the
final gap ε, which gives an iteration bound of⌈

log
λ

(0)
r − λ(0)

l

ε

⌉
= O

(
log

(
αd2k‖b‖
ξ∆2

))
.

Simplifying and multiplying this iteration bound with the running time of HistogramOracle
leads to the running time bound stated in the theorem.

Theorem 7 now follows directly from Theorem 23. We first restate Theorem 7:

Theorem 7. Let ζ > 0 and ε > 0 be arbitrary. Then there is an (1 + ε,Uk,Uc·k)-approximate tail
projection for 2D histograms where c = O(1/ζ2ε). Moreover, the algorithm runs in time Õ(d1+ζ).

Setting ξ = O(ε) and ν = O(1/ε) gives the 1 + ε guarantee in Theorem 7. Moreover, we use the
α = O(1/ζ2) dependence from Theorem 3 of [18].

C.2 Approximate head projection

Next, we show how to construct an approximate head projection from a hierarchical histogram oracle.
Similar to the approximate tail projection above, we perform a binary search over the parameter
λ in order achieve a good trade-off between sparsity and approximation. In contrast to the tail
case, we now need an additional subroutine for extracting a “high-density” sub-histogram of a given
hierarchical histogram. We reduce this task of extracting a sub-histogram to a problem on trees.
Formally, we build on the following lemma about the subroutine FindSubtree.

26

Algorithm 4 Head projection for hierarchical histograms
1: function HistogramHead(b, k, τ)
2: bmax ← maxbi,j

∣∣∣b2i,j∣∣∣
3: λl ← bmaxτ

k
4: Ul ← HistogramOracle(b, λl)
5: if γ(Ul) ≤ 2α

τ k then
6: return Ul
7: λr ← 2α‖b‖2
8: ε← bmaxτ

2k
9: while λr − λl > ε do

10: λm ← λl+λr
2

11: Um ← HistogramOracle(b, λm)
12: if γ(Um) > 2α

τ k then
13: λl ← λm
14: else
15: λr ← λm
16: Ul ← HistogramOracle(b, λl)
17: Ur ← HistogramOracle(b, λr)
18: U ′l ← FindSubhistogram(b, Ul,

2α
τ k)

19: if ‖PU ′l b‖
2 ≥ ‖PUrb‖

2 then
20: return U ′l
21: else
22: return Ur

Lemma 24. Let T = (V,E) be a tree with node weights w : V → R. Moreover, let s ≤ |V | be the
target subtree size. Then FindSubtree(T,w, s) returns a node subset V ′ ⊆ V such that V ′ forms a
subtree in T , its size is at most 2s, and it contains a proportional fraction of the node weights, i.e.,∑

i∈V ′ w(i) ≥ s
|V |
∑

i∈V w(i).

Proof. Let w′ and i be defined as in FindSubtree. An averaging argument shows that there must
be a contiguous subsequence S as defined in FindSubtree with

i+2s−1∑
j=i

w′(j) ≥ 2s

2|V | − 1

2|V |−1∑
j=1

w′(j) ≥ s

|V |
∑
j∈V

w(j)

where the first inequality holds because S contains 2s nodes, and the second inequality holds by the
construction of the tour W .

Let V ′ be the nodes in S. Note that we have defined w′ such that every node weight is used only
once, and hence we get ∑

j∈V ′
w(j) ≥

i+2s−1∑
j=i

w′(j) ≥ s

|V |
∑
j∈V

w(j)

as desired. Finally, since S is contiguous in the tour W , the nodes V ′ form a subtree in T of size at
most 2s.

27

Algorithm 5 Subroutines for the head projection
1: function FindSubhistogram(b, U, s)
2: Let TU = (VU , EU) be a tree corresponding to the histogram subspace U .
3: Let w : VU → R be the node weight function corresponding to U and b.
4: Let T ∗U be the tree TU with an additional root node r.
5: Let w∗ be defined as w with the root node weight w∗(r) = ‖PR0b‖

2.
6: V ′ ← FindSubtree(T ∗U , w

∗, s)
7: if r ∈ V ′ then
8: return the sub-histogram defined by the splits in V ′

9: else
10: Let r′ be the root node in the subtree defined by V ′.
11: Let U ′′ be a 4-piece hierarchical histogram such that one of the leaf rectangles is Rr′ .
12: return the composition of U ′′ and the sub-histogram defined by V ′

13: function FindSubtree(T,w, s)
14: Let W = (v1, . . . , v2|V |−1) be a tour through the nodes of T . . T = (V,E)

15: Let w′(j) =

{
w(vj) if position j is the first appearance of vj in W
0 otherwise

16: Let S = (vi, . . . , vi+2s−1) be a contiguous subsequence of W with
∑i+2s−1

j=i w′(j) ≥
s
|V |
∑2|V |−1

j=1 w(j)
17: return the set of nodes in S.

Utilizing Lemma 24, we now show how to extract a “good” sub-histogram from a given hierarchical
histogram. More precisely, our goal is to find a sub-histogram U ′ with a bounded number of histogram
pieces that still achieves a comparable “density” ‖PU′b‖

2

γ(U ′) ≈
‖PU b‖2
γ(U) . In order to precisely state our

algorithm and proof, we now formalize the connection between hierarchical histograms and tree
graphs.

For a given histogram subspace U , let TU = (VU , EU) be the tree defined as folllows: First, every
split in the hierarchical histogram corresponds to a node in VU . For each split, we then add an edge
from the split to the split directly above it in the histogram hierarchy. For a histogram subspace
with γ(U) pieces, this leads to a tree with γ(U)− 1 nodes. We also associate each node v in the tree
with three rectangles. Specifically, let R(v) be the rectangle split at v, and let Rl(v) and Rr(v) be
the left and right child rectangles resulting from the split, respectively.

Next, we define the node weight function w : VU → R. The idea is that the weight of a node
corresponds to the “projection refinement”, i.e., the gain in preserved energy when projected onto
the finer histogram. More formally, for a rectangle R, let PRb the projection of b onto the rectangle
R, i.e.,

(PRb)i,j =

{
0 if (i, j) /∈ R
1
|R|
∑

(u,v)∈R bu,v otherwise
.

Then we define the weight of a node v as

w(v) =
∥∥PRl(v)b

∥∥2
+
∥∥PRr(v)b

∥∥2 −
∥∥PR(v)

∥∥2
.

28

Let R1, . . . , Rγ(U) be the rectangles in the hierarchical histogram U , and let R0 be the
√
d ×

√
d

“root” rectangle. Since the rectangles are non-overlapping, we have

γ(U)∑
i=1

PRib = PUb .

Note that the rectangles R1, . . . , Rγ(U) are exactly the child rectangles of the leaves in the tree TU .
Moreover, by the construction of the weight function w, we have

‖PR0b‖
2 +

∑
v∈VU

w(v) = ‖PUb‖2

because the contributions from intermediate nodes in the tree TU cancel out.

Lemma 25. Let b ∈ R
√
d×
√
d , let U be a hierarchical histogram subspace, and let s ≤ γ(U) be

the target number of histogram pieces. Then FindSubhistogram(b, U, s) returns a hierarchical
histogram subspace U ′ such that γ(U ′) ≤ 2s+ 4 and ‖PU ′b‖2 ≥ s

γ(U)‖PUb‖
2. Moreover, the algorithm

runs in time O(d).

Proof. Note that by construction, the tree T ∗U defined in FindSubhistogram has k nodes and the
node weights w∗ satisfy ∑

v∈VT∗
U

w(v) = ‖PUb‖2 .

Lemma 24 then shows that the subtree defined by the set of nodes V ′ satisfies |V ′| ≤ 2s and∑
v∈V ′

w(v) ≥ s

γ(U)

∑
v∈VT∗

U

w(v) ≥ s

γ(U)
‖PUb‖2 .

Let R′1, . . . , R′|V ′| be the leaf rectangles of the subtree V ′. The above lower bound on the sum of the
node weights implies that

|V ′|∑
i=1

∥∥∥PR′ib∥∥∥2
≥ s

γ(U)
‖PUb‖2 .

because the rectangles R′i are non-overlapping and the weights of the inner tree nodes in V ′ cancel as
before. Hence any hierarchical histogram containing the rectangles R′1, . . . , R′|V ′| satisfies the desired
head projection bound. It remains to show that we can convert the subtree defined by V ′ into a
hierarchical histogram.

If the set V ′ contains the root node of T ∗U , the subtree V ′ directly gives a valid sub-histogram
of U . On the other hand, if the root node of T ∗U is not in V ′, we can construct a simple 4-piece
hierarchical histogram U ′′ that contains the root rectangle Rr′ of V ′ as one of its leaf nodes. The
histogram subspace U ′′ is given by four splits corresponding to the boundaries of the root rectangle
Rr′ . We can then combine the hierarchical histogram U ′′ with the subtree V ′ by adding the splits in
V ′ to the hierarchical histogram in U ′′ (by construction, all these splits are valid). The resulting
hierarchical histogram then has at most 4 + |V ′| ≤ 4 + 2s pieces.

The running time bound is straightforward: all pre-processing can be accomplished in linear
time by computing partial sums for the vector b (projections onto a rectangle can then be computed
in constant time). The subroutine FindSubtree also runs in linear time because it requires only a
single pass over the tree of size O(γ(U)).

29

We can now state our approximate head projection algorithm.

Theorem 26. Let b ∈ Rd, k ∈ N, and 0 < τ < 1. Then HistogramHead(b, k, τ) returns a
histogram subspace U such that γU ≤ 4α

τ k + 4 and

‖PUb‖2 ≥ (1− τ) max
U ′∈Hh,k

‖PU ′b‖2 .

Moreover, the algorithm runs in time O(d1+ζ log αd
τ).

Proof. First, we introduce a few shortands to simplify notation. Let the histogram subspace
Ul be the solution returned by HistogramOracle(b, λl). We then write hl = ‖PUl

b‖2 for the
head approximation of Ul and γl = γ(Ul) for the number of histogram pieces in the histogram
subspace Ul. We adopt a similar convention for hr and γr (corresponding to the solution for
parameter λr). Finally, let h∗ be the optimal head approximation achievable with a k-histogram,
i.e., h∗ = maxU ′∈Hh,k‖PU ′b‖

2.
Rearranging Equation (24), using the new notation, and substituting the optimal k-histogram

solution for the max-quantifier gives

hl ≥ h∗ − λl
(
k − γl

α

)
. (28)

We now consider the case that the algorithm returns in Line 6. We clearly have γ(Ul) ≤ 4α
τ k + 4

when reaching Line 6. Moreover, substituting for λl in Equation 28 gives

hl ≥ h∗ − bmaxτ

k

(
k − γl

α

)
≥ (1− τ)h∗

where the second line follows from h∗ ≥ bmax. This inequality holds because any histogram with at
least 4 pieces can always create a rectangle that isolates the largest element in b (for simplicity, we
assume that k ≥ 4 and b 6= 0). Hence Ul satisfies the conditions of the theorem.

Next, we consider the case that the algorithm reaches the binary search. Note that the binary
search is initialized and performed such that we have λl ≤ λr ≤ λl + ε when it terminates. Moreover,
we have γr ≤ 2α

τ k and γl > 2α
τ k. We now distinguish two sub-cases based on the “density” hl

γl
of the

solution Ul corresponding to λl. Let φ = τ(1−τ/2)
2α be the density threshold compared to the optimal

solution density h∗

k .

Sub-case 1: hl
γl
≤ φh∗k . This inequality allows us to establish an upper bound on λl. Rearranging

Equation (28) gives (note that k − λl
α is negative):

λl ≤
hl − h∗

γl/α− k

≤ αhl
γl − αk

.

30

We now use γl ≥ 2α
τ k:

λl ≤
αhl

γl − τγl/2

≤ hl
γl
· α

1− τ/2

≤ φ
h∗

k

α

1− τ/2

≤ τ

2
· h
∗

k
.

where we used the density upper bound for Ul valid in this subcase and the definition of φ. Next, we
derive a lower bound on hr. Instantiating Equation (28) with Ur instead of Ul gives

hr ≥ h∗ − λr
(
k − γr

α

)
≥ h∗ − λrk
≥ h∗ − (λl + ε)k

= h∗ − λlk − εk

≥ h∗ − τ

2
h∗ − τ

2
bmax

≥ (1− τ)h∗

where we again used bmax ≤ h∗. So in this sub-case, Ur satisfies the conditions of the theorem.

Sub-case 2: hl
γl
≥ φh∗k . In this subcase, the solution Ul has a good density, so FindSubhistogram

can extract a good solution with a bounded number of histogram pieces. More formally, since
γl ≥ 2α

τ k, we can invoke Lemma 25 and get∥∥∥PU ′l b∥∥∥2
≥

2α
τ k

γl
hl

≥ 2αk

τ
φ
h∗

k

≥
(

1− τ

2

)
h∗ .

Moreover, the output of FindSubhistogram satisfies γ(U ′l) ≤
4α
τ k + 4, and hence U ′l satisfies the

conditions of the theorem.
We can now conclude the proof of the theorem: always, one of sub-case 1 and sub-case 2 holds.

Since HistogramHead always returns the best of the two choices Ur and U ′l , the overall result has
the desired head approximation guarantee.

The overall running time is dominated by the invocations of HistogramOracle in the binary
search. Each invocation takes O(n1+ζ) time and the number of invocations is the number of iterations
of the binary search, i.e., bounded by⌈

log
λ

(0)
r − λ(0)

l

ε

⌉
≤

⌈
λ

(0)
r

ε

⌉
≤

⌈
log

4αk‖b‖2

bmaxτ

⌉
.

Since k ≤ d and ‖b‖
2

bmax
≤ d, the running time bound in the theorem follows.

31

As before, Theorem 8 follows as a direct consequence of Theorem 26. For completeness, we
repeat the statement of Theorem 8:

Theorem 8. Let ζ > 0 and ε > 0 be arbitrary. Then there is an (1− ε,Uk,Uc·k)-approximate head
projection for 2D histograms where c = O(1/ζ2ε). Moreover, the algorithm runs in time Õ(d1+ζ).

Setting τ = O(ε) gives the 1 − ε guarantee in Theorem 8. Moreover, we use the α = O(1/ζ2)
dependence from Theorem 3 of [18].

C.3 Recovery of 2D histograms

While we have approximate projections for 2D histograms, they do not suffice to state an overall
recovery guarantee in the current form. The issue is that Theorem 9 requires an approximate head
projection that is competitive with respect to the sum of subspaces U⊕ UT . While this is easy to
satisfy for low-rank matrices (the sum of two rank-r subspace models is contained in the rank-2r
subspace model), adding histogram subspace models is more subtle. For instance, consider two
k-histogram subspaces corresponding to k rows and columns of a k × k matrix, respectively. The
sum of the two subspaces then contains k2 individual rectangles (a chessboard pattern). While these
k2 rectangles are not independent (the dimension of the space is only 2k), the chessboard pattern is
no directly contained in the set of 2k-histogram subspaces. As a result, a head approximation that
is competitive with respect to 2k-histograms is not immediately competitive with respect to the sum
of two k-histograms.

While head boosting is not directly helpful to overcome this issue, we believe that 2D histograms
are “well-behaved” in the sense that boosting is still helpful. In particular, we believe that the sum
of two k-histograms still allows a constant-factor head approximation with a single O(k)-histogram
subspace. More formally, we state the following conjecture.

Conjecture 1. Let c > 0 be fixed. Then there are universal constants c1 > 0 and c2 > 0 depending
on c such that the following holds. For any b ∈ Rd, there is a c1k-histogram subspace U such that we
have

‖PUb‖ ≥ c2‖P⊕c Uk
b‖ .

If the above conjecture is true, Theorem 26 yields an approximate head projection that is
competitive to ⊕cUk. Combining this with the boosted version of our recovery framework (see
Appendix A.3) then yields an overall recovery algorithm.

D Sample complexity of subspace recovery

Here, we establish bounds on the sample complexity of subspace recovery for some particular instances.
In particular, our focus is on fast sampling operators, i.e., operators that support matrix-vector
multiplications with a running time that is nearly-linear in the size of the vector. Our results follow
from a standard concatenation of previously existing results.

D.1 Low-rank matrices

Consider the case where the subspace model U corresponds to the set of rank-r matrices of size
d1 × d1. Then, the subspace RIP corresponds to the (somewhat) more well-known rank-r restricted
isometry property, first introduced in Recht, Fazel, and Parillo. We obtain the following result:

32

Theorem 27. Let d = d2
1. Then, there exists a randomized construction of a matrix X ∈ Rn×d,

with parameters n = O(rdpolylog d), such that X satisfies the rank-r RIP with high probability.
Moreover, X supports matrix-vector multiplications with complexity O(d log d).

Proof. We begin by considering matrices that satisfy the standard RIP for s-sparse vectors, as
well as support fast matrix-vector multiplication. To the best of our knowledge, the sharpest such
bounds have been recently obtained by Haviv and Regev (SODA 2016). They show that with high
probability, a matrix formed by randomly subsampling n = O(δ−2s log2(s/δ)d) rows of the discrete
Fourier Transform (DFT) matrix satisfies the standard RIP (with isometry constant δ) over the set
of s-sparse vectors.

Next, we invoke a well-known result by Ward and Krahmer (“New and Improved Johnson-
Lindenstrauss Embeddings via the RIP"). Consider a diagonal matrix Dξ, where the diagonal ξ is a
Rademacher sequence uniformly distributed over {−1, 1}d. Also consider any fixed set of vectors B
with |B| = m where s > O(log m

η). If X ′ is any n× d matrix that satisfies the standard RIP over
the set of s-sparse vectors with constant δ < ε/4, then high probability the matrix X = X ′Dξ is a
Johnson-Lindenstrauss embedding for E. Formally, the following is true with probability exceeding
1− η:

(1− ε)‖β‖22 ≤ ‖Xβ‖
2
2 ≤ (1 + ε)‖β‖22.

uniformly for all β ∈ B.
Next, we invoke Lemma 3.1 of Candes and Plan (“Tight Oracle Bounds for Matrix Recovery"),

who show that the set of vectors corresponding to rank-k matrices, Sk, exhibits an ε-net S̄k (with
respect to the Euclidean norm) such that

|S̄r| ≤ (9/ε)(d1+d2+1)k.

Also from Candes and Plan, we have that if X is a Johnson-Lindenstrauss embedding with
isometry constant ε for an S̄k, then X satisfies the rank-k RIP with constant δ = O(ε). Plugging in
s = O(k(d1 + d2)) and m = O(s polylog d) and adjusting constants, we get the stated result.

D.2 Histograms

Now, consider the case where the subspace model U corresponds to the set of (hierarchical or tiling)
histograms. Since either type of histogram can be modeled as superpositions of sub-rectangles
of the domain

√
d ×

√
d , we can simply model the histogram subspace model U as a subset of

dictionary-sparse vectors {x|x = Dα, ‖α‖0 ≤ k}. Here, D is a dictionary of size d×
(
d2

2

)
where each

column of D corresponds to a single tile (normalized to unit `2-norm).
Therefore, any matrix that satisfies the RIP with respect to the dictionary D (abbreviated

sometimes as the D-RIP) also suffices for reliable histogram subspace recovery. The following result
is folklore, and a formal proof can be found in the appendix of Hegde, Indyk, and Schmidt (“Nearly
Linear-Time Model-Based Compressive Sensing").

Theorem 28. There exists a randomized construction of a matrix X ∈ Rn×d, with parameters n =
O(k log d/k), such that with high probability, X satisfies the subspace RIP for the histogram subspace
model. Moreover, X supports matrix-vector multiplications with complexity O(d log d+ k2 polylog d).

33

Time (sec)
0 0.5 1 1.5 2 2.5

Er
ro

r

10-3

10-2

10-1

100

Exact SVD
Propack
Block-Krylov(iter=1)
Block-Krylov(iter=8)

Time (sec)
0 0.5 1 1.5 2 2.5 3

Er
ro

r

10-3

10-2

10-1

100

Exact SVD
Propack
Block-Krylov(iter=1)
Block-Krylov(iter=8)

Figure 2: (left) Example low-rank matrix of size d = 133 × 200, r = 6. (right) Recovery error of
various algorithms as a function of time (2 independent trials).

1 1.5 2 2.5 3

0

5

10

Oversampling ratio n/r(d1 + d2)

R
un

ni
ng

ti
m

e
(s

ec
)

Matrix recovery

Exact SVD
PROPACK
Krylov (1 iters)
Krylov (8 iters)

Figure 3: Running times corresponding to the low-rank matrix recovery experiment in Figure 1. The
block Krylov variant of IHT with one iteration has the best running time.

E Supplemental experiments

We begin with a description of the experimental setup. All experiments were conducted on an iMac
desktop computer with an Intel Core i5 CPU (3.2 GHz) and 16 GB RAM. With the exception of
the dynamic program (DP) for 2D histograms, all code was written in Matlab. We chose C++ for
the 2D histogram DP because it heavily relies on for-loops, which tend to be slow in Matlab. Since
the Krylov SVD of [17] is only available as a Matlab routine, we also chose the Matlab version of
PROPACK [16] so that the implementations are comparable. Unless reported otherwise, all reported
data points were averaged over at least 10 trials.

E.1 Low-rank matrix recovery experiments

Figure E shows an image of the MIT logo used in the low-rank matrix recovery experiments [19, 15].
For our first experiment, we record n = 3.5(d1 + d2)r = 6994 linear measurements of the image. The
measurement operator is constructed by subsampling m rows of a Fourier matrix and multiplying
its columns by a randomly chosen Bernoulli vector, similar to the RIP matrix given in Appendix D.
The goal is to recover the image from these observations.

We adapt the Singular Value Projection (SVP) algorithm of [15] by replacing the exact SVD step
with approximate SVDs (some of which are very coarse), and demonstrate that we can still achieve
efficient matrix recovery from few observations. As alternatives to Matlab’s in-built svd function,
we include the PROPACK [16] numerical linear algebra package, which implements a Lanczos-type
method. We also include an implementation of the recent Block-Krylov SVD algorithm of [17], which

34

5 6 7 8 9 10
0

0.1

0.2

0.3

Oversampling ratio n/rd1

E
rr

or
(F

ro
be

ni
us

no
rm

) Matrix completion

PROPACK
LinearTimeSVD
Block Krylov

Figure 4: Average approximation errors for the low-rank matrix completion experiment in Figure 1.
As for low-rank matrix recovery, the different SVDs achieve essentially the same error.

offers a nice tradeoff between approximation ratio and running time. We test this method with 1
and 8 Krylov subspace iterations (8 is the default provided in the code of [17]).

Figure 3 shows the running times corresponding to the phase transition plot in Figure 1. The
only stopping criteria we used were based on a small residual and a maximum number of iterations,
so the running times of the algorithms are slowest in the regime where they do not recovery the
signal.

The subspace IHT algorithm is iterative, i.e., it produces a sequence of matrix estimates

{θ̂0, θ̂1, . . . , θ̂t}. Figure E displays the estimation error, ‖θ
∗−θ̂t‖
‖θ∗‖) , as a function of wall-clock time, on

two different trial runs. We observe from the plots that PROPACK and the Block Krylov method
(with 8 iterations) perform similar to the exact SVD due to the small problem size. Interestingly,
a very coarse approximate SVD (a single Block Krylov subspace iteration) provides the fastest
convergence. Overall, using approximate SVDs within SVP / IHT does not only yield computational
speed-ups, but also offers competitive statistical performance.

We also report results of using the SVP / IHT algorithm with approximate projections on a
larger matrix completion problem. We generate a matrix of size d = 2048× 2048 with rank r = 50.
We only sample n randomly chosen entries of this matrix and attempt to reconstruct the matrix
from these entries using SVP with approximate low-rank projections. We vary n and obtain error
curves as well as running times. Figure 4 shows the approximation errors for the matrix completion
experiment in Figure 1. As for the matrix recovery experiments, all SVDs achieve essentially the
same error. We note that the error floor of about 0.05 is a result of our stopping criterion.

E.2 2D histogram recovery

Finally, we show our results for recovering a 2D histogram from linear observations. As before, we
use subsampled Fourier measurements. Our test vector is a 32× 32 hierarchical histogram consisting
of 4 rectangles. Hierarchical histograms are essentially 2D piecewise constant functions over a 2D
domain where the constant pieces (or tiles) are generated by starting with the entire domain as a
single tile and recursively partitioning tiles by making horizontal or vertical splits. We compare
three approaches: (i) “Standard” sparsity in the Haar wavelet domain. (ii) Tree sparsity in the Haar
wavelet domain [10, 1]. (iii) Our approximate projection algorithm. The focus in our experiments is
on sample complexity, so we have implemented only one “level” of the DP in [18]. Figure 5 shows the
corresponding phase transitions. The 2D histogram DP does indeed offer the best empirical sample
complexity.

35

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Oversampling ratio n/k

P
ro

ba
bi

lit
y

of
re

co
ve

ry

2D histogram recovery

Histogram DP
Tree sparsity + Haar wavelets
Haar wavelets

Figure 5: Results for recovering a hierarchical histogram from subsampled Fourier measurements.
As predicted by our theoretical argument, the 2D histogram DP has the best sample complexity.

36

	Introduction
	Our contributions
	A framework for recovery algorithms with approximate projections
	Low-rank matrix recovery
	2D-histogram recovery
	Related work

	An algorithm for recovery with approximate projections
	Low-rank matrix recovery
	Experiments
	Proofs for our recovery framework using approximate projections
	Convergence of AS-IHT
	Boosting approximate projections
	A boosted recovery algorithm

	Proofs for low-rank matrix recovery
	The final recovery algorithm

	Approximation algorithms for 2D histograms
	Approximate tail projection
	Approximate head projection
	Recovery of 2D histograms

	Sample complexity of subspace recovery
	Low-rank matrices
	Histograms

	Supplemental experiments
	Low-rank matrix recovery experiments
	2D histogram recovery

